Systems and methods are described for virtual and augmented reality. A position of a first user and a position of a second user in a physical space are received, wherein the positions are derived from detected infrared light from a plurality of cameras. An image corresponding to the first user is rendered at a first virtual position in a display device associated with the second user, wherein the first virtual position is determined based at least in part on a position of the first user in the physical space and on a determined viewpoint of the second user. An image corresponding to the second user is rendered at a second virtual position in a display device associated with the first user, wherein the second virtual position is determined based at least in part on a position of the second user in the physical space and on a determined viewpoint of the first user.
H04N 21/6587 - Control parameters, e.g. trick play commands or viewpoint selection
H04N 21/442 - Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed or the storage space available from the internal hard disk
H04N 7/18 - Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
Systems and methods are described for virtual and augmented reality. A position of a first user and a position of a second user in a physical space are received, wherein the positions are derived from detected infrared light from a plurality of cameras. An image corresponding to the first user is rendered at a first virtual position in a display device associated with the second user, wherein the first virtual position is determined based at least in part on a position of the first user in the physical space and on a determined viewpoint of the second user. An image corresponding to the second user is rendered at a second virtual position in a display device associated with the first user, wherein the second virtual position is determined based at least in part on a position of the second user in the physical space and on a determined viewpoint of the first user.
An aspect of the disclosure relates to an example marker identification and position tracking system configured to interface and work in conjunction with a marker device and camera system and to provide high fidelity tracking of user and object motion in a virtual and/or augmented reality experience. The example computing system enables use case scenarios in which certain computer aided design capabilities enable rapid creation/configuration of a multi-user, interactive, virtual reality, and/or augmented reality slide presentation experience.
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
4.
Multi-user virtual and augmented reality tracking systems
Systems and methods are described for virtual and augmented reality. A position of a first user and a position of a second user in a physical space are received, wherein the positions are derived from detected infrared light from a plurality of cameras. An image corresponding to the first user is rendered at a first virtual position in a display device associated with the second user, wherein the first virtual position is determined based at least in part on a position of the first user in the physical space and on a determined viewpoint of the second user. An image corresponding to the second user is rendered at a second virtual position in a display device associated with the first user, wherein the second virtual position is determined based at least in part on a position of the second user in the physical space and on a determined viewpoint of the first user.
A marker tracking system configured to detect light patterns (e.g., infrared light patterns) generated by one or more markers is described. A given marker is configured with a code which identifies the marker in a motion tracking camera field of view. Motion tracking camera(s) record the emitted infrared light and are configured to directly, or in conjunction with an associated computing device, computationally distinguish a given marker with high accuracy and efficiently.
A portable virtual reality and/or augmented reality system enabling the projection and tracking of a user in a simulated environment is described. A system of motion capture cameras/sensors, computing, and tracking devices is provided in a portable package. Each tracking device is configured with one or more emitters which may generate a distinctive, repetitive pattern. The virtual reality and/or augmented reality system once assembled, provides for motion tracking and display of a one or more users in a simulated environment.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
A multi-user virtual reality and/or augmented reality cluster system enabling the projection and tracking of users in a simulated environment is described. The disclosed cluster system enables both timely user action display in the first person and a timely view of a user's action by other participants of the simulation. The cluster system integrates motion capture cameras, distributed computing, and tracking devices to provide a simulation which seems lifelike to all participants and observers.
A marker tracking system configured to detect light patterns (e.g., infrared light patterns) generated by one or more markers is described. A given marker is configured with a code which identifies the marker in a motion tracking camera field of view. Motion tracking camera(s) record the emitted infrared light and are configured to directly, or in conjunction with an associated computing device, computationally distinguish a given marker with high accuracy and efficiently.
A multi-user virtual reality and/or augmented reality cluster system enabling the projection and tracking of users in a simulated environment is described. The disclosed cluster system enables both timely user action display in the first person and a timely view of a user's action by other participants of the simulation. The cluster system integrates motion capture cameras, distributed computing, and tracking devices to provide a simulation which seems lifelike to all participants and observers.
Embodiment of a lightweight and compact wireless precision position tracking device and a precision position tracking motion capture system are described. Optionally, the wireless precision position tracking device is configured to be worn by a user. The wireless precision position tracking device may be configured to emit optical light from two or more respective markers, where the light from one of the markers is distinguishable from light from another of the markers.
A portable virtual reality and/or augmented reality system enabling the projection and tracking of a user in a simulated environment is described. A system of motion capture cameras, computing, and tracking devices is provided in a portable package. Each tracking device is configured with one or more emitters which may generate a distinctive, repetitive pattern. The virtual reality and/or augmented reality system once assembled, provides for motion tracking and display of a one or more users in a simulated environment.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
Embodiment of a lightweight and compact wireless precision position tracking device and a precision position tracking motion capture system are described. Optionally, the wireless precision position tracking device is configured to be worn by a user. The wireless precision position tracking device may be configured to emit optical light from two or more respective markers, where the light from one of the markers is distinguishable from light from another of the markers.
G06F 3/00 - Input arrangements for transferring data to be processed into a form capable of being handled by the computerOutput arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
G01S 7/48 - Details of systems according to groups , , of systems according to group
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G01S 17/46 - Indirect determination of position data
Embodiment of a lightweight and compact wireless precision position tracking device and a precision position tracking motion capture system are described. Optionally, the wireless precision position tracking device is configured to be worn by a user. The wireless precision position tracking device may be configured to emit optical light from two or more respective markers, where the light from one of the markers is distinguishable from light from another of the markers.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/00 - Input arrangements for transferring data to be processed into a form capable of being handled by the computerOutput arrangements for transferring data from processing unit to output unit, e.g. interface arrangements