The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
C01B 33/155 - Preparation of hydroorganogels or organogels
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 38/00 - Ancillary operations in connection with laminating processes
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 38/00 - Ancillary operations in connection with laminating processes
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B01J 13/00 - Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
C01B 33/155 - Preparation of hydroorganogels or organogels
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 38/00 - Ancillary operations in connection with laminating processes
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 38/00 - Ancillary operations in connection with laminating processes
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
B32B 38/00 - Ancillary operations in connection with laminating processes
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides hydrophobic silica wet gel, hydrophobic silica aerogel, and methods that can be used to form an enhanced hydrophobic silica aerogel sheet having an advantageous combination of properties. Some embodiments of the invention provide a hydrophobic silica aerogel having advantageous properties, such as desirable performance on visible transmission, haze, or both.
B32B 7/05 - Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
B32B 3/10 - Layered products essentially comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products essentially having particular features of form characterised by a discontinuous layer, i.e. apertured or formed of separate pieces of material
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
A switchable glazing can include an electrically controllable optically active material controllable to vary the visibility through the glazing structure. The switchable glazing can be movable relative to a surrounding frame, such as when implemented as a door or window. In some examples, the glazing can include a plurality of electrical connectors that can electrically connect to corresponding electrical connectors in the frame when the glazing is moved to a first position and electrically disconnect when the glazing is moved to a second position. Upon disconnecting, electrical connectors associated with the glazing can electrically connect with each other, shorting the electrically controllable optically active material. This can remove the potential energy otherwise stored in the material for increased safety and/or enhanced optics.
The invention provides silica wet gel, silica aerogel, and methods that can be used to form an enhanced silica aerogel sheet having fewer optical defects along with other desirable properties.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing online non-downloadable software for use by door and window manufacturers that allows for the selection of glass for windows and doors to optimize energy savings and comfort in homes and buildings
15.
AEROGEL MOLDING AND HANDLING TECHNOLOGY, MULTIPLE-PANE INSULATING GLAZING UNITS INCORPORATING AEROGEL, AND IG UNIT MANUFACTURING METHODS
In some embodiments, the invention provides a multiple-pane insulating glazing unit having a between-pane space. An aerogel layer is located in the between-pane space. Further, some embodiments of the invention provide a method of manufacturing such a multiple-pane insulating glazing unit. Still further, some embodiments provide a glazing assembly comprising a frame and a multiple-pane insulating glazing unit that includes an aerogel layer and is mounted in the frame. Finally, some embodiments provide a method of handling an aerogel sheet.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
16.
AEROGEL MOLDING AND HANDLING TECHNOLOGY, MULTIPLE-PANE INSULATING GLAZING UNITS INCORPORATING AEROGEL, AND IG UNIT MANUFACTURING METHODS
In some embodiments, the invention provides a multiple-pane insulating glazing unit having a between-pane space. An aerogel layer is located in the between-pane space. Further, some embodiments of the invention provide a method of manufacturing such a multiple-pane insulating glazing unit. Still further, some embodiments provide a glazing assembly comprising a frame and a multiple-pane insulating glazing unit that includes an aerogel layer and is mounted in the frame. Finally, some embodiments provide a method of handling an aerogel sheet.
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
B01J 13/00 - Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
17.
ALLOY OXIDE OVERCOAT INDIUM TIN OXIDE COATINGS, COATED GLAZINGS, AND PRODUCTION METHODS
The invention provides transparent conductive coatings based on indium tin oxide. The coating has an oxide overcoat, such as an alloy oxide overcoat. In some embodiments, the coating further includes one or more overcoat films comprising silicon nitride, silicon oxynitride, silicon dioxide, or titanium dioxide.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
18.
HANDLING TECHNOLOGY FOR FRAGILE MATERIALS SUCH AS AEROGELS
A multilayer glass panel may be cut using a laser cutting technique. In some examples, the technique involves directing a laser beam into to panel to form a separation line. The separation line includes a plurality of spaced-apart defect columns extending at least partially through a first glass substrate but not through a second glass substrate. The plurality of spaced-apart defect columns each include a plurality of spaced-apart filamentation flaws. The example method can also involve separating a portion of the first glass substrate from the second glass substrate along the separation line to thereby configure the multilayer panel with a shelf defined by a portion of the second glass substrate extending outwardly from the separation line.
B23K 26/53 - Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
B23K 26/40 - Removing material taking account of the properties of the material involved
B23K 26/55 - Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
B23K 26/57 - Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
20.
HANDLING TECHNOLOGY FOR FRAGILE MATERIALS SUCH AS AEROGELS
A multilayer glass panel may be cut using a laser cutting technique. In some examples, the technique involves directing a laser beam into to panel to form a separation line. The separation line includes a plurality of spaced-apart defect columns extending at least partially through a first glass substrate but not through a second glass substrate. The plurality of spaced-apart defect columns each include a plurality of spaced-apart filamentation flaws. The example method can also involve separating a portion of the first glass substrate from the second glass substrate along the separation line to thereby configure the multilayer panel with a shelf defined by a portion of the second glass substrate extending outwardly from the separation line.
C03B 33/02 - Cutting or splitting sheet glass; Apparatus or machines therefor
B23K 26/0622 - Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
B23K 26/06 - Shaping the laser beam, e.g. by masks or multi-focusing
B23K 26/351 - Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
B23K 26/359 - Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
B23K 26/361 - Removing material for deburring or mechanical trimming
B23K 26/364 - Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
B23K 26/53 - Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
C03B 33/07 - Cutting armoured or laminated glass products
22.
ALLOY OXIDE OVERCOAT INDIUM TIN OXIDE COATINGS, COATED GLAZINGS, AND PRODUCTION METHODS
The invention provides transparent conductive coatings based on indium tin oxide. The coating has an oxide overcoat, such as an alloy oxide overcoat. In some embodiments, the coating further includes one or more overcoat films comprising silicon nitride, silicon oxynitride, silicon dioxide, or titanium dioxide.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
The invention provides an IG unit that includes two glass sheets and an aerogel sheet located between the two glass sheets. The aerogel sheet is adhered to an interior surface of one of the two glass sheets by an adhesive, such that a face of the aerogel sheet is carried alongside the interior surface and has a portion that is devoid of the adhesive. In some cases, the adhesive is outside a vision area of the unit. In some cases, the adhesive securing the aerogel sheet to the interior surface is in contact with the first face of the aerogel sheet, and the adhesive contacts less than 10% of the first face of the aerogel sheet. Furthermore, some embodiments provide a glazing assembly that includes a frame and an IG unit mounted in the frame such that a vision area of the glazing assembly is located inwardly of the frame.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
25.
LEAKAGE CURRENT DETECTION AND CONTROL FOR ONE OR MORE ELECTRICALLY CONTROLLABLE PRIVACY GLAZING STRUCTURES
An electrical characteristic of a privacy glazing structure and indicative of a health of the privacy glazing structure can be measured at a first time and at a second time later than the first time. In response to detecting a change in the electrical characteristic indicating a change in the health of the privacy glazing structure, one or more parameters of an electrical drive signal can be adjusted to compensate for the change in the health of the privacy glazing structure. The electrical characteristic can be measured at a plurality of times after the second time and compared to the electrical characteristic measured at the first time. If, at any of the plurality of times, the measured electrical characteristic differs from the electrical characteristic measured at the first time by more than a threshold amount, one or more parameters of the electrical drive signal can be adjusted.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G01R 31/52 - Testing for short-circuits, leakage current or ground faults
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
A privacy glazing structure may be fabricated from multiple panes of transparent material that hold an optically active material and also define a between-pane space that is separated from a surrounding environment for thermal insulating properties. The privacy glazing structure may include various functional coatings and intermediate films to enhance the performance and/or life span of the structure. For example, the privacy glazing structure may include a low emissivity coating and a laminate layer positioned between an optically active layer and an exterior environment exposed to sunlight. The low emissivity coating and laminate layer may work in combination to effectively protect the optically active layer from sunlight degradation. Additionally or alternatively, the laminate layer may impart safety and impact resistance properties to the structure.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
The invention provides silica wet gel, silica aerogel, and methods that can be used to form an enhanced silica aerogel sheet having fewer optical defects along with other desirable properties.
A privacy glazing structure may include an electrically controllable optically active material, such as a liquid crystal material, sandwiched between a flexible substrate and a rigid substrate. The flexible substrate and the rigid substrate may each have a conductive layer deposited on the surface facing the optically active material. The flexible substrate may be bonded about its perimeter to the rigid substrate and may be sufficiently flexible to conform to non-planarity of the rigid substrate. As a result, the flexible substrate may adopt the surface contour of the rigid substrate to maintain a uniform thickness of optically active material between the flexible substrate and the rigid substrate.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/17 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on variable-absorption elements not provided for in groups
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/161 - Gaskets; Spacers; Sealing of cells; Filling or closing of cells
The invention provides automated spacer processing systems and methods. The systems and methods involve at least one robot arm that is configured to process spacers for multiple-pane insulating glazing units. In some embodiments, the systems also include an insulating glazing unit assembly line and a spacer conveyor system. Additionally or alternatively, the systems may include a sealant applicator.
An electrical driver can be used to provide electrical drive signals to a first and second electrically controllable optical privacy glazing structures. A first electrical drive signal can be applied to the first privacy glazing structure and a second electrical drive signal can be applied to the second privacy glazing structure. Applying the first and second electrical drive signal can comprise temporally staggering delivery of the first and second electrical drive signals such that a peak power draw and/or a peak current draw from the first privacy glazing structure is temporally offset from a peak power draw and/or a peak current draw from the second privacy glazing structure. Staggering can include delaying the application of one electrical drive signal relative to the other, phase shifting one electrical drive signal relative to the other, or a combination thereof.
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
31.
PRIVACY GLAZING SYSTEM WITH DISCRETE ELECTRICAL DRIVER
A controllable privacy structure, such as a window or door, may include an electrically controllable optically active material connected to a driver. The driver can control the application and/or removal of electrical energy to the optically active material to transition from a scattering state in which visibility through the structure is inhibited to a transparent state in which visibility through the structure is comparatively clear. The driver may need to be located in relatively close physical proximity to the privacy structure the driver is intended to control. Devices, systems, and techniques are described for discretely positioning a driver relative to a privacy structure to be controlled.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
B32B 17/00 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
The invention provides silica wet gel, silica aerogel, and methods that can be used to form an enhanced silica aerogel sheet having fewer optical defects along with other desirable properties.
B32B 5/18 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by features of a layer containing foamed or specifically porous material
C01B 33/155 - Preparation of hydroorganogels or organogels
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides silica wet gel, silica aerogel, and methods that can be used to form an enhanced silica aerogel sheet having fewer optical defects along with other desirable properties.
The invention provides silica wet gel, silica aerogel, and methods that can be used to form an enhanced silica aerogel sheet having fewer optical defects along with other desirable properties.
The invention provides silica wet gel, silica aerogel, and methods that can be used to form an enhanced silica aerogel sheet having fewer optical defects along with other desirable properties.
17 - Rubber and plastic; packing and insulating materials
Goods & Services
Coatings of metals applied to glass for use in the further manufacture of windows Coatings of insulative dielectric compounds applied to glass for use in the further manufacture of windows
17 - Rubber and plastic; packing and insulating materials
Goods & Services
Coatings of metals applied to glass for use in the further manufacture of windows Coatings of insulative dielectric compounds applied to glass for use in the further manufacture of windows
38.
SELF-CORRECTING EDGE QUALITY IN A GLASS TEMPERING SYSTEM
This disclosure is directed to techniques for utilizing various sensors and models to evaluate glass as it progresses through the tempering process in order to ensure that the tempered glass is of a proper quality. If, according to any of the various sensor measurements, the tempered glass is not of a proper quality, the system may automatically adjust one or more settings in any of the various components of the system in order to bring future panes of tempered glass back to having the proper quality. The system can measure for any number of glass characteristics or system characteristics, including edge quality, vertical flatness, haze, washing process variables, thermal imaging, distortion, blower information, production data, and furnace process data.
G06V 10/764 - Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
39.
A GLASS TEMPERING SYSTEM WITH AUTOMATIC CONTROL OF EDGE QUALITY
This disclosure is directed to techniques for utilizing various sensors and models to evaluate glass as it progresses through the tempering process in order to ensure that the tempered glass is of a proper quality. If, according to any of the various sensor measurements, the tempered glass is not of a proper quality, the system may automatically adjust one or more settings in any of the various components of the system in order to bring future panes of tempered glass back to having the proper quality. The system can measure for any number of glass characteristics or system characteristics, including edge quality, vertical flatness, haze, washing process variables, thermal imaging, distortion, blower information, production data, and furnace process data.
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
This disclosure is directed to techniques for utilizing various sensors and models to evaluate glass as it progresses through the tempering process in order to ensure that the tempered glass is of a proper quality. If, according to any of the various sensor measurements, the tempered glass is not of a proper quality, the system may automatically adjust one or more settings in any of the various components of the system in order to bring future panes of tempered glass back to having the proper quality. The system can measure for any number of glass characteristics or system characteristics, including edge quality, vertical flatness, haze, washing process variables, thermal imaging, distortion, blower information, production data, and furnace process data.
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
This disclosure is directed to techniques for utilizing various sensors and models to evaluate glass as it progresses through the tempering process in order to ensure that the tempered glass is of a proper quality. If, according to any of the various sensor measurements, the tempered glass is not of a proper quality, the system may automatically adjust one or more settings in any of the various components of the system in order to bring future panes of tempered glass back to having the proper quality. The system can measure for any number of glass characteristics or system characteristics, including edge quality, vertical flatness, haze, washing process variables, thermal imaging, distortion, blower information, production data, and furnace process data.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control (DNC), flexible manufacturing systems (FMS), integrated manufacturing systems (IMS), computer integrated manufacturing (CIM)
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
42.
SELF-CORRECTING VERTICAL FLATNESS IN A GLASS TEMPERING SYSTEM
This disclosure is directed to techniques for utilizing various sensors and models to evaluate glass as it progresses through the tempering process in order to ensure that the tempered glass is of a proper quality. If, according to any of the various sensor measurements, the tempered glass is not of a proper quality, the system may automatically adjust one or more settings in any of the various components of the system in order to bring future panes of tempered glass back to having the proper quality. The system can measure for any number of glass characteristics or system characteristics, including edge quality, vertical flatness, haze, washing process variables, thermal imaging, distortion, blower information, production data, and furnace process data.
C03B 27/052 - Tempering glass products using gas for flat or bent glass sheets being in a vertical position
G05B 13/02 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
C03B 27/012 - Tempering glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
43.
SELF-CORRECTING HAZE PARAMETERS IN A GLASS TEMPERING SYSTEM
This disclosure is directed to techniques for utilizing various sensors and models to evaluate glass as it progresses through the tempering process in order to ensure that the tempered glass is of a proper quality. If, according to any of the various sensor measurements, the tempered glass is not of a proper quality, the system may automatically adjust one or more settings in any of the various components of the system in order to bring future panes of tempered glass back to having the proper quality. The system can measure for any number of glass characteristics or system characteristics, including edge quality, vertical flatness, haze, washing process variables, thermal imaging, distortion, blower information, production data, and furnace process data.
The invention provides an IG unit that includes two glass sheets and an aerogel sheet located between the two glass sheets. The aerogel sheet is adhered to an interior surface of one of the two glass sheets by an adhesive, such that a face of the aerogel sheet is carried alongside the interior surface and has a portion that is devoid of the adhesive. In some cases, the adhesive is outside a vision area of the unit. In some cases, the adhesive securing the aerogel sheet to the interior surface is in contact with the first face of the aerogel sheet, and the adhesive contacts less than 10% of the first face of the aerogel sheet. Furthermore, some embodiments provide a glazing assembly that includes a frame and an IG unit mounted in the frame such that a vision area of the glazing assembly is located inwardly of the frame.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
Electrically dynamic window structure with ultralow power consumption comprising a liquid crystal material that can switch between first and second optical transition states
An electrically dynamic window structure may include first and second panes of transparent material and an electrically controllable optically active material positioned between the two panes. A driver can be electrically connected to electrode layers carried by the two panes. The driver may be configured to alternate between a drive phase in which a drive signal is applied to the electrode layers and an idle phase in which the drive signal is not applied to the electrode layers. The electrically controllable optically active material can maintain its transition state during the idle phase. As a result, the power consumption of the structure may be reduced as compared to if the driver continuously delivers the drive signal.
Machines are provided for removing masking from regions of glazing panes. Also provided are methods of removing masking from regions of glazing panes. The machines can include a head assembly and a processing station. The head assembly can have various combinations and/or configurations of features, including one or more of a plurality of cutters, a plurality of belts, and at least one pressurized gas nozzle.
B65H 29/56 - Article strippers, e.g. for stripping from advancing elements for stripping from elements of machines
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
47.
Electrical connection configurations for privacy glazing structures
A privacy glazing structure may include an electrically controllable optically active material that provides controlled transition between a privacy or scattering state and a visible or transmittance state. To make electrical connections with electrode layers that control the optically active material, the privacy glazing structure may include electrode engagement regions. In some examples, the electrode engagement regions are formed as notches in peripheral edges of opposed panes bounding the optically active material. The notches may or may not overlap to provide a through conduit in the region of overlap for wiring. In either case, the notches may allow the remainder of the structure to have a flush edge surface for ease of downstream processing.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
48.
MASKING REMOVAL MACHINES, AND METHODS OF MASKING REMOVAL
Machines are provided for removing masking from regions of glazing panes. Also provided are methods of removing masking from regions of glazing panes. The machines can include a head assembly and a processing station. The head assembly can have various combinations and/or configurations of features, including one or more of a plurality of cutters, a plurality of belts, and at least one pressurized gas nozzle.
An electrical response of a privacy glazing structure to an applied electrical sensing pulse can be measured, and one or more parameters of the privacy glazing structure can be characterized. The one or more parameters can be used to load one or more drive parameters for subsequent use in an electrical drive signal used to operate the privacy glazing structure. If an electrical drive signal is already in place, the characterized one or more parameters can be compared to one or more parameters characterized at a previous time. If the one or more characterized parameters are different from those characterized at the previous time by more than a threshold amount, one or more drive parameters of the electrical drive signal can be adjusted to a new value.
A power transfer assembly includes a window balance assembly, a pivot bar, and an electrically conductive pathway. The window balance assembly includes a first portion configured to be fixed in place and a second portion configured to be movable relative to the first portion. The pivot bar is conductively coupled to the second portion of the window balance assembly. And, the electrically conductive pathway extends between the window balance assembly and the pivot bar.
A power transfer assembly includes a window balance assembly, a pivot bar, and an electrically conductive pathway. The window balance assembly includes a first portion configured to be fixed in place and a second portion configured to be movable relative to the first portion. The pivot bar is conductively coupled to the second portion of the window balance assembly. And, the electrically conductive pathway extends between the window balance assembly and the pivot bar.
A power transfer assembly includes a window balance assembly, a pivot bar, and an electrically conductive pathway. The window balance assembly includes a first portion configured to be fixed in place and a second portion configured to be movable relative to the first portion. The pivot bar is conductively coupled to the second portion of the window balance assembly. And, the electrically conductive pathway extends between the window balance assembly and the pivot bar.
The invention provides a method of processing glass that involves forming a flexible gel layer on a flexible glass sheet to create a glass-gel sheet; rolling-up the glass-gel sheet into the form of a roll; placing the roll in a dryer; and drying the flexible gel layer so as to form a flexible aerogel layer. Some embodiments provide a glazing unit that includes a glass-aerogel sheet located between first and second panes of the glazing unit, where the glass-aerogel sheet includes a flexible glass sheet and a flexible aerogel layer on the flexible glass sheet. In such embodiments, the first and second panes each have thicknesses that are greater than a thickness of the flexible glass sheet. Other embodiments provide a glass assembly having a flexible aerogel layer on a flexible glass sheet, with the flexible glass sheet being laminated to a glass pane.
C03C 17/28 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
The invention provides a.method of processing glass that involves forming a flexible gel layer on a flexible glass sheet to create a glass-gel sheet; rolling-up the glass-gel sheet into the form of a roll; placing the roll in. a dryer; and drying the flexible gel layer so as to form a flexible aerogel layer. Some embodiments provide a glazing unit that includes a glass-aerogel sheet located between first and second panes of the glazing unit, where the glass-aerogel sheet includes a flexible glass sheet and a flexible aerogel layer on the flexible glass sheet. In such embodiments, the first and second panes each have thicknesses that are greater than a thickness of the flexible glass sheet. Other embodiments provide a glass assembly having a flexible aerogel layer on a flexible glass sheet, with the flexible glass sheet being laminated to a glass pane.
C03C 17/32 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
C03C 27/06 - Joining glass to glass by processes other than fusing
55.
Electrically controllable privacy glazing with ultralow power consumption comprising a liquid crystal material having a light transmittance that varies in response to application of an electric field
An electrically dynamic window structure may include first and second panes of transparent material and an electrically controllable optically active material positioned between the two panes. A driver can be electrically connected to electrode layers carried by the two panes. The driver may be configured to alternate between a drive phase in which a drive signal is applied to the electrode layers and an idle phase in which the drive signal is not applied to the electrode layers. The electrically controllable optically active material can maintain its transition state during the idle phase. As a result, the power consumption of the structure may be reduced as compared to if the driver continuously delivers the drive signal.
A switchable glazing can include an electrically controllable optically active material controllable to vary the visibility through the glazing structure. The switchable glazing can be movable relative to a surrounding frame, such as when implemented as a door or window. In some examples, the glazing can include a plurality of electrical connectors that can electrically connect to corresponding electrical connectors in the frame when the glazing is moved to a first position and electrically disconnect when the glazing is moved to a second position. Upon disconnecting, electrical connectors associated with the glazing can electrically connect with each other, shorting the electrically controllable optically active material. This can remove the potential energy otherwise stored in the material for increased safety and/or enhanced optics.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/1345 - Conductors connecting electrodes to cell terminals
57.
ELECTRICAL CONNECTOR WITH SHUNT FOR PRIVACY GLAZING STRUCTURE
A switchable glazing can include an electrically controllable optically active material controllable to vary the visibility through the glazing structure. The switchable glazing can be movable relative to a surrounding frame, such as when implemented as a door or window. In some examples, the glazing can include a plurality of electrical connectors that can electrically connect to corresponding electrical connectors in the frame when the glazing is moved to a first position and electrically disconnect when the glazing is moved to a second position. Upon disconnecting, electrical connectors associated with the glazing can electrically connect with each other, shorting the electrically controllable optically active material. This can remove the potential energy otherwise stored in the material for increased safety and/or enhanced optics.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/1345 - Conductors connecting electrodes to cell terminals
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
58.
Privacy glazing system with discrete electrical driver
A controllable privacy structure, such as a window or door, may include an electrically controllable optically active material connected to a driver. The driver can control the application and/or removal of electrical energy to the optically active material to transition from a scattering state in which visibility through the structure is inhibited to a transparent state in which visibility through the structure is comparatively clear. The driver may need to be located in relatively close physical proximity to the privacy structure the driver is intended to control. Devices, systems, and techniques are described for discretely positioning a driver relative to a privacy structure to be controlled.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
B32B 17/00 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
A privacy glazing structure may include an electrically controllable optically active material, such as a liquid crystal material, sandwiched between a flexible substrate and a rigid substrate. The flexible substrate and the rigid substrate may each have a conductive layer deposited on the surface facing the optically active material. The flexible substrate may be bonded about its perimeter to the rigid substrate and may be sufficiently flexible to conform to non-planarity of the rigid substrate. As a result, the flexible substrate may adopt the surface contour of the rigid substrate to maintain a uniform thickness of optically active material between the flexible substrate and the rigid substrate.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/17 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on variable-absorption elements not provided for in groups
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/161 - Gaskets; Spacers; Sealing of cells; Filling or closing of cells
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
An electrical characteristic of a privacy glazing structure and indicative of a health of the privacy glazing structure can be measured at a first time and at a second time later than the first time. In response to detecting a change in the electrical characteristic indicating a change in the health of the privacy glazing structure, one or more parameters of an electrical drive signal can be adjusted to compensate for the change in the health of the privacy glazing structure. The electrical characteristic can be measured at a plurality of times after the second time and compared to the electrical characteristic measured at the first time. If, at any of the plurality of times, the measured electrical characteristic differs from the electrical characteristic measured at the first time by more than a threshold amount, one or more parameters of the electrical drive signal can be adjusted.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
An electrical driver can be used to provide electrical drive signals to a first and second electrically controllable optical privacy glazing structures. A first electrical drive signal can be applied to the first privacy glazing structure and a second electrical drive signal can be applied to the second privacy glazing structure. Applying the first and second electrical drive signal can comprise temporally staggering delivery of the first and second electrical drive signals such that a peak power draw and/or a peak current draw from the first privacy glazing structure is temporally offset from a peak power draw and/or a peak current draw from the second privacy glazing structure. Staggering can include delaying the application of one electrical drive signal relative to the other, phase shifting one electrical drive signal relative to the other, or a combination thereof.
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
The invention provides a double-pane insulating glazing unit having a single between-pane space. The single between-pane space is located between the two glass panes. Preferably, the double-pane insulating glazing unit is devoid of a third glass pane. The double-pane insulating glazing unit has an aerogel layer located in the between-pane space.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
B32B 17/08 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of cellulosic plastic substance
The invention provides a double-pane insulating glazing unit having a single between-pane space. The single between-pane space is located between the two glass panes. Preferably, the double-pane insulating glazing unit is devoid of a third glass pane. The double-pane insulating glazing unit has an aerogel layer located in the between-pane space.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides an optical device comprising a glass assembly unit. The glass assembly unit comprises two glass sheets and a plurality of aerogel sheets. The aerogel sheets are arranged in a tiled configuration between the two glass sheets so as to cover a majority of a unit area of the glass assembly unit. In some embodiments, the tiled configuration is characterized by each of the aerogel sheets being spaced from an adjacent one of the aerogel sheets by a gap distance of no greater than 5 mm. In other embodiments, the tiled configuration is characterized by each of the aerogel sheets being in edge-to-edge contact with at least one adjacent aerogel sheet.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
The invention provides an optical device comprising a glass assembly unit. The glass assembly unit comprises two glass sheets and a plurality of aerogel sheets. The aerogel sheets are arranged in a tiled configuration between the two glass sheets so as to cover a majority of a unit area of the glass assembly unit. In some embodiments, the tiled configuration is characterized by each of the aerogel sheets being spaced from an adjacent one of the aerogel sheets by a gap distance of no greater than 5 mm. In other embodiments, the tiled configuration is characterized by each of the aerogel sheets being in edge-to-edge contact with at least one adjacent aerogel sheet.
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
67.
Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
The invention provides transparent conductive coatings based on indium tin oxide. The coating has an oxide overcoat, such as an alloy oxide overcoat. In some embodiments, the coating further includes one or more overcoat films comprising silicon nitride, silicon oxynitride, silicon dioxide, or titanium dioxide.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
68.
POWER TRANSFER HINGE FOR PRIVACY GLAZING STRUCTURE
A hinge assembly includes a first arm, a second arm, a rotatable pin coupling, and a power transfer conduit. The rotatable pin coupling rotationally couples the second arm to the first arm. The first arm defines a first portion of a channel, the second arm defines a second portion of the channel, and rotatable pin coupling defines a third portion of the channel. The power transfer conduit extends through the first portion of the channel at the first arm, the third portion of the channel at the rotatable pin coupling, and the second portion of the channel at the second arm.
A hinge assembly includes a first arm, a second arm, a rotatable pin coupling, and a power transfer conduit. The rotatable pin coupling rotationally couples the second arm to the first arm. The first arm defines a first portion of a channel, the second arm defines a second portion of the channel, and rotatable pin coupling defines a third portion of the channel. The power transfer conduit extends through the first portion of the channel at the first arm, the third portion of the channel at the rotatable pin coupling, and the second portion of the channel at the second arm.
A hinge assembly includes a first arm, a second arm, a rotatable pin coupling, and a power transfer conduit. The rotatable pin coupling rotationally couples the second arm to the first arm. The first arm defines a first portion of a channel, the second arm defines a second portion of the channel, and rotatable pin coupling defines a third portion of the channel. The power transfer conduit extends through the first portion of the channel at the first arm, the third portion of the channel at the rotatable pin coupling, and the second portion of the channel at the second arm.
The invention provides automated spacer processing systems and methods. The systems and methods involve at least one robot arm that is configured to process spacers for multiple-pane insulating glazing units. In some embodiments, the systems also include an insulating glazing unit assembly line and a spacer conveyor system. Additionally or alternatively, the systems may include a sealant applicator.
The invention provides an elastomeric optical device having a first optical state and a second optical state. The device is transparent when in the first optical state and translucent or opaque when in the second optical state. The device comprises, in sequence, a first transparent electrode, a dielectric layer, an elastomer layer, and a second transparent electrode. The elastomer layer preferably has certain mechanical properties, such as a Shore OOO hardness of less than 15, and/or certain chemical properties, such as being substantially devoid of unreacted sites. The second transparent electrode is configured to compress the elastomer layer in response to an electric field between the first and second transparent electrodes, such that when the elastomeric optical device is in the second optical state, the elastomer layer is compressed between the first and second transparent electrodes. Methods of operating an elastomeric optical device are also provided.
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
G02B 26/00 - Optical devices or arrangements for the control of light using movable or deformable optical elements
73.
Electrical connection configurations for privacy glazing structures
A privacy glazing structure may include an electrically controllable optically active material that provides controlled transition between a privacy or scattering state and a visible or transmittance state. To make electrical connections with electrode layers that control the optically active material, the privacy glazing structure may include electrode engagement regions. In some examples, the electrode engagement regions are formed as notches in peripheral edges of opposed panes bounding the optically active material. The notches may or may not overlap to provide a through conduit in the region of overlap for wiring. In either case, the notches may allow the remainder of the structure to have a flush edge surface for ease of downstream processing.
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
74.
Sputtering apparatus including gas distribution system
Some embodiments provide a magnetron sputtering apparatus including a vacuum chamber within which a controlled environment may be established, a target comprising one or more sputterable materials, wherein the target includes a racetrack-shaped sputtering zone that extends longitudinally along a longitudinal axis and comprises a straightaway area sandwiched between a first turnaround area and a second turnaround area, a gas distribution system that supplies a first gas mixture to the first turnaround area and/or the second turnaround area and supplies a second gas mixture to the straightaway area, wherein the first gas mixture reduces a sputtering rate relative to the second gas mixture. In some cases, the first gas mixture includes inert gas having a first atomic weight and the second gas mixture includes inert gas having a second atomic weight, wherein the second atomic weight is heavier than the first atomic weight.
A privacy glazing structure may include an electrically controllable optically active material that provides controlled transition between a privacy or scattering state and a visible or transmittance state. To make electrical connections with electrode layers that control the optically active material, the privacy glazing structure may include an offset pane arrangement. The structure may include first and second panes that contain an optically active material. The two panes may be sandwiched by two laminated outer panes. In some examples, the first and second panes are recessed relative to the laminated outer panes along their side edges to define recesses in which electrical connection features are positioned.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
The invention provides transparent conductive coatings based on indium tin oxide. The coating has an oxide overcoat, such as an alloy oxide overcoat. In certain embodiments, the coating includes both a first indium tin oxide film and a second indium tin oxide film. In certain other embodiments, the coating includes both an indium tin oxide film and a zinc tin oxide film. In still other embodiments, the coating includes both an indium tin oxide film and a silicon tin oxide film. In yet other embodiments, the coating includes both an indium tin oxide film and an aluminum tin oxide film. In some embodiments, the coating further includes one or more overcoat films comprising silicon nitride, silicon oxynitride, silicon dioxide, or titanium dioxide.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
The invention provides systems and methods for robotically stacking sheets. The systems and methods involve a robot arm and a conveyor line. The robot arm has attached thereto a suction frame. In some embodiments, the systems and methods involve first and second robot arms. In such embodiments, the system and method facilitate and involve a sequentially alternating unloading operation such that the system has a first position in which the first robot arm is elevated and has the first suction frame loaded with one or more sheets while the second robot arm is lowered and has the second suction frame unloaded and the system has a second position in which the second robot arm is elevated and has the second suction frame loaded with one or more sheets while the first robot arm is lowered and has the first suction frame unloaded.
B65G 49/06 - Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
A privacy glazing structure may be fabricated from multiple panes of transparent material that hold an optically active material and also define a between-pane space that is separated from a surrounding environment for thermal insulating properties. The privacy glazing structure may include various functional coatings and intermediate films to enhance the performance and/or life span of the structure. For example, the privacy glazing structure may include a low emissivity coating and a laminate layer positioned between an optically active layer and an exterior environment exposed to sunlight. The low emissivity coating and laminate layer may work in combination to effectively protect the optically active layer from sunlight degradation. Additionally or alternatively, the laminate layer may impart safety and impact resistance properties to the structure.
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/1516 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
Methods and apparatus for modulating light using a tunable light modulation device. The tunable light modulation devices comprises an elastomer structure including at least one elastomer layer, a compliant electrode network of conducting fibers arranged on a first surface of the at least one elastomer layer, a patterned electric conductor arranged on a second surface of the at least one elastomer layer opposite the first surface. The patterned electric conductor includes a plurality of individually-addressable sections, and the compliant electrode network is configured to compress the at least one elastomer layer in the presence of an electric field between the compliant electrode network and one or more of the individually-addressable sections of the patterned electric conductor to produce a voltage-dependent roughening of the at least one elastomer layer.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
G02F 1/17 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on variable-absorption elements not provided for in groups
B32B 25/08 - Layered products essentially comprising natural or synthetic rubber comprising rubber as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
B32B 25/10 - Layered products essentially comprising natural or synthetic rubber next to a fibrous or filamentary layer
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
The invention provides an IG unit comprising two panes and a between-pane space between the two panes. A desired surface of one of the two panes bears a coating comprising both a transparent conductive oxide film, and an overcoat film located over the transparent conductive oxide film. The IG unit further comprises a bus bar and a transparent conductor bridge each located over the desired surface. The bus bar is spaced apart from the coating and is connected electrically to the transparent conductive oxide film by virtue of the transparent conductor bridge extending from the bus bar to a top surface of the overcoat film. In some embodiments, the IG unit further comprises a frit located over the desired surface and extending around a perimeter thereof. The bus bar is located over the frit. Certain embodiments provide a refrigerator having a door comprising such an IG unit.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
E06B 3/00 - Window sashes, door leaves, or like elements for closing openings; Layout of fixed or moving closures, e.g. windows; Features of rigidly-mounted outer frames relating to the mounting of wing frames
The invention provides an IG unit comprising two panes and a between-pane space located between the two panes. A desired surface of a selected one of the two panes bears a coating comprising both a transparent conductive oxide film, and an overcoat film located over the transparent conductive oxide film. The IG unit further comprises a bus bar and a transparent conductor bridge each located over the desired surface. The bus bar is spaced apart from the coating and is connected electrically to the transparent conductive oxide film by virtue of the transparent conductor bridge extending from the bus bar to a top surface of the overcoat film. In some embodiments, the IG unit further comprises a frit located over the desired surface and extending around a perimeter thereof. The bus bar is located over the frit. Certain embodiments provide a refrigerator having a door comprising such an IG unit.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
An electrical response of a privacy glazing structure to an applied electrical sensing pulse can be measured, and one or more parameters of the privacy glazing structure can be characterized. The one or more parameters can be used to load one or more drive parameters for subsequent use in an electrical drive signal used to operate the privacy glazing structure. If an electrical drive signal is already in place, the characterized one or more parameters can be compared to one or more parameters characterized at a previous time. If the one or more characterized parameters are different from those characterized at the previous time by more than a threshold amount, one or more drive parameters of the electrical drive signal can be adjusted to a new value.
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
83.
LEAKAGE CURRENT DETECTION AND CONTROL FOR ONE OR MORE ELECTRICALLY CONTROLLABLE PRIVACY GLAZING STRUCTURES
An electrical characteristic of a privacy glazing structure and indicative of a health of the privacy glazing structure can be measured at a first time and at a second time later than the first time. In response to detecting a change in the electrical characteristic indicating a change in the health of the privacy glazing structure, one or more parameters of an electrical drive signal can be adjusted to compensate for the change in the health of the privacy glazing structure. The electrical characteristic can be measured at a plurality of times after the second time and compared to the electrical characteristic measured at the first time. If, at any of the plurality of times, the measured electrical characteristic differs from the electrical characteristic measured at the first time by more than a threshold amount, one or more parameters of the electrical drive signal can be adjusted.
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
84.
STAGGERED DRIVING ELECTRICAL CONTROL OF A PLURALITY OF ELECTRICALLY CONTROLLABLE PRIVACY GLAZING STRUCTURES
An electrical driver can be used to provide electrical drive signals to a first and second electrically controllable optical privacy glazing structures. A first electrical drive signal can be applied to the first privacy glazing structure and a second electrical drive signal can be applied to the second privacy glazing structure. Applying the first and second electrical drive signal can comprise temporally staggering delivery of the first and second electrical drive signals such that a peak power draw and/or a peak current draw from the first privacy glazing structure is temporally offset from a peak power draw and/or a peak current draw from the second privacy glazing structure. Staggering can include delaying the application of one electrical drive signal relative to the other, phase shifting one electrical drive signal relative to the other, or a combination thereof.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
85.
STAGGERED DRIVING ELECTRICAL CONTROL OF A PLURALITY OF ELECTRICALLY CONTROLLABLE PRIVACY GLAZING STRUCTURES
An electrical driver can be used to provide electrical drive signals to a first and second electrically controllable optical privacy glazing structures. A first electrical drive signal can be applied to the first privacy glazing structure and a second electrical drive signal can be applied to the second privacy glazing structure. Applying the first and second electrical drive signal can comprise temporally staggering delivery of the first and second electrical drive signals such that a peak power draw and/or a peak current draw from the first privacy glazing structure is temporally offset from a peak power draw and/or a peak current draw from the second privacy glazing structure. Staggering can include delaying the application of one electrical drive signal relative to the other, phase shifting one electrical drive signal relative to the other, or a combination thereof.
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
86.
LEAKAGE CURRENT DETECTION AND CONTROL FOR ONE OR MORE ELECTRICALLY CONTROLLABLE PRIVACY GLAZING STRUCTURES
An electrical characteristic of a privacy glazing structure and indicative of a health of the privacy glazing structure can be measured at a first time and at a second time later than the first time. In response to detecting a change in the electrical characteristic indicating a change in the health of the privacy glazing structure, one or more parameters of an electrical drive signal can be adjusted to compensate for the change in the health of the privacy glazing structure. The electrical characteristic can be measured at a plurality of times after the second time and compared to the electrical characteristic measured at the first time. If, at any of the plurality of times, the measured electrical characteristic differs from the electrical characteristic measured at the first time by more than a threshold amount, one or more parameters of the electrical drive signal can be adjusted.
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
87.
SYSTEMS AND METHODS FOR OPERATING ONE OR MORE ELECTRICALLY CONTROLLABLE PRIVACY GLAZING STRUCTURES
An electrical response of a privacy glazing structure to an applied electrical sensing pulse can be measured, and one or more parameters of the privacy glazing structure can be characterized. The one or more parameters can be used to load one or more drive parameters for subsequent use in an electrical drive signal used to operate the privacy glazing structure. If an electrical drive signal is already in place, the characterized one or more parameters can be compared to one or more parameters characterized at a previous time. If the one or more characterized parameters are different from those characterized at the previous time by more than a threshold amount, one or more drive parameters of the electrical drive signal can be adjusted to a new value.
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
88.
Staggered driving electrical control of a plurality of electrically controllable privacy glazing structures
An electrical driver can be used to provide electrical drive signals to a first and second electrically controllable optical privacy glazing structures. A first electrical drive signal can be applied to the first privacy glazing structure and a second electrical drive signal can be applied to the second privacy glazing structure. Applying the first and second electrical drive signal can comprise temporally staggering delivery of the first and second electrical drive signals such that a peak power draw and/or a peak current draw from the first privacy glazing structure is temporally offset from a peak power draw and/or a peak current draw from the second privacy glazing structure. Staggering can include delaying the application of one electrical drive signal relative to the other, phase shifting one electrical drive signal relative to the other, or a combination thereof.
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
89.
Leakage current detection and control for one or more electrically controllable privacy glazing structures
An electrical characteristic of a privacy glazing structure and indicative of a health of the privacy glazing structure can be measured at a first time and at a second time later than the first time. In response to detecting a change in the electrical characteristic indicating a change in the health of the privacy glazing structure, one or more parameters of an electrical drive signal can be adjusted to compensate for the change in the health of the privacy glazing structure. The electrical characteristic can be measured at a plurality of times after the second time and compared to the electrical characteristic measured at the first time. If, at any of the plurality of times, the measured electrical characteristic differs from the electrical characteristic measured at the first time by more than a threshold amount, one or more parameters of the electrical drive signal can be adjusted.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
An electrical response of a privacy glazing structure to an applied electrical sensing pulse can be measured, and one or more parameters of the privacy glazing structure can be characterized. The one or more parameters can be used to load one or more drive parameters for subsequent use in an electrical drive signal used to operate the privacy glazing structure. If an electrical drive signal is already in place, the characterized one or more parameters can be compared to one or more parameters characterized at a previous time. If the one or more characterized parameters are different from those characterized at the previous time by more than a threshold amount, one or more drive parameters of the electrical drive signal can be adjusted to a new value.
An insulating glazing unit may be configured to provide both visible transparency and bullet-resistance. The bullet resistant properties of the unit may be achieved through the combination and coordination of different materials forming the panes of the unit. For example, the insulating glazing unit may include multiple laminate panes separated by a spacer. Each laminate pane may include at least two transparent rigid substrates joined by a layer of laminate material. The laminate material used in one laminate pane may be different than the laminate material used in another pane. For example, one pane may utilize a laminate material that is soft and flexible. This may help absorb and dissipate the impact of a projectile. By contrast, another laminate pane may utilize a laminate material that is stiff and rigid. This may help provide a final stopping force to a projectile.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
A privacy glazing structure may include an electrically controllable optically active material that provides controlled transition between a privacy or scattering state and a visible or transmittance state. To make electrical connections with electrode layers that control the optically active material, the privacy glazing structure may include electrode engagement regions. In some examples, the electrode engagement regions are formed as notches in peripheral edges of opposed panes bounding the optically active material. The notches may or may not overlap to provide a through conduit in the region of overlap for wiring. In either case, the notches may allow the remainder of the structure to have a flush edge surface for ease of downstream processing.
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
An insulating glazing unit may be configured to provide both visible transparency and bullet-resistance. The bullet resistant properties of the unit may be achieved through the combination and coordination of different materials forming the panes of the unit. For example, the insulating glazing unit may include multiple laminate panes separated by a spacer. Each laminate pane may include at least two transparent rigid substrates joined by a layer of laminate material. The laminate material used in one laminate pane may be different than the laminate material used in another pane. For example, one pane may utilize a laminate material that is soft and flexible. This may help absorb and dissipate the impact of a projectile. By contrast, another laminate pane may utilize a laminate material that is stiff and rigid. This may help provide a final stopping force to a projectile.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
F41H 5/04 - Plate construction composed of more than one layer
A privacy glazing structure may include an electrically controllable optically active material, such as a liquid crystal material, sandwiched between a flexible substrate and a rigid substrate. The flexible substrate and the rigid substrate may each have a conductive layer deposited on the surface facing the optically active material. The flexible substrate may be bonded about its perimeter to the rigid substrate and may be sufficiently flexible to conform to non-planarity of the rigid substrate. As a result, the flexible substrate may adopt the surface contour of the rigid substrate to maintain a uniform thickness of optically active material between the flexible substrate and the rigid substrate.
G02F 1/137 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
G02F 1/17 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on variable-absorption elements not provided for in groups
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/161 - Gaskets; Spacers; Sealing of cells; Filling or closing of cells
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
A driver (60) may be used to drive an electrically controllable optically active material in a privacy structure (12). In some examples, the driver receives power from a power source (62) at a supply voltage and a supply apparent power level and converts the power received from the power source down to a converted voltage and a converted apparent power level. The converted voltage is less than the supply voltage and the converted apparent power level is less than the supply apparent power level. The driver may deliver power at the converted voltage and the converted apparent power level to a voltage converter (64) which increases the converted voltage to an operating voltage. The driver can further condition power received from the voltage converter having the operating voltage and operating apparent power level to provide a drive signal and provide the drive signal the electrically controllable optically active material of the privacy structure.
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
G02F 1/165 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
G02F 1/1334 - Constructional arrangements based on polymer-dispersed liquid crystals, e.g. microencapsulated liquid crystals
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
A driver may be used to drive an electrically controllable optically active material in a privacy structure. In some examples, the driver receives power from a power source at a supply voltage and a supply apparent power level and converts the power received from the power source down to a converted voltage and a converted apparent power level. The converted voltage is less than the supply voltage and the converted apparent power level is less than the supply apparent power level. The driver may deliver power at the converted voltage and the converted apparent power level to a voltage convertor, which increase the converted voltage to an operating voltage. The driver can further condition power received from the voltage convertor having the operating voltage and operating apparent power level to provide a drive signal and provide the drive signal the electrically controllable optically active material of the privacy structure.
G02F 1/13 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
G02F 1/163 - Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
97.
Elastomeric optical device and related operation methods
The invention provides an elastomeric optical device having a first optical state and a second optical state. The device is transparent when in the first optical state and translucent or opaque when in the second optical state. The device comprises, in sequence, a first transparent electrode, a dielectric layer, an elastomer layer, and a second transparent electrode. The elastomer layer preferably has certain mechanical properties, such as a Shore OOO hardness of less than 15, and/or certain chemical properties, such as being substantially devoid of unreacted sites. The second transparent electrode is configured to compress the elastomer layer in response to an electric field between the first and second transparent electrodes, such that when the elastomeric optical device is in the second optical state, the elastomer layer is compressed between the first and second transparent electrodes. Methods of operating an elastomeric optical device are also provided.
G02B 26/00 - Optical devices or arrangements for the control of light using movable or deformable optical elements
G02F 1/01 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
E06B 9/24 - Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance
E06B 3/67 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges characterised by additional arrangements or devices for heat or sound insulation
A driver (60) may be used to drive an electrically controllable optically active material in a privacy structure (12). In some examples, the driver receives power from a power source (62) at a supply voltage and a supply apparent power level and converts the power received from the power source down to a converted voltage and a converted apparent power level. The converted voltage is less than the supply voltage and the converted apparent power level is less than the supply apparent power level. The driver may deliver power at the converted voltage and the converted apparent power level to a voltage converter (64) which increases the converted voltage to an operating voltage. The driver can further condition power received from the voltage converter having the operating voltage and operating apparent power level to provide a drive signal and provide the drive signal the electrically controllable optically active material of the privacy structure.
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
G02F 1/1334 - Constructional arrangements based on polymer-dispersed liquid crystals, e.g. microencapsulated liquid crystals
G02F 1/15 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
G02F 1/165 - Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
H02M 5/40 - Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
The invention provides a glass sheet or another transparent substrate on which there is provided a static-dissipative coating. The static-dissipative coating includes a film comprising titania. The film comprising titania preferably is exposed so as to define an outermost face of the static-dissipative coating. The static-dissipative coating is characterized by an indoor dust collection factor of less than 0.145.
E06B 3/66 - Units comprising two or more parallel glass or like panes in spaced relationship, the panes being permanently secured together, e.g. along the edges
E06B 7/28 - Other arrangements on doors or windows, e.g. door-plates, windows adapted to carry plants, hooks for window cleaners
C03C 17/245 - Oxides by deposition from the vapour phase
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
C23C 14/00 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
C03C 17/00 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating