A plasma generating system having an igniter or other plasma generator for use in low pressure environments, such as occurs in aviation. Combustion is initiated with an electrode configuration having a large usable area of electrodes for high current plasma discharge over a longer length of the electrodes, resulting in a long useful life of the plasma generator. The plasma generation system includes circuitry that generates and propagate plasma along the electrodes by a Lorentz force and a thermal force using high currents that move the plasma along the electrodes without causing a destructive material state change in the electrodes.
The present disclosure provides plasma generation techniques that may be implemented to maintain plasma coherence, resulting in high performance and long useful life of components, and which are suitable for use in a low-pressure environment (e.g., as in some aerospace applications) but are not limited thereto. In some embodiments, plasma generation and coherence maintaining techniques may be implemented to improve construction and/or operation of a traveling spark igniter that is configured to generate and propagate plasma using a Lorentz force and thermal force.
An aircraft piston engine magneto having a magnetic rotor and an ignition circuit that includes a charging coil inductively coupled to magnetic poles of the rotor. The charging coil includes a plurality of power coils that are inductively powered off the magnetic rotor and that charge the ignition circuit during rotation of the rotor. One or more of the power coils are electronically utilized by the ignition circuit as a higher turn power coil when the rotor is running at low speeds and as a lower turn power coil when the rotor is running at higher speeds. The ignition circuit is a fully electronic ignition circuit that generates and distributes ignition pulses to the piston engine spark plugs using only non-mechanically actuated electrical components within the magneto.
An igniter for a gas turbine engine has a shell; an insulator secured within said shell; a center electrode secured within said insulator and electrically isolated from said shell by said insulator, said center electrode having a firing tip formed from a platinum-iridium (PtIr) alloy and having a diameter of at least 0.09 inches; and a ground electrode mounting on said shell and terminating at a firing end of the igniter that is spaced from the firing tip by a gap, said ground electrode having at least one pin comprising ruthenium (Ru) or a ruthenium alloy. The igniter is advantageously used with an ignition system having a positive polarity pulse output.
Aircraft parts and accessories, namely, magnetos and magneto parts; ignition magnetos for engines; ignition harnesses, being aircraft engine parts; spark plugs.
Aircraft parts and accessories, namely, magnetos and magneto parts; ignition magnetos for engines; ignition harnesses, being aircraft engine parts; spark plugs.
7.
AIRCRAFT PISTON ENGINE MAGNETO AND IGNITION SYSTEM
An aircraft piston engine magneto having a magnetic rotor and an ignition circuit with a reconfigurable charging coil inductively coupled to magnetic rotor. The charging coil includes multiple coils inductively powered by the magnetic rotor and electronically reconfigurable from a higher turn, lower amperage power coil for use when running at low speeds into a lower turn, higher amperage coil at higher speeds. The charging coil is configured into the higher turn coil by electronically connecting the multiple coils in series, and into the lower turn power coil by electronically connecting the coils in parallel. The ignition circuit is a fully electronic ignition circuit that generates and distributes ignition pulses to the piston engine spark plugs using only non-mechanically actuated electrical components within the magneto.
An aircraft piston engine magneto having a magnetic rotor and an ignition circuit with a reconfigurabie charging coil inductively coupled to magnetic rotor. The charging coil includes multiple coils inductively powered by the magnetic rotor and electronically reconfigurable from a higher turn, lower amperage power coil for use when running at low speeds into a lower turn, higher amperage coil at higher speeds. The charging coil is configured into the higher turn coil by electronically connecting the multiple coils in series, and into the lower turn power coil by electronically connecting the coils in parallel. The ignition circuit is a fully electronic ignition circuit that generates and distributes ignition pulses to the piston engine spark plugs using only non-mechanically actuated electrical components within the magneto.
An igniter for a gas turbine engine has a shell; an insulator secured within said shell; a center electrode secured within said insulator and electrically isolated from said shell by said insulator, said center electrode having a firing tip formed from a platinum-iridium (Ptlr) alloy and having a diameter of at least 0.09 inches; and a ground electrode mounting on said shell and terminating at a firing end of the igniter that is spaced from the firing tip by a gap, said ground electrode having at least one pin comprising ruthenium (Ru) or a ruthenium alloy. The igniter is advantageously used with an ignition system having a positive polarity pulse output.
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
An igniter having at least two electrodes spaced from each other by an insulating member having a substantially continuous surface along a path between the electrodes. The electrodes extend substantially parallel to each other for a distance both above and below said surface. The insulating member has a channel (recess) for receiving at least a portion of a length of at least one of said electrodes below and to said surface of the insulating member. The surface of the insulating member may preferably be augmented with a conductivity enhancing agent. The insulating member and electrodes are configured so that an electric field between the electrodes at said surface does not have abrupt field intensity changes, whereby when a potential is applied to the electrodes sufficient to cause breakdown to occur between the electrodes, discharge occurs at said surface of the insulating member to define a plasma initiation region.
H01T 13/52 - Sparking plugs characterised by a discharge along a surface
F02P 9/00 - Electric spark ignition control, not otherwise provided for
H01T 13/34 - Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
H01T 13/46 - Sparking plugs having two or more spark gaps
H01T 13/22 - Sparking plugs characterised by features of the electrodes or insulation having two or more electrodes embedded in insulation
F02P 23/04 - Other physical ignition means, e.g. using laser rays
14.
Method and apparatus for operating traveling spark igniter at high pressure
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
A device for monitoring a life condition of a spark igniter in a gas turbine ignition system. The device includes an evaluation circuit having circuit components that include a hold capacitor, a transistor, and an operational amplifier arranged to form a sample-and-hold circuit, wherein an igniter spark impulse signal is applied to an input node of the evaluation circuit causing the transistor to turn on and the hold capacitor to discharge for a duration of the igniter spark impulse signal, and wherein a discharged voltage at the hold capacitor is maintained and output by the operational amplifier, the discharged voltage representing the duration of the igniter spark impulse and indicating the life condition of the spark igniter.
G07C 5/08 - Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle, or waiting time
A device for monitoring a life condition of a spark igniter in a gas turbine ignition system. The device includes an evaluation circuit having circuit components that include a hold capacitor, a transistor, and an operational amplifier arranged to form a sample-and- hold circuit, wherein an igniter spark impulse signal is applied to an input node of the evaluation circuit causing the transistor to turn on and the hold capacitor to discharge for a duration of the igniter spark impulse signal, and wherein a discharged voltage at the hold capacitor is maintained and output by the operational amplifier, the discharged voltage representing the duration of the igniter spark impulse and indicating the life condition of the spark igniter.
A solid state spark device that operates as a two terminal spark gap in a CDI exciter of an aircraft ignition system. The device includes a triggering transformer, a triggering circuit, and a control circuit. The triggering circuit is electrically connected to a first coil of the transformer and includes circuit elements connected to supply current to the first coil upon charging of the triggering circuit up to a triggering voltage. This current through the first coil of the triggering transformer induces an output in a second coil of the transformer. The control circuit is electrically connected to the second coil and includes a switch controlled by the output from the second coil. The switch, when activated by the triggering circuit, discharges energy from the exciter into an igniter of the aircraft ignition system.
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
F02P 3/02 - Other electric spark ignition installations characterised by the type of ignition power generation storage having inductive energy storage, e.g. arrangements of induction coils
23.
Aircraft power supply and method of operating the same
An aircraft power supply for providing DC power with improved power quality characteristics. The aircraft power supply includes a transformer control system that can use closed-loop feedback from a DC power output to control switches that can short primary windings turns of a step-down transformer. By shorting turns in the primary, the transformer control system can control or manipulate the turns ratio in the transformer and compensate for decreases in the DC power output.
H02M 7/06 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
H02M 7/08 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
24.
Method and apparatus for operating traveling spark igniter at high pressure
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
F02P 3/02 - Other electric spark ignition installations characterised by the type of ignition power generation storage having inductive energy storage, e.g. arrangements of induction coils
25.
Method and apparatus for operating traveling spark igniter at high pressure
An ignition circuit and a method of operating an igniter (preferably a traveling spark igniter) in an internal combustion engine, including a high pressure engine. A high voltage is applied to electrodes of the igniter, sufficient to cause breakdown to occur between the electrodes, resulting in a high current electrical discharge in the igniter, over a surface of an isolator between the electrodes, and formation of a plasma kernel in a fuel-air mixture adjacent said surface. Following breakdown, a sequence of one or more lower voltage and lower current pulses is applied to said electrodes, with a low “simmer” current being sustained through the plasma between pulses, preventing total plasma recombination and allowing the plasma kernel to move toward a free end of the electrodes with each pulse.
F02P 3/02 - Other electric spark ignition installations characterised by the type of ignition power generation storage having inductive energy storage, e.g. arrangements of induction coils