A method of electrical stimulation programming includes providing a user interface for an electronic programmer that is configured to program stimulation parameters of an electrical stimulation therapy. The electrical stimulation therapy is deliverable to a patient via an implantable medical device that includes a plurality of electrodes. The user interface includes a user-operable mechanism configured to activate different subsets of the electrodes. The user-operable mechanism is displayed by the user interface while the electrical stimulation therapy is currently in an “off” state. Based on a determination that the electrical stimulation therapy is currently in an “on” state, the user interface is reconfigured at least in part by deactivating the user-operable mechanism.
G16Z 99/00 - Subject matter not provided for in other main groups of this subclass
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/04842 - Selection of displayed objects or displayed text elements
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
An apparatus includes an elongate thin film body extending from a first end to a second end. A plurality of electrodes is disposed on the thin film body. A plurality of electrode connection traces each coupled to a respective one of the electrodes. A plurality of attachment structures is placed at predetermined locations about the thin film body. An outer molding surrounds the thin film body. The attachment structures provide connection points for the outer molding, thus allowing for adhesion between the outer molding and the thin film body.
An electrode assembly includes a substrate, a plurality of electrodes, and a wiring assembly. The substrate includes an elongate body extending from a first end to a second end in a first direction and a plurality of electrode connection structures connected with the elongate body. Each electrode connection structure defines a first coupling end, a second coupling end, and a first opening positioned between the first coupling end and the second coupling end. The electrodes are positioned within the plurality of electrode connection structures. A portion of each electrode extends through the first opening of the respective electrode connection structure. The wiring assembly extends along the substrate and forms an electrical connection with each of the plurality of the electrodes.
Via a graphical interface, virtual representations of an anatomical region of a human and a medical device selection mechanism are displayed. The medical device selection mechanism includes a plurality of implantable leads each medically implantable in the anatomical region. In the graphical interface, a user-selected implantable lead is moved from the medical device selection mechanism to the anatomical region. A first side of the user-selected implantable lead is initially displayed when the user-selected implantable lead is moved to the anatomical region. In the graphical interface, the user-selected implantable lead is automatically rotated in the anatomical region, such that a second side of the user-selected implantable lead is displayed after the user-selected implantable lead has been automatically rotated. The second side is opposite the first side.
G06F 3/04842 - Selection of displayed objects or displayed text elements
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16Z 99/00 - Subject matter not provided for in other main groups of this subclass
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
7.
System, Device, and Method for Generating Stimulation Waveform Having A Paresthesia-Inducing Low-Frequency Component and A Spread-Spectrum High-Frequency Component
A pulse generator includes charging circuitry configured to provide electrical power to the pulse generator. The pulse generator includes communication circuitry configured to conduct wireless telecommunications with external programming devices. The telecommunications contain programming instructions sent from the external programming devices. The pulse generator includes stimulation circuitry configured to generate electrical pulses based on the programming instructions. The electrical pulses include a first component that is paresthesia-inducing and a second component that is non-paresthesia-inducing.
An electrode assembly includes a substrate, a plurality of electrodes, and a wiring assembly. The substrate includes an elongate body extending from a first end to a second end in a first direction and a plurality of electrode connection structures connected with the elongate body. Each electrode connection structure defines a first coupling end, a second coupling end, and a first opening positioned between the first coupling end and the second coupling end. The electrodes are positioned within the plurality of electrode connection structures. A portion of each electrode extends through the first opening of the respective electrode connection structure. The wiring assembly extends along the substrate and forms an electrical connection with each of the plurality of the electrodes.
A lead assembly includes a thin film body supporting a plurality of electrodes configured to provide electrical stimulation or sensing. The thin film body includes a substrate. A plurality of electrode connection traces is situated on the thin film body and electrically connected to respective ones of the plurality of electrodes. A connection wire is configured to provide stimulation or sensing signals for transmission to the plurality of electrodes. The connection wire extends from a lead and is substantially larger than each of the electrode connection traces. A coupling structure is configured to provide electrical connection between the connection wire and the electrode connection traces.
An apparatus includes an elongate thin film body extending from a first end to a second end. A plurality of electrodes is disposed on the thin film body. A plurality of electrode connection traces each coupled to a respective one of the electrodes. A plurality of attachment structures is placed at predetermined locations about the thin film body. An outer molding surrounds the thin film body. The attachment structures provide connection points for the outer molding, thus allowing for adhesion between the outer molding and the thin film body.
A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received.
Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06Q 30/0242 - Determining effectiveness of advertisements
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H02J 50/12 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Manufacturing services for others in the field of medical devices and components of medical devices; prototype fabrication of new products for others Product research and development, namely, research and development related to medical devices and components of medical devices; research and development of technology in the field of spinal cord stimulation products; consulting services in the field of new product development
13.
Implantable pulse generator that generates spinal cord stimulation signals for a human body
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
Systems, devices and methods for providing neuromodulation are provided. One such system can include an implantable pulse generator. The implantable pulse generator can include a circuit board having a microcontroller that generates signals that are input into an ASIC. The ASIC serves as pulse generator that allows electrical pulses to be outputted into leads. The implantable pulse generator is capable of receiving and/or generating signals either via a wireless communication (e.g., a wireless remote control), a touching force (e.g., pressure from a finger), a motion sensor or any combination of the above.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power. The IPG also contains circuity to indicate to a patient that proper alignment exists between the IPG and an external charger to charge a battery in the IPG.
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/12 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/372 - Arrangements in connection with the implantation of stimulators
A61N 1/375 - Constructional arrangements, e.g. casings
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Manufacturing services for others in the field of medical devices and components of medical devices; outsource service provider in the field of medical device manufacturing; prototype fabrication of new products for others; assembly of products for others; 3d printing for others; machine shop services, namely, machining parts for others; welding services; metal stamping; laser welding, cutting, marking and drilling of medical devices and medical device components for others. Product development services for the medical devices industry; engineering services, namely, engineering for the medical devices industry; research design, development and product quality and safety testing of new products for others in the medical devices industry; consulting services in the field of new product development; consulting services for others in the field of design, planning, and implementation project management of clinical trials of medical devices and medical device components; product quality testing services; industrial design services; packaging design for others; design and development of integrated circuits; design of mechanical components; electrical system design services.
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Manufacturing services for others in the field of medical devices and components of medical devices; outsource service provider in the field of medical device manufacturing; prototype fabrication of new products for others; assembly of products for others; 3d printing for others; machine shop services, namely, machining parts for others; welding services; metal stamping; laser welding, cutting, marking and drilling of medical devices and medical device components for others. Product development services for the medical devices industry; engineering services, namely, engineering for the medical devices industry; research design, development and product quality and safety testing of new products for others in the medical devices industry; consulting services in the field of new product development; consulting services for others in the field of design, planning, and implementation project management of clinical trials of medical devices and medical device components; product quality testing services; industrial design services; packaging design for others; design and development of integrated circuits; design of mechanical components; electrical system design services.
Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on a Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
A wireless charger for automatically tuning an optimum frequency to inductively charge a rechargeable battery of an implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An optimization circuit detects a reflected impedance of the charging coil through a reflected impedance sensor, and select an optimum frequency of a charging signal supplied to the charging coil based on the detected reflected impedances of a plurality of charging frequencies in a selected frequency range. Advantageously, the optimum charging frequency provides a more efficient way to charge the IPG's rechargeable battery.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H02J 50/12 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
A61N 1/372 - Arrangements in connection with the implantation of stimulators
The present disclosure provides a medical stimulation system that includes a plurality of implantable channels each operable to obtain a voltage signal from a designated area of a body tissue. The medical stimulation system includes an impedance measurement device. The impedance measurement device includes a plurality of attenuators each coupled to a respective one of the channels. The attenuators are each operable to attenuate an amplitude of the voltage signal received from its respectively-coupled channel. The impedance measurement device includes a multiplexing component that receives the amplitude-attenuated voltage signals from each of the attenuators. The multiplexing component selectively outputs two of the amplitude-attenuated voltage signals. The impedance measurement device includes a differential amplifier that receives the two amplitude-attenuated voltage signals outputted from the multiplexing component as a differential input signal. The differential amplifier generates an amplifier output signal that includes at least partially an amplified version of the differential input signal.
A first fraction of an electrical stimulation is allocated to a first electrode. In response to user input, the first fraction of the electrical stimulation is fixed to the first electrode such that the first fraction is user-adjustable but cannot be automatically changed. In response to the first fraction being fixed to the first electrode, a respective second fraction of the electrical stimulation is automatically allocated to a plurality of second electrodes. The second fraction is a function of the first fraction and a total number of the second electrodes. Thereafter, a new electrode is added to, or deleting from, the second electrodes, while the first fraction is still fixed to the first electrode. The respective second fractions are automatically adjusted in response to the adding or the deleting, without affecting the first fraction of the electrical stimulation that has been fixed to the first electrode.
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 3/04847 - Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16Z 99/00 - Subject matter not provided for in other main groups of this subclass
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
G06F 3/04842 - Selection of displayed objects or displayed text elements
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
23.
Systems, methods, and devices for evaluating lead placement based on patient physiological responses
A first value of an electrical stimulation parameter of an electrical stimulation therapy that resulted in a first physiological response for a patient is identified. The electrical stimulation therapy is delivered at least in part through a lead that is implanted inside the patient. Based on the first value, a limit of a second value of the electrical stimulation parameter that should result in a second physiological response for the patient is determined. An actual second value of the electrical stimulation parameter that actually resulted in the second physiological response for the patient is identified. Based on a comparison of the limit of the second value and the actual second value, an implantation of the lead is evaluated.
In various examples, a stimulation needle apparatus is used for selectively administering a trial stimulation to body tissue of a patient. The stimulation needle apparatus includes a cannula assembly including a cannula and a cannula hub disposed at a proximal cannula end. A stylet assembly includes a stylet sized and shaped to fit within a cannula lumen. A stylet hub is disposed at the proximal stylet end and is configured to engage with the cannula hub. With the stylet hub engaged with the cannula hub, the distal stylet end extends distally from the distal cannula end. A stylet connection is electrically coupled with the stylet and is configured to electrically couple with a stimulator device, such that, a stimulation pulse delivered by the stimulator device is conducted from the stylet connection through the stylet to the distal stylet end to administer the trial stimulation.
A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, including the option of using such arbitrary waveforms for charge balancing purposes.
In various examples, a suture anchor includes a sheath including a lumen. A frame member is disposed at least partially within the sheath. The frame member includes at least two suture loops extending from the sheath. The suture loops are configured to receive a suture, wherein tightening of the suture causes compression of the frame member to constrict the lumen of the sheath.
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Manufacturing services for others in the field of medical devices and components of medical devices; outsource service provider in the field of medical device manufacturing; prototype fabrication of new products for others; assembly of products for others; 3d printing for others; machine shop services, namely, machining parts for others; welding services; metal stamping; laser welding, cutting, marking and drilling of medical devices and medical device components for others Product development services for the medical devices industry; engineering services, namely, engineering for the medical devices industry; research design, development and product quality and safety testing of new products for others in the medical devices industry; consulting services in the field of new product development; consulting services for others in the field of design, planning, and implementation project management of clinical trials of medical devices and medical device components; product quality testing services; industrial design services; packaging design for others; design and development of integrated circuits; design of mechanical components; electrical system design services
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
Manufacturing services for others in the field of medical devices and components of medical devices; outsource service provider in the field of medical device manufacturing; prototype fabrication of new products for others; assembly of products for others; 3d printing for others; machine shop services, namely, machining parts for others; welding services; metal stamping; laser welding, cutting, marking and drilling of medical devices and medical device components for others Product development services for the medical devices industry; engineering services, namely, engineering for the medical devices industry; research design, development and product quality and safety testing of new products for others in the medical devices industry; consulting services in the field of new product development; consulting services for others in the field of design, planning, and implementation project management of clinical trials of medical devices and medical device components; product quality testing services; industrial design services; packaging design for others; design and development of integrated circuits; design of mechanical components; electrical system design services
Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and [PG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
The present disclosure involves a medical system that includes one or more implantable medical devices configured to deliver a medical therapy to a patient. The medical system also includes a portable electronic device on which a touch-sensitive user interface is implemented. The user interface is configured to provide a visual representation of the medical therapy through a hierarchy. The hierarchy includes a lower level representation of the medical therapy that corresponds to a stimulation program that includes a plurality of configurable stimulation parameters. The hierarchy includes a middle level representation of the medical therapy that corresponds to a stimulation program-set that includes a plurality of different stimulation programs. The hierarchy includes an upper level representation of the medical therapy that corresponds to a scrollable collection of stimulation program-sets that are represented by a plurality of digital cards, respectively.
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
32.
System, method, and device for providing feedback to a patient during electrical stimulation
Feedback regarding electrical stimulation is provided to a patient. Electrical stimulation is applied to the patient. The electrical stimulation is applied by varying an electrical stimulation parameter. A signal is communicated to the patient via an electronic device. The signal is correlated with the electrical stimulation parameter such that the signal varies in association with the varying of the electrical stimulation parameter. The communicating is performed while the electrical stimulation is applied. Feedback is received from the patient in response to the electrical stimulation. Based on the received feedback from the patient, the electrical stimulation is adjusted.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
G16Z 99/00 - Subject matter not provided for in other main groups of this subclass
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
33.
Method of improving battery recharge efficiency by statistical analysis
A rechargeable battery installed in a battery powered device is charged using a separate battery charging device. A charging signal is provided from the battery charging device to the battery powered device. The charging signal includes energy to charge the battery during a charging session. In the battery charging device from the battery powered device, a plurality of values of a charging parameter is received. The values reflect an amount of energy being received by the battery powered device from the charging signal provided by the battery charging device. In the battery charging device, the plurality of values of the charging parameter received from the battery powered device are analyzed. In the battery charging device, the charging signal is adjusted based on the analyzing.
H02J 7/04 - Regulation of the charging current or voltage
H02J 7/16 - Regulation of the charging current or voltage by variation of field
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
Systems, devices and methods for providing neuromodulation are provided. One such system can include an implantable pulse generator. The implantable pulse generator can include a circuit board having a microcontroller that generates signals that are input into an ASIC. The ASIC serves as pulse generator that allows electrical pulses to be outputted into leads. The implantable pulse generator is capable of receiving and/or generating signals either via a wireless communication (e.g., a wireless remote control), a touching force (e.g., pressure from a finger), a motion sensor or any combination of the above.
A non-zero starting value for ramping up a stimulation parameter for an electrical stimulation to be delivered to a patient is determined. The non-zero starting value is customized to the patient. A pulse generator is caused to generate the electrical stimulation, which is delivered to the patient via an implanted lead. The pulse generator is caused to ramp up, from the determined non-zero starting value and toward a predefined maximum limit value, the stimulation parameter for a plurality of electrode contacts on the lead. Feedback is received from the patient in response to the ramping up. The feedback is received via an electronic patient feedback device. Based on the ramping up and the received feedback from the patient, a perception threshold is determined for each of the plurality of electrode contacts. The perception threshold is a value of the stimulation parameter that corresponds to the patient feeling the electrical stimulation.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
37.
Systems, methods, and devices for performing electronically controlled test stimulation
The present disclosure involves systems and methods of programming electrical stimulation therapy for a patient. A communications link is established with a pulse generator that is configured to generate electrical stimulation pulses. An intermittent electrical coupling between the pulse generator and a diagnostic tool is simulated. This simulation is performed by instructing, for a plurality of cycles, the pulse generator to automatically turn on and off the generation of electrical stimulation pulses. Each cycle includes a first time period and a second time period following the first time period. The simulating includes: instructing the pulse generator to generate the electrical stimulation pulses during the first time period; and instructing the pulse generator to stop generating the electrical stimulation pulses during the second time period.
A61N 1/372 - Arrangements in connection with the implantation of stimulators
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
38.
System, device, and method for generating stimulation waveform having a paresthesia-inducing low-frequency component and a spread-spectrum high-frequency component
A pulse generator includes charging circuitry configured to provide electrical power to the pulse generator. The pulse generator includes communication circuitry configured to conduct wireless telecommunications with external programming devices. The telecommunications contain programming instructions sent from the external programming devices. The pulse generator includes stimulation circuitry configured to generate electrical pulses based on the programming instructions. The electrical pulses include a first component that is paresthesia-inducing and a second component that is non-paresthesia-inducing.
Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
An implantable medical device that includes electrical circuitry for providing a therapy to a patient. The device also includes a housing forming an inner chamber that is adapted for receiving, at least a portion of the electrical circuitry. The device further includes a thermally conductive material that is configured to disperse heat from a first portion of the implantable medical device that is located in proximity to a heat generating component of the electrical circuitry, to a second portion of the implantable medical device that is not located in proximity to said heat generating component. The thermally conductive material is a discrete component separate from the electrical circuitry and the housing.
Devices, systems, and methods incorporate the most-used functions of an electrical stimulator's controller into a small, thin pocket controller that is not only comfortable to carry in a pocket, but can also be attached to a key ring, lanyard, or other such carrying device for ease of daily use. A separate patient controller charger is used to charge and control the implanted medical device.
An electronic programmer is used to program a pulse generator to generate electrical stimulation to be delivered to a patient via an implantable lead. The electronic programmer simultaneously displays, via an user interface, a first control mechanism and a second control mechanism that is separate and different from the first control mechanism. A first user input is received via the first control mechanism, and a second user input is received via the second control mechanism. In response to the received first user input and the second user input, the electronic programmer sends instructions to the pulse generator to cause a migration of the electrical stimulation from a first set of electrodes on the implantable lead to a second set of electrodes on the implantable lead. The first user input defines a stimulation amplitude change for the migration, and the second user input defines a direction for the migration.
41 - Education, entertainment, sporting and cultural services
Goods & Services
An implantable medical pulse generator, namely, an implantable neurological stimulator; electronic controllers for use with the implantable neurological stimulator, namely, a handheld programmer and clinician programmer sold together as a unit with the implantable neurological stimulator; computer programs used in controlling and monitoring the implantable neurological stimulator sold together as a unit with the implantable neurological stimulator; charging system comprised primarily of a battery charger sold together as a unit with the implantable neurological stimulator; and tools and accessories for implantation and operation of the implantable neurological stimulator, namely, component parts for implantable neurological stimulators; a feature of an implantable pulse generator with integrated circuit chips that controls both the delivery of stimulation and the battery output and power usage; electrodes, namely, electrodes for medical use for medical therapeutic applications; medical electrical leads configured for use with implantable neurological stimulators, and component parts therefor; medical microelectrodes and drug delivery electrodes; brain wave amplifier; electronic brain stimulator; all for use in brain surgery; electronic controllers in the form of a handheld programmer specifically adapted for use with medical devices in the nature of neurological stimulators, and component parts therefor; medical devices, namely, implantable pulse generators, namely, implantable neurological stimulators configured to provide electrical stimulation therapy to patients, and component parts therefor; electrodes, namely, electrodes for medical therapeutic applications, used in deep brain applications, requiring surgical placement; electrodes for medical research, used in deep brain applications, requiring surgical placement. Educational services, namely, organizing and conducting physician training, seminars, workshops, conferences, and classes of instruction for using systems and devices for applying neurostimulation and neuromodulation to tissue.
46.
Systems, methods, and devices for evaluating lead placement based on patient physiological responses
An electrical stimulation is applied to a patient via a lead by increasing a stimulation parameter over time. An anal sphincter response, a bellows response, and a toes response from the patient are detected as a result of the electrical stimulation. A first value of the stimulation parameter associated with the anal sphincter response, a second value of the stimulation parameter associated with the bellows response, and a third value of the stimulation parameter associated with the toes response are determined. A placement of the lead inside the patient is evaluated based on: a chronological occurrence of the anal sphincter response, the bellows response, and the toes response; a comparison of the first value with a predetermined threshold; a deviation of the second value from the first value; a deviation of the third value from the first value; or a deviation of the third value from the second value.
A wireless charger for automatically tuning an optimum frequency to inductively charge a rechargeable battery of an implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body is provided. The charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An optimization circuit detects a reflected impedance of the charging coil through a reflected impedance sensor, and select an optimum frequency of a charging signal supplied to the charging coil based on the detected reflected impedances of a plurality of charging frequencies in a selected frequency range. Advantageously, the optimum charging frequency provides a more efficient way to charge the IPG's rechargeable battery.
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/12 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A61N 1/375 - Constructional arrangements, e.g. casings
A controller for implementing a method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, where such arbitrary waveforms can also be used for charge balancing purposes.
A anchor for an implantable medical device includes an anchor body and a locking member. The anchor body includes a first trough extending along a first axis. The locking member is coupled to the anchor body and rotates with respect to a second axis, between an unlocked position and a locked position. The locking member includes protruding members that define a second trough aligned with the first trough when the locking member is rotated to the unlocked position, so as to form an open path for the implantable medical device to move through the first and second troughs. When the locking member is rotated to the locked position, the protruding members block at least a portion of the first trough to define a tortuous path between the first trough and the second trough so as to restrict a movement of the implantable medical device through the first and second troughs.
A wireless charger system for inductively charging a rechargeable battery of an implantable pulse generator (IPG) implanted in a human body is provided. A charging coil in the charger is wirelessly coupled to a receiving coil of the IPG to charge the rechargeable battery. An end-of-charge (EOC) circuit continuously monitors the reflected impedance from a reflected impedance sensor and determines the end of charge when a predetermined pattern of the reflected impedance corresponding to an EOC signal from the IPG is received. Advantageously, receiving the EOC signal through the charging coil eliminates the need to provide a separate communication circuit in the IPG that communicates with the charger.
G06Q 30/02 - MarketingPrice estimation or determinationFundraising
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H02J 50/12 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A61N 1/375 - Constructional arrangements, e.g. casings
In various examples, a therapy delivery element for at least partial implantation in a patient includes an elongate body. The elongate body includes a substantially tubular braided structure that extends from proximate a proximal end to proximate a distal end of the elongate body. A substantially tubular structure is coaxially disposed with respect to the braided structure. The tubular structure is attached to the braided structure proximate a distal braid end. At least a majority of the braided structure proximal from the distal braid end is unattached to the tubular structure.
A method of evaluating an implantation of a lead is disclosed. Via a graphical user interface of an electronic device, a visual representation of a sacrum of the patient and a lead that is implanted in the sacrum is displayed. The lead includes a plurality of electrode contacts. An evaluation is made as to how well the lead has been implanted in the sacrum based on the visual representation of the sacrum and the lead. The evaluating comprises: determining whether the lead is inserted in a predetermined region of the sacrum, determining how far a predetermined one of the electrode contacts is located from an edge of the sacrum, and determining a degree of curvature of the lead.
A semiconductor device comprises a first semiconductor fin arranged on a substrate, the first semiconductor fin having a first channel region, and a second semiconductor fin arranged on the substrate, the second semiconductor fin having a second channel region. A first gate stack is arranged on the first channel region. The first gate stack comprises a first metal layer arranged on the first channel region, a work function metal layer arranged on the first metal layer, and a work function metal arranged on the work function metal layer. A second gate stack is arranged on the second channel region, the second gate stack comprising a work function metal arranged on the second channel region.
H01L 27/092 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
H01L 21/8238 - Complementary field-effect transistors, e.g. CMOS
H01L 21/84 - Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
H01L 27/12 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
A therapy assembly configured for at least partial insertion in a living body. At least one fixation structure is attached to the therapy delivery element proximate the electrodes. The fixation structure is configured to collapse radially inward and wrap circumferentially around the therapy delivery element to a collapsed configuration when inserted into a lumen of an introducer. The fixation structures deploy to a deployed configuration when the introducer is retracted. The fixation structure includes major surfaces generally parallel with, and extending radially outward from, a central axis of the therapy delivery element, proximal edge surface oriented toward the proximal end, and a distal edge surface oriented toward the distal end. The proximal and distal edge surfaces provide generally symmetrical resistance to displacement of the therapy delivery element within the living body in either a proximal direction or a distal direction along the central axis.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals in different channels according to user programming.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power. The IPG also contains circuitry to indicate to a patient that proper alignment exists between the IPG and an external charger to charge a battery in the IPG.
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 50/12 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
H02J 50/90 - Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
H02J 50/80 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
A61N 1/375 - Constructional arrangements, e.g. casings
A61N 1/372 - Arrangements in connection with the implantation of stimulators
59.
IPG configured to deliver different pulse regimes to different leads for pudendal nerve stimulation
A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
In various examples, a stimulation needle apparatus is used for selectively administering a trial stimulation to body tissue of a patient. The stimulation needle apparatus includes a cannula assembly including a cannula and a cannula hub disposed at a proximal cannula end. A stylet assembly includes a stylet sized and shaped to fit within a cannula lumen. A stylet hub is disposed at the proximal stylet end and is configured to engage with the cannula hub. With the stylet hub engaged with the cannula hub, the distal stylet end extends distally from the distal cannula end. A stylet connection is electrically coupled with the stylet and is configured to electrically couple with a stimulator device, such that, a stimulation pulse delivered by the stimulator device is conducted from the stylet connection through the stylet to the distal stylet end to administer the trial stimulation.
A method, device and/or system for generating arbitrary waveforms of a desired shape that can be used for generating a stimulation pulse for medical purposes such as for spinal cord stimulation therapy, including the option of using such arbitrary waveforms for charge balancing purposes.
A therapy delivery element configured for at least partial insertion in a living body. A braided structure surrounds the conductor assembly. A distal end of the braided structure is attached to an electrode assembly and a free floating proximal end is located near a connector assembly. An outer tubing surrounds the braided structure. The outer tubing includes a proximal end attached to the connector assembly and a distal end attached to the braided structure near the electrode assembly. A proximal tension force applied to the connector assembly acts substantially on the outer tubing and the conductor assembly and a proximal tension force applied to the free floating proximal end acts substantially on the braided structure.
Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
The present disclosure involves a medical system that includes one or more implantable medical devices configured to deliver a medical therapy to a patient. The medical system also includes a portable electronic device on which a touch-sensitive user interface is implemented. The user interface is configured to provide a visual representation of the medical therapy through a hierarchy. The hierarchy includes a lower level representation of the medical therapy that corresponds to a stimulation program that includes a plurality of configurable stimulation parameters. The hierarchy includes a middle level representation of the medical therapy that corresponds to a stimulation program-set that includes a plurality of different stimulation programs. The hierarchy includes an upper level representation of the medical therapy that corresponds to a scrollable collection of stimulation program-sets that are represented by a plurality of digital cards, respectively.
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
In various examples, an apparatus includes a stimulation lead including an elongate body including a distal end and a proximal end. At least one first electrode is disposed proximate the distal end of the elongate body and is configured to stimulate a first target nerve. At least one second electrode is disposed between the at least one first electrode and the proximal end of the elongate body and is configured to stimulate a second target nerve. At least one first fixation structure is disposed between the at least one second electrode and the proximal end of the elongate body. The at least one first fixation structure is configured to anchor the stimulation lead proximate the sacrum, wherein the at least one first fixation structure is located on the elongate body and spaced a first distance proximally along the elongate body from the at least one first electrode.
An electronic device having a display is provided. Interactive user engagements with the electronic device are made through the display. A simulation mode is entered. The simulation mode simulates a real pulse generator configured to generate electrical stimulation pulses. The simulation mode is entered without establishing a wireless connection with the real pulse generator. Via the display, one or more features of a virtual pulse generator are demoed after entering the simulation mode. The one or more features of the virtual pulse generator simulate corresponding features of the real pulse generator. The virtual pulse generator is a software program that resides on the electronic device. The demoing comprises mimicking a plurality of user interface screens that allow a user to interact with the real pulse generator.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
69.
Implantable medical lead with collapsible fixation member
An implantable stimulation lead has electrode contacts that are configured to deliver an electrical stimulation therapy for a patient. A sheath extends along a longitudinal axis. The sheath defines a lumen into which the stimulation lead can be inserted. A distal end of the sheath includes a plurality of base segments that are separated from one another. A plurality of fixation structures are located on the base segments, respectively. In a first configuration, the fixation structures are each disposed proximate to the sheath. In a second configuration, the fixation structures each extend radially outward from the sheath. In a third configuration, the base segments deflect radially inward toward the longitudinal axis.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
An anal electrode device is configured to measure a response of a patient to a stimulation pulse. The anal electrode device includes an elongated shaft that is configured to be at least partially inserted into an anal canal of the patient. A first sensory electrode is disposed on a first region of the shaft. The first sensory electrode is configured to measure a compound motor action potential (CMAP) from an internal sphincter of the patient while the shaft is partially inserted into the anal canal of the patient. A second sensory electrode is disposed on a second region of the shaft. The second sensory electrode is configured to measure the CMAP from an external sphincter of the patient while the shaft is partially inserted into the anal canal of the patient.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body includes a timing generator and high frequency generator. The timing generator generates timing signals that represent stimulation signals for multiple channels. The high frequency generator determines whether to modulate the timing signals and modulates them at a burst frequency according to stored burst parameters if the decision is yes. As such, the IPG provides the ability to generate both the low frequency and high frequency stimulation signals in different channels according to user programming.
A first fraction of an electrical stimulation is allocated to a first electrode. In response to user input, the first fraction of the electrical stimulation is fixed to the first electrode such that the first fraction is user-adjustable but cannot be automatically changed. In response to the first fraction being fixed to the first electrode, a respective second fraction of the electrical stimulation is automatically allocated to a plurality of second electrodes. The second fraction is a function of the first fraction and a total number of the second electrodes. Thereafter, a new electrode is added to, or deleting from, the second electrodes, while the first fraction is still fixed to the first electrode. The respective second fractions are automatically adjusted in response to the adding or the deleting, without affecting the first fraction of the electrical stimulation that has been fixed to the first electrode.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G06F 3/0482 - Interaction with lists of selectable items, e.g. menus
G16H 20/30 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
74.
Implantable pulse generator that generates spinal cord stimulation signals for a human body
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
An implantable pulse generator (IPG) that generates spinal cord stimulation signals for a human body has a programmable signal generator that can generate the signals based on stored signal parameters without any intervention from a processor that controls the overall operation of the IPG. While the signal generator is generating the signals the processor can be in a standby mode to substantially save battery power.
Spinal cord stimulation (SCS) system having a recharging system with self-alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
A patient programmer has a housing having a key-fob-sized form factor. The patient programmer has electrical circuitry implemented inside the housing. The electrical circuitry includes a communication module configured to conduct wireless communications with an implantable pulse generator. The patient programmer has a user display implemented on the housing. The user display is configured to display one or more statuses of the implantable pulse generator. The implantable pulse generator is configured to generate an electrical stimulation therapy. The patient programmer has one or more buttons implemented on the housing. The one or more buttons are configured to send instructions, via the communication module, to the implantable pulse generator to adjust a stimulation parameter of the electrical stimulation therapy.
A chopper stabilized amplifier that utilizes a multi-frequency chopping signal to reduce chopping artifacts. By utilizing a multi-frequency chopping signal, the amplifier DC offset and flicker noise are translated to the higher chopping frequencies but are also smeared, or spread out in frequency and consequently lowered in amplitude. This lower amplitude signal allows for less stringent filtering requirements.
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
H03F 1/26 - Modifications of amplifiers to reduce influence of noise generated by amplifying elements
H03F 3/393 - DC amplifiers with modulator at input and demodulator at outputModulators or demodulators specially adapted for use in such amplifiers with semiconductor devices only with field-effect devices
The present disclosure involves systems and methods of programming electrical stimulation therapy for a patient. A communications link is established with a pulse generator that is configured to generate electrical stimulation pulses. An intermittent electrical coupling between the pulse generator and a diagnostic tool is simulated. This simulation is performed by instructing, for a plurality of cycles, the pulse generator to automatically turn on and off the generation of electrical stimulation pulses. Each cycle includes a first time period and a second time period following the first time period. The simulating includes: instructing the pulse generator to generate the electrical stimulation pulses during the first time period; and instructing the pulse generator to stop generating the electrical stimulation pulses during the second time period.
A61N 1/372 - Arrangements in connection with the implantation of stimulators
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data miningICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
80.
System and method of performing computer assisted stimulation programming (CASP) with a non-zero starting value customized to a patient
A non-zero starting value for ramping up a stimulation parameter for an electrical stimulation to be delivered to a patient is determined. The non-zero starting value is customized to the patient. A pulse generator is caused to generate the electrical stimulation, which is delivered to the patient via an implanted lead. The pulse generator is caused to ramp up, from the determined non-zero starting value and toward a predefined maximum limit value, the stimulation parameter for a plurality of electrode contacts on the lead. Feedback is received from the patient in response to the ramping up. The feedback is received via an electronic patient feedback device. Based on the ramping up and the received feedback from the patient, a perception threshold is determined for each of the plurality of electrode contacts. The perception threshold is a value of the stimulation parameter that corresponds to the patient feeling the electrical stimulation.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
81.
Systems, methods, and devices for generating arbitrary stimulation waveforms
Electrical stimulation therapy is provided for a patient. A user is informed that a user-supplied electrical stimulation waveform can be entered into an electronic programmer. At least in part via a user interface of the electronic programmer, it is detected that the user-supplied electrical stimulation waveform has been received by the electronic programmer. A determination is made to whether the user-supplied electrical stimulation waveform is compliant with a set of predetermined restrictions. In response to a determination that the user-supplied electrical stimulation waveform is compliant with the set of predetermined restrictions, a pulse generator is instructed to generate electrical stimulation pulses based on the user-supplied electrical stimulation waveform.
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
82.
Systems, methods, and devices for evaluating lead placement based on patient physiological responses
A pulse generator is programmed to generate electrical stimulation to target a sacral nerve or a pudendal nerve of the patient. The electrical stimulation being delivered at least in part via a lead. The electrical stimulation is applied by ramping up a stimulation parameter over time. A first, a second, and a third physiological response are detected from the patient as a result of the electrical stimulation. A first value, a second value, and a third value of the stimulation parameter associated with the first, second, and third physiological response are measured, respectively. A placement of the lead inside the patient is evaluated based on at least one of: a chronological sequence in which the first, second, and third physiological responses occurred, a comparison of the first value with a predetermined threshold, or respective deviations of the second value or the third value from the first value.
Via a user interface of an electronic device, virtual representations of an implantable pulse generator (IPG), an external pulse generator (EPG), and an implantable lead are displayed. A detection is made that the EPG has been selected. In response to the selection of the EPG, a first workflow is made automatically available. The first workflow is associated with using a Percutaneous Nerve Evaluation (PNE) needle to investigate an optimum location for implanting the implantable lead. A detection is made that the implantable lead has been coupled to the IPG or the EPG. In response to the coupling of the implantable lead to the IPG or the EPG, a second workflow is made automatically available. The second workflow is associated with evaluating a patient physiological response at least in part by using the implantable lead to deliver electrical stimulation to the patient.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
84.
System, method, and device for providing feedback to a patient during electrical stimulation
Feedback regarding electrical stimulation is provided to a patient. Electrical stimulation is applied to the patient. The electrical stimulation is applied by varying an electrical stimulation parameter. A signal is communicated to the patient via an electronic device. The signal is correlated with the electrical stimulation parameter such that the signal varies in association with the varying of the electrical stimulation parameter. The communicating is performed while the electrical stimulation is applied. Feedback is received from the patient in response to the electrical stimulation. Based on the received feedback from the patient, the electrical stimulation is adjusted.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilitiesICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
85.
Systems, methods, and devices for evaluating lead placement based on generated visual representations of sacrum and lead
A method of evaluating an implantation of a lead is disclosed. Via a graphical user interface of an electronic device, a visual representation of a sacrum of the patient and a lead that is implanted in the sacrum is displayed. The lead includes a plurality of electrode contacts. An evaluation is made as to how well the lead has been implanted in the sacrum based on the visual representation of the sacrum and the lead. The evaluating comprises: determining whether the lead is inserted in a predetermined region of the sacrum, determining how far a predetermined one of the electrode contacts is located from an edge of the sacrum, and determining a degree of curvature of the lead.
Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsources, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
A medical system includes an implantable lead having a plurality of electrode contacts, a pulse generator coupled to the lead and configured to generate electrical pulses to be delivered to a patient through the plurality of electrode contacts, and an electronic programmer coupled to the pulse generator. The electronic programmer programs the pulse generator to generate the electrical pulses. The pulse generator is programmed to generate an electrical stimulation to be applied to the patient via one of the electrode contacts on the implantable lead. A determination is received as to whether the patient, in response to the electrical stimulation, exhibited a bellows response or a toes response. A stimulation parameter of the electrical stimulation is ramped up in response to a determination that the patient did not exhibit the bellows response or the toes response and that the patient did not feel pain in response to the electrical stimulation.
One or more virtual objects are displayed on an electronic programmer. The virtual objects represent initiating and terminating a delivery of a medical therapy to a patient. An actuation of the one or more virtual objects is sensed. The delivery of the medical therapy is terminated immediately if the actuation of the one or more virtual objects corresponds to terminating the delivery of the medical therapy. The delivery of the medical therapy is initiated in a delayed manner if the actuation of the one or more virtual objects corresponds to starting the delivery of the medical therapy. A battery level of the electronic programmer is monitored. At least one of the following tasks is performed if the battery level is lower than a target battery level: disallowing programming of the electronic programmer; terminating the delivery of an existing medical therapy; and precluding the delivery of a prospective medical therapy.
In some examples, a method of making a therapy delivery element configured for at least partial insertion in a living body includes braiding a plurality of fibers to form an elongated braided structure with a lumen. At least one reinforcing structure is weaved into the fibers of the braided structure. A portion of the reinforcing structure is extended from the braided structure to form at least one fixation structure. At least one of the braided structure or the reinforcing structure can be attached to at least one of an electrode assembly or a connector assembly.
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
D04C 1/06 - Braid or lace serving particular purposes
B29C 70/24 - Fibrous reinforcements only characterised by the structure of fibrous reinforcements using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
90.
IPG configured to deliver different pulse regimes to different leads for pudendal nerve stimulation
A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
In some examples, a lead identification system includes a first set of first lead indicators and a second set of second lead indicators. Each of the first lead indicators is configured to removably attach to at least one of a first therapy delivery element, a first epidural needle, or a first connector to uniquely identify at least one of the first therapy delivery element, the first epidural needle, or the first connector during implantation of the first therapy delivery element in the patient. Each of the second lead indicators is configured to removably attach to at least one of a second therapy delivery element, a second epidural needle, or a second connector to uniquely identify at least one of the second therapy delivery element, the second epidural needle, or the second connector during implantation of the second therapy delivery element in the patient.
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
A61B 90/90 - Identification means for patients or instruments, e.g. tags
A61B 90/92 - Identification means for patients or instruments, e.g. tags coded with colour
A61B 90/94 - Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
A61N 1/372 - Arrangements in connection with the implantation of stimulators
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
92.
Systems and methods for transcutaneous control of implantable pulse generators for neuromodulation
Systems, devices and methods for providing neuromodulation are provided. One such system can include an implantable pulse generator. The implantable pulse generator can include a circuit board having a microcontroller that generates signals that are input into an ASIC. The ASIC serves as pulse generator that allows electrical pulses to be outputted into leads. The implantable pulse generator is capable of receiving and/or generating signals either via a wireless communication (e.g., a wireless remote control), a touching force (e.g., pressure from a finger), a motion sensor or any combination of the above.
Spinal cord stimulation (SCS) system having a recharging system with self alignment, a system for mapping current fields using a completely wireless system, multiple independent electrode stimulation outsource, and IPG control through software on Smartphone/mobile device and tablet hardware during trial and permanent implants. SCS system can include multiple electrodes, multiple, independently programmable, stimulation channels within an implantable pulse generator (IPG) providing concurrent, but unique stimulation fields. SCS system can include a replenishable power source, rechargeable using transcutaneous power transmissions between antenna coil pairs. An external charger unit, having its own rechargeable battery, can charge the IPG replenishable power source. A real-time clock can provide an auto-run schedule for daily stimulation. A bi-directional telemetry link informs the patient or clinician the status of the system, including the state of charge of the IPG battery. Other processing circuitry in current IPG allows electrode impedance measurements to be made.
A system, method, and circuit to monitor a compliance voltage in an implantable stimulator device. An implantable medical device with a compliance voltage detector to monitor the voltage used by an output current source/sink circuit to ensure proper circuit performance while limiting power use.
A portable electronic programmer has a display screen, one or more sensors, a non-transitory memory storing instructions, and one or more electronic processors configured to execute the instructions to perform operations that include: detecting, via the one or more sensors, that the display screen of the portable electronic programmer has been engaged by an object; determining a location of the display screen of the portable electronic programmer that has been engaged; and causing an external monitor to display a visual indicator that corresponds to the location of the display screen of the portable electronic programmer, the external monitor being communicatively coupled to the portable electronic programmer.
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 3/0354 - Pointing devices displaced or positioned by the userAccessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals
09 - Scientific and electric apparatus and instruments
10 - Medical apparatus and instruments
16 - Paper, cardboard and goods made from these materials
Goods & Services
Electronic controllers for use with an implantable neurological stimulator, namely, a handheld programmer and clinician programmer; computer programs used in controlling and monitoring implantable neurological stimulators; charging system comprised primarily of a battery charger used with an implantable neurological stimulator; electronic controllers for use with the implantable neurological stimulator, namely, a handheld programmer and clinician programmer sold separately from the implantable neurological stimulator; computer programs used in controlling and monitoring the implantable neurological stimulator; charging system comprised primarily of a battery charger used with the implantable neurological stimulator sold separately from the implantable neurological stimulator. An implantable medical pulse generator, namely, an implantable neurological stimulator; electronic controllers for use with the implantable neurological stimulator, namely, a handheld programmer and clinician programmer sold together as a unit with the implantable neurological stimulator; computer programs used in controlling and monitoring the implantable neurological stimulator sold together as a unit with the implantable neurological stimulator; charging system comprised primarily of a battery charger sold together as a unit with the implantable neurological stimulator; and tools and accessories for implantation and operation of the implantable neurological stimulator, namely, component parts for implantable neurological stimulators. Printed educational and training materials, namely, data sheets, brochures, manuals and books regarding the use and operation of the implantable neurological stimulator.
97.
Method and system of quick neurostimulation electrode configuration and positioning
A model of an implantable lead is provided via a graphical user interface. The implantable lead is configured to deliver electrical stimulation to a patient via a plurality of electrodes located on the implantable lead. The graphical user interface also provides a plurality of predefined electrode activation patterns that include a coarse pattern and a refined pattern. The coarse pattern corresponds to a first group of electrodes located in a first region of the implantable lead. The refined pattern corresponds to a second group of electrodes located in a second region of the implantable lead. The second region is smaller than, and is a subsection of, the first region. A coarse testing process is performed by selectively activating the first group of electrodes belonging to the coarse pattern. Thereafter, a refined testing process is performed by selectively activating the second group of electrodes belonging to the refined pattern.
A61N 1/36 - Applying electric currents by contact electrodes alternating or intermittent currents for stimulation, e.g. heart pace-makers
A61N 1/372 - Arrangements in connection with the implantation of stimulators
A61N 1/05 - Electrodes for implantation or insertion into the body, e.g. heart electrode
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
98.
Implant current controlled battery charging based on temperature
A method for wirelessly charging a battery in an implantable medical device including the steps of: providing a receiver in the implantable medical device and providing a temperature sensor in the implantable medical device. The method also includes receiving, via the receiver, a wireless power signal from an external charger and converting the wireless power signal into a battery charge signal including power for recharging the battery. The method yet also includes sensing a temperature of the implantable medical device with the temperature sensor. The method further includes changing a current of the battery charge signal from a first non-zero current to a second non-zero current that is different from the first non-zero current. Changing of the current of the battery charge signal is based on the temperature sensed by the temperature sensor.
H02J 7/04 - Regulation of the charging current or voltage
H02J 7/16 - Regulation of the charging current or voltage by variation of field
H02J 7/06 - Regulation of the charging current or voltage using discharge tubes or semiconductor devices
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A system and method for using statistical analysis of information obtained during a rechargeable battery charging session, wherein the method is for optimizing one or more parameters that are used for controlling the charging of a rechargeable battery during the charging session.
H02J 7/04 - Regulation of the charging current or voltage
H02J 7/16 - Regulation of the charging current or voltage by variation of field
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.
A61N 1/372 - Arrangements in connection with the implantation of stimulators
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G09G 3/36 - Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix by control of light from an independent source using liquid crystals