CO2 Solutions Inc.

Canada

Back to Profile

1-25 of 25 for CO2 Solutions Inc. Sort by
Query
Aggregations
Date
2020 1
Before 2020 24
IPC Class
B01D 53/62 - Carbon oxides 23
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption 16
B01D 53/84 - Biological processes 7
C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide 7
C12N 9/88 - Lyases (4.) 6
See more
Found results for  patents

1.

PROCESS AND SYSTEM FOR PRODUCING CARBON MONOXIDE AND DIHYDROGEN FROM A CO2-CONTAINING GAS

      
Application Number CA2019050940
Publication Number 2020/010447
Status In Force
Filing Date 2019-07-08
Publication Date 2020-01-16
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Fradette, Louis
  • Fradette, Sylvie

Abstract

2222222222-containing gas into the bicarbonate loaded stream.

IPC Classes  ?

  • C25B 1/02 - Hydrogen or oxygen
  • C01B 3/02 - Production of hydrogen or of gaseous mixtures containing hydrogen
  • C01B 32/60 - Preparation of carbonates or bicarbonates in general
  • C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes

2.

POST-COMBUSTION CO2 CAPTURE WITH HEAT RECOVERY AND INTEGRATION

      
Application Number CA2019050781
Publication Number 2019/232626
Status In Force
Filing Date 2019-06-05
Publication Date 2019-12-12
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Lefebvre, Sylvain
  • Clerveaux, Ferrere

Abstract

22 capture processes and systems can be improved by recovering thermal energy from particular streams for reuse in the stripping stage. Thermal energy can be recovered from the overhead gas stream of a stripper operated under vacuum pressure conditions, and thermal energy can also be recovered from a flue gas. A heat transfer circuit can be implemented for recovering thermal energy by indirect heat transfer from the overhead gas stream, a flue gas stream, and/or other streams to a heat transfer fluid. The heat transfer circuit can include multiple heat recovery loops arranged in parallel and the heated fluid can be supplied through a reboiler of the stripper to heat the solution in the reboiler.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • F23J 15/00 - Arrangements of devices for treating smoke or fumes

3.

X CAPTURE USING CARBONATE ABSORBENT

      
Application Number CA2018050968
Publication Number 2019/028558
Status In Force
Filing Date 2018-08-10
Publication Date 2019-02-14
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Lefebvre, Sylvain
  • Surprenant, Richard
  • Clerveaux, Ferrere
  • Veilleux, Gabriel
  • Zhang, David

Abstract

2x xxx2xx-containing gas.

IPC Classes  ?

  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/18 - Absorbing unitsLiquid distributors therefor
  • B01D 53/50 - Sulfur oxides
  • B01D 53/60 - Simultaneously removing sulfur oxides and nitrogen oxides
  • B01D 53/62 - Carbon oxides

4.

VARIANTS OF THERMOVIBRIO AMMONIFICANS CARBONIC ANHYDRASE AND CO2 CAPTURE METHODS USING THERMOVIBRIO AMMONIFICANS CARBONIC ANHYDRASE VARIANTS

      
Application Number CA2016051049
Publication Number 2017/035667
Status In Force
Filing Date 2016-09-02
Publication Date 2017-03-09
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Voyer, Normand
  • Daigle, Richard
  • Madore, Éric
  • Fradette, Sylvie

Abstract

The present description relates to recombinant or engineered carbonic anhydrase polypeptides, variants, and functional derivatives thereof, having improved properties that make them advantageous for use in CO2 capture operations (e.g., CO2 capture solvents, alkaline pH, and/or elevated temperatures), as well as polynucleotides and vectors encoding same. The present description also relates to methods, processes and systems for CO2 capture which make use of the recombinant or engineered carbonic anhydrase polypeptides, variants, and functional derivatives thereof.

IPC Classes  ?

  • C12N 9/88 - Lyases (4.)
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/62 - Carbon oxides
  • B01D 53/84 - Biological processes
  • B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
  • B01J 8/38 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation
  • C12N 15/60 - Lyases (4)
  • C12N 15/63 - Introduction of foreign genetic material using vectorsVectorsUse of hosts thereforRegulation of expression
  • C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide

5.

INTENSIFICATION OF BIOCATALYTIC GAS ABSORPTION

      
Application Number CA2016050370
Publication Number 2016/154753
Status In Force
Filing Date 2016-03-30
Publication Date 2016-10-06
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Verma, Mausam
  • Fradette, Louis
  • Fradette, Sylvie
  • Lefebvre, Sylvain
  • Sylvestre-Laurence, Vincent

Abstract

Intensification techniques are described for enhancing biocatalytic CO2 absorption operations, and may include the use of a rotating packed bed, a rotating disc reactor, a zig-zag reactor or other reactors that utilize process intensification. Carbonic anhydrase can be deployed in the high intensity reactor free in solution, immobilized with respect to particles that flow with the liquid, and/or immobilized to internals, such as packing, that are fixed within the high intensity reactor.

IPC Classes  ?

6.

PROCESSES FOR CARBON DIOXIDE CAPTURE WITH BIOCATALYST RECOVERY SYSTEM

      
Application Number US2015054938
Publication Number 2016/057918
Status In Force
Filing Date 2015-10-09
Publication Date 2016-04-14
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Zaks, Aleksey
  • Reardon, John
  • Bucholz, Tracy
  • Hulvey, Matthew

Abstract

The present invention generally relates to processes for the capture of carbon dioxide from gases that are produced by various industrial processes including the capture of CO2 from flue gases after the combustion of carbon-based fuels. Specifically, the processes relate to processes using systems comprising a biocatalyst recovery system.

IPC Classes  ?

  • B01D 53/85 - Biological processes with gas-solid contact

7.

CO2 CAPTURE METHODS USING THERMOVIBRIO AMMONIFICANS CARBONIC ANHYDRASE

      
Application Number CA2015050822
Publication Number 2016/029316
Status In Force
Filing Date 2015-08-27
Publication Date 2016-03-03
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Voyer, Normand
  • Daigle, Richard
  • Madore, Éric
  • Fradette, Sylvie

Abstract

Methods for enzyme-enhanced CO2 capture include contacting a CO2 -containing gas with an aqueous absorption solution at process conditions–such as high temperature, high pH, and/or using carbonate-based solutions–in the presence of Thermovibrio ammonificans carbonic anhydrase (TACA) or functional derivative thereof for catalyzing the hydration reaction of CO2 into bicarbonate and hydrogen ions and/or catalyzing the desorption reaction to produce a CO2 gas. The TACA may be provided to flow with the solution to cycle through a CO2 capture system that includes an absorber and a stripper.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/84 - Biological processes

8.

TECHNIQUES FOR CO2 CAPTURE USING SULFURIHYDROGENIBIUM SP. CARBONIC ANHYDRASE

      
Application Number CA2013050818
Publication Number 2014/066999
Status In Force
Filing Date 2013-10-29
Publication Date 2014-05-08
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Daigle, Richard
  • Madore, Éric
  • Fradette, Sylvie

Abstract

Use of Sulfuhhydrogenibium sp. carbonic anhydrase (SspCA) or mutants thereof for catalyzing the hydration reaction of CO2 into bicarbonate and hydrogen ions or catalyzing the desorption reaction to produce a CO2 gas.

IPC Classes  ?

  • C12N 9/88 - Lyases (4.)
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/34 - Chemical or biological purification of waste gases
  • B01D 53/62 - Carbon oxides
  • C12N 15/60 - Lyases (4)

9.

METHOD FOR PREPARING SURFACE MODIFIED CARBONIC ANHYDRASE WITH ENHANCED ACTIVITY AND/OR STABILITY

      
Application Number CA2013050552
Publication Number 2014/012181
Status In Force
Filing Date 2013-07-16
Publication Date 2014-01-23
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Gingras, Julie
  • Madore, Eric
  • Simard, Mathieu
  • Voyer, Normand
  • Kelly, Glenn R.

Abstract

A method for obtaining surface modified carbonic anhydrases having improved activity and/or stability is provided. The method comprises modifying surface functional groups of a carbonic anhydrase having an initial surface charge by reaction with a reagent while varying a predetermined reaction parameter, whereby the reaction allows obtaining a set of modified carbonic anhydrases with respective surface charges different than the initial surface charge; testing the stability and/or activity of the modified carbonic anhydrases; and identifying modified carbonic anhydrases having improved stability and/or activity. The method may also 10 comprise surface modifying a plurality of different carbonic anhydrases in the presence of at least one reagent; testing the stability and/or activity of resulting modified carbonic anhydrases; and identifying the modified carbonic anhydrases having improved stability and/or activity. A surface modified carbonic anhydrase having improved stability and/or activity is also provided. The modified carbonic anhydrase is useful biocatalyst for CO 2 hydration or desorption.

IPC Classes  ?

  • C12N 9/96 - Stabilising an enzyme by forming an adduct or a compositionForming enzyme conjugates
  • B01D 53/62 - Carbon oxides
  • C12N 9/88 - Lyases (4.)
  • C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide
  • C12Q 1/527 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving lyase

10.

BAUXITE RESIDUE NEUTRALISATION WITH ENZYMATICALLY ENHANCED GAS CAPTURE

      
Application Number CA2013050513
Publication Number 2014/005226
Status In Force
Filing Date 2013-07-03
Publication Date 2014-01-09
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Carley, Jonathan Andrew
  • Huang, Jingui

Abstract

Processes and system for neutralisation of a bauxite residue, including contacting a CO2-containing gas derived from a smelter, a refinery or a plant in an aluminum manufacturing operation, with an aqueous absorption solution, in the presence of carbonic anhydrase, to promote the hydration reaction of CO2 into bicarbonate and hydrogen ions and produce a CO2-depleted gas and an ion-rich solution; and contacting the ion-rich solution with the bauxite residue to produce a neutralised bauxite stream and an ion-depleted solution. The ion-rich solution may also be subjected to desorption for promoting release of the bicarbonate ions from the ion- rich solution and producing a CO2 gas stream and an ion-depleted solution. The CO2 gas stream may then be injected into the bauxite residue to produce a neutralised bauxite stream.

IPC Classes  ?

  • A62D 3/30 - Processes for making harmful chemical substances harmless, or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/62 - Carbon oxides

11.

SLAG STABILIZATION WITH CAPTURED CARBON DIOXIDE

      
Application Number CA2013050514
Publication Number 2014/005227
Status In Force
Filing Date 2013-07-03
Publication Date 2014-01-09
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Carley, Jonathan Andrew
  • Huang, Jingui

Abstract

Methods and processes for stabilizing a ground slag produced from a steelmaking operation. Optionally, a CO2-containing gas may be contacted with a an aqueous absorption solution in presence of a biocatalyst, in a reactor, for enzymatically catalyzing a hydration reaction of dissolved CO2 into bicarbonate ions and hydrogen ions to produce an ion loaded solution and a CO2 lean gas. The ion loaded solution is then contacted with the ground slag to produce CaCO3, MgCO3, a stabilized slag depleted in CaO and MgO, and an alkaline liquor comprising carbonate ions CO32-. Alternatively, the ground slag may be contacted with water to leach CaO and MgO and produce a slurry containing Ca(OH)2 and Mg(OH)2, which is contacted with the ion loaded solution to produce CaCO3 and MgCO3 and the stabilized slag depleted in CaO and MgO.

IPC Classes  ?

12.

TECHNIQUES FOR BIOCATALYTIC TREATMENT OF CO2-CONTAINING GAS AND FOR SEPARATION OF BIOCATALYST FROM ION LOADED STREAMS

      
Application Number CA2013050510
Publication Number 2014/000113
Status In Force
Filing Date 2013-07-02
Publication Date 2014-01-03
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Fradette, Sylvie
  • Huang, Jingui
  • Versteeg, Geert Frederik

Abstract

Various enzyme-enhanced CO2 capture techniques are described. In some implementations, a process for CO2 capture includes absorption and desorption stages, and a separation stage for removing at least a portion of the enzymes from the ion loaded solution. The enzyme-depleted solution is supplied to desorption, while the enzyme-enriched solution is recycled back into the absorption stage. A filtration membrane may be used for the separation stage. In some scenarios, the separation may provide the enzyme enriched solution with sufficient fluidity for liquid transport through a conduit back into the absorption stage. The separation may be conducted in accordance with a selected absorption compound, such as an amino or carbonate compound, such that the recycle flow of the enzyme-enriched solution is sufficiently low so that the enzyme-enhanced CO2 capture system maintains energy efficiency. Other techniques related to enzyme separation are described and can further improve CO2 capture.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/86 - Catalytic processes
  • B01D 61/14 - UltrafiltrationMicrofiltration

13.

ACTIVITY REPLENISHMENT AND IN SITU ACTIVATION FOR ENZYMATIC CO2 CAPTURE PACKED REACTOR

      
Application Number CA2013050376
Publication Number 2013/170384
Status In Force
Filing Date 2013-05-16
Publication Date 2013-11-21
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Madore, Éric
  • Fradette, Sylvie
  • Lawson, Jeremy

Abstract

A method for CO2 capture may include operating a packed reactor comprising a reaction chamber containing packing including immobilized enzymes, by contacting a CO2 containing gas with a liquid solution in the reaction chamber to produce an ion-loaded solution and a CO2 depleted gas by an enzymatically catalyzed hydration reaction; monitoring enzyme activity of the immobilized enzymes; at a low enzyme activity threshold (i) stopping operation in the packed reactor, and (ii) replenishing the enzymatic activity by providing an enzyme replenishing solution into the packed reactor to contact the packing and provide a replenishing amount of the immobilized enzymes; and recommencing operation in the packed reactor for CO2 capture using the replenished immobilized enzymes. A corresponding system may include a packed reactor and an in situ enzyme supply device for supplying active enzyme within the reactor. The enzyme supply device may include spray nozzles with various configurations.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/84 - Biological processes
  • C12M 1/36 - Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
  • C12M 1/40 - Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
  • C12N 11/00 - Carrier-bound or immobilised enzymesCarrier-bound or immobilised microbial cellsPreparation thereof
  • C12Q 3/00 - Condition-responsive control processes
  • C12N 9/88 - Lyases (4.)

14.

CO2 CAPTURE WITH CARBONIC ANHYDRASE AND TERTIARY AMINO SOLVENTS FOR ENHANCED FLUX RATIO

      
Application Number CA2013050314
Publication Number 2013/159228
Status In Force
Filing Date 2013-04-23
Publication Date 2013-10-31
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Versteeg, Geert F.
  • Penders, Nathalie J.M.C.
  • Fradette, Sylvie
  • Gingras, Julie
  • Carley, Jonathan A.
  • Kelly, Glenn R.
  • Voyer, Normand
  • Derks, Peter W. J.
  • Ceperkovic, Olivera

Abstract

Techniques for treating CO2 containing gas include contacting the gas with an aqueous absorption solution including carbonic anhydrase as well as an absorption compound, which may be a tertiary amino compound for enzymatically enhanced flux of CO2. The absorption compound may include MDEA, TEA, DEMEA, DMMEA, TIPA or DMgly, for example. The techniques may provide concentrations to enhance the enzymatic catalysis and inhibit viscosifying of the absorption solution or enzyme denaturing that would lower the overall CO2 absorption rate. The absorption may be conducted at a temperature between about 0° C and about 80 °C, for example. Processes, uses and formulations are provided for enhanced CO2 capture.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption

15.

CO2 CAPTURE USING LOW CONCENTRATION AMMONIA BASED ABSORPTION SOLUTIONS IN PRESENCE OF ENZYMES

      
Application Number CA2013050201
Publication Number 2013/159215
Status In Force
Filing Date 2013-03-14
Publication Date 2013-10-31
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Arendsen, Albert Rikus Johannes
  • Versteeg, Geert Frederik

Abstract

Methods and processes related to C02 capture with low concentration ammonia base absorption solutions. Operating conditions may be determined so as to operate within an operation window enabling a maximal range of the C02 capture; and the ammonia based absorption solution may be enhanced by adding at least one enzyme or analogues thereof for accelerating the hydration of C02 from the C02 containing-gas into the absorption solution for reducing the size of the C02 capture equipment within the operation window for example. Operating conditions may include a C02 partial pressure in the absorption solution, an absorption temperature, a lean C02 liquid loading range of the absorption solution, an ammonia concentration range in the absorption solution and an absorption solution flow rate. Processes and methods may include selecting the absorption solution flow rate in accordance with a maximum rich C02 liquid loading of the absorption solution.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/84 - Biological processes

16.

ENZYME ENHANCED PRODUCTION OF BICARBONATE COMPOUNDS USING CARBON DIOXIDE

      
Application Number CA2013050199
Publication Number 2013/134879
Status In Force
Filing Date 2013-03-14
Publication Date 2013-09-19
Owner CO2 SOLUTIONS INC. (Canada)
Inventor Versteeg, Geert Frederik

Abstract

An enzymatic process for production of a bicarbonate compound is provided. The process comprises contacting an aqueous solution including a dissolved carbonate with a CO2-containing gas in the presence of carbonic anhydrase or an analogue thereof to produce a bicarbonate loaded stream; separating the carbonic anhydrase or analogue thereof from the bicarbonate loaded stream; and converting the bicarbonate loaded stream into precipitated bicarbonate and a bicarbonate depleted stream, the precipitated bicarbonate including the bicarbonate compound. The bicarbonate compound may be sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate or cesium bicarbonate.

IPC Classes  ?

  • C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide
  • B01D 53/62 - Carbon oxides
  • C01B 31/24 - Methods for the preparation of carbonates or bicarbonates in general
  • C01D 7/26 - Purification by precipitation or adsorption
  • C01D 7/10 - Preparation of bicarbonates from carbonates

17.

INTEGRATED PROCESS FOR DUAL BIOCATALYTIC CONVERSION OF CO2 GAS INTO BIO-PRODUCTS BY ENZYME ENHANCED HYDRATION AND BIOLOGICAL CULTURE

      
Application Number CA2013050029
Publication Number 2013/106932
Status In Force
Filing Date 2013-01-17
Publication Date 2013-07-25
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Fradette, Sylvie
  • Guimond, Chantal
  • Madore, Eric
  • Kelly, Glenn R.
  • Carley, Jonathan A.
  • Versteeg, Geert F.

Abstract

A method, process, apparatus, use and formulation for dual biocatalytic conversion of CO2 containing gas into carbon containing bio-products by enzymatic hydration of CO2 into bicarbonate ions in the presence of carbonic anhydrase and metabolic conversion of the bicarbonate ions into carbon containing bio-products in a biological culture. The dual biocatalytic conversion may be relatively constant with controlling a feeding of the bicarbonate ions to the biological culture in accordance with demands of the biological culture by retaining over-production of bicarbonate ions and feeding part of the over-production to the biological culture in accordance with nutrient demands of the biological culture. Bicarbonate ions may also be reconverted to generate a pure CO2 gas stream. The CO2 containing gas may be derived from operations of a power plant which receives a carbon-containing fuel for combustion, and the biological culture may be an algae culture.

IPC Classes  ?

  • C12P 1/00 - Preparation of compounds or compositions, not provided for in groups , by using microorganisms or enzymesGeneral processes for the preparation of compounds or compositions by using microorganisms or enzymes
  • B01D 53/62 - Carbon oxides
  • B01D 53/86 - Catalytic processes
  • C12M 1/00 - Apparatus for enzymology or microbiology
  • C12M 1/04 - Apparatus for enzymology or microbiology with gas introduction means
  • C12N 1/12 - Unicellular algaeCulture media therefor
  • C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide
  • C12P 7/46 - Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid

18.

CO2 CAPTURE WITH CARBONIC ANHYDRASE AND MEMBRANE FILTRATION

      
Application Number CA2012050802
Publication Number 2013/067648
Status In Force
Filing Date 2012-11-13
Publication Date 2013-05-16
Owner CO2 SOLUTIONS INC. (Canada)
Inventor Versteeg, Geert Frederik

Abstract

The method for CO2 capture includes operating a CO2 capture system with a large temperature swing in between the absorption stage and the desorption stage; utilizing a hybrid solvent comprising water, carbonic anhydrase and an absorption compound in the absorption stage; membrane filtering the carbonic anhydrase out of the hybrid solvent in between the absorption stage and the desorption stage and prior to the large temperature swing; and recycling the filtered carbonic anhydrase back into the absorption stage to maintain high enzyme concentration in the absorption stage.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/96 - Regeneration, reactivation or recycling of reactants

19.

ENHANCED ENZYMATIC CO2 CAPTURE TECHNIQUES ACCORDING TO SOLUTION PKA, TEMPERATURE AND/OR ENZYME CHARACTER

      
Application Number CA2012050393
Publication Number 2012/167388
Status In Force
Filing Date 2012-06-11
Publication Date 2012-12-13
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Penders, Nathalie J.M.C.
  • Derks, Peter W.J.
  • Versteeg, Geert F.
  • Madore, Eric
  • Sheldon, Roger
  • Voyer, Normand
  • Fradette, Sylvie
  • Carley, Jonathan
  • Kelly, Glenn R.

Abstract

Techniques related to enhancement of CO2 absorption use selection of an enzyme coordinated with selection of an absorption solution having a pKa to enhance or maximize the CO2 capture rate. The techniques may use various relationships between process variables such as temperature, concentration, and so on, in order to provide efficient CO2 capture.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/84 - Biological processes

20.

C02 TREATMENTS USING ENZYMATIC PARTICLES SIZED ACCORDING TO REACTIVE LIQUID FILM THICKNESS FOR ENHANCED CATALYSIS

      
Application Number CA2012050063
Publication Number 2012/103653
Status In Force
Filing Date 2012-02-03
Publication Date 2012-08-09
Owner CO2 SOLUTIONS INC. (Canada)
Inventor
  • Versteeg, Geert Frederik
  • Fradette, Sylvie

Abstract

Techniques for absorbing or desorbing CO2 include sizing enzymatic particles in accordance with the reactive liquid film thickness (δrf) of the reaction medium to increase enzymatic catalysis of the CO2hydration or dehydration reaction. Absorption may include contacting a CO2 containing gas with an aqueous absorption mixture and determining (δrf)of the C2O2 hydration reaction, wherein (δrf) = (δι)/ Ha where Ha2 = (k1.Dco2/(kL)2, Ha > 2 and k1 = k2Cab, k2 being the CO2 hydration kinetic constant in the mixture and Cab being the concentration of the absorption compound. The mixture may be under conditions that provide(δrf) that is smaller than the liquid film thickness (δι) through which mass transfer of the CO2occurs. The size ratio of the enzymatic particles and(δrf) enhances enzymatic catalysis. Various implementations including processes, systems, formulations and kits are provided.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/86 - Catalytic processes

21.

ENZYME ENHANCED C02 CAPTURE AND DESORPTION PROCESSES

      
Application Number CA2011001210
Publication Number 2012/055035
Status In Force
Filing Date 2011-10-28
Publication Date 2012-05-03
Owner CO2 SOLUTION INC. (Canada)
Inventor
  • Penders, Nathalie J.M.C
  • Derks, Peter, W.J.
  • Versteeg, Geert, F.
  • Fradette, Sylvie

Abstract

An enzyme-catalyzed desorption process for releasing C02 gas from an ion-rich solution containing bicarbonate ions includes providing carbonic anhydrase in the ion-rich solution such that in a desorption unit the carbonic anhydrase is allowed to flow with the ion-rich solution while promoting conversion of the bicarbonate ions into C02 gas and generating an ion-depleted solution and releasing the C02 gas and the ion-depleted solution from the desorption unit. A C02 capture process includes contacting a C02-containing gas with a solution in an absorption unit, to convert C02 into ions; feeding an ion-rich solution to a desorption unit wherein carbonic anhydrase is present within the ion-rich solution to generate an ion-depleted solution and, preferably, recycling the ion-depleted solution. Methods of decreasing the C02 desorption temperature in a desorption unit, decreasing the C02 desorption reactor size, and decreasing the C02 desorption energy input in a desorption unit, are also described.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/73 - After-treatment of removed components
  • B01D 53/84 - Biological processes
  • B01D 53/94 - Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
  • C12S 5/00 - Treatment of emulsions, gases or foams
  • C12N 9/88 - Lyases (4.)
  • C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide

22.

ENZYMATIC PROCESS AND BIOREACTOR USING ELONGATED STRUCTURES FOR CO2 CAPTURE TREATMENTS

      
Application Number CA2010001787
Publication Number 2011/054107
Status In Force
Filing Date 2010-11-04
Publication Date 2011-05-12
Owner CO2 SOLUTION INC. (Canada)
Inventor
  • Fradette, Sylvie
  • Belzil, Anne
  • Dion, Mélanie
  • Parent, Romain

Abstract

An enzymatic process and bioreactor use elongated structures to enhance CO2 capture treatments. The enzymatic process and bioreactor treat a fluid by catalyzing reaction (I) with carbonic anhydrase, CO2 + H2O ⇔ HCO-3 + H+ (|) by feeding the fluid into a reaction zone wherein a plurality of elongated structures extend through the reaction zone. Each elongated structure supports a flowing liquid layer comprising droplets. Reaction (I) occurs within the flowing liquid layer in the presence of the carbonic anhydrase, to produce a gas stream and a liquid stream which are released. The process and bioreactor can be used in an absorption, desorption or combined treatment context.

IPC Classes  ?

  • C12M 1/40 - Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
  • B01D 53/62 - Carbon oxides
  • C12M 1/04 - Apparatus for enzymology or microbiology with gas introduction means
  • C12P 3/00 - Preparation of elements or inorganic compounds except carbon dioxide

23.

PROCESS FOR CO2 CAPTURE USING MICRO-PARTICLES COMPRISING BIOCATALYSTS

      
Application Number CA2010001213
Publication Number 2011/014956
Status In Force
Filing Date 2010-08-04
Publication Date 2011-02-10
Owner CO2 SOLUTION INC. (Canada)
Inventor
  • Fradette, Sylvie
  • Gingras, Julie
  • Voyer, Normand
  • Carley, Jonathan
  • Kelly, Glenn R.
  • Ceperkovic, Olivera

Abstract

A process for capturing CO2 includes contacting a C02-containing gas with an absorption mixture optionally within a packed reactor. The absorption mixture includes a liquid solution and micro-particles. The micro-particles include a support material and biocatalyst supported by the support material and are sized and provided in a concentration such that the absorption mixture flows through the packed reactor and that the micro-particles are carried with the liquid solution to promote dissolution and transformation of CO2 into bicarbonate and hydrogen ions. The absorption mixture and micro-particles may be provided in an absorption reactor so as to be pumpable. Furthermore, a process for desorbing CO2 gas from an ion-rich aqueous mixture includes providing biocatalytic micro-particles and feeding the mixture to a desorption reactor, to promote transformation of the bicarbonate and hydrogen ions into CO2 gas and water.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption

24.

FORMULATION AND PROCESS FOR CO2 CAPTURE USING CARBONATES AND BIOCATALYSTS

      
Application Number CA2010001214
Publication Number 2011/014957
Status In Force
Filing Date 2010-08-04
Publication Date 2011-02-10
Owner CO2 SOLUTION INC. (Canada)
Inventor
  • Fradette, Sylvie
  • Gingras, Julie
  • Carley, Jonathan
  • Kelly, Glenn R.
  • Ceperkovic, Olivera

Abstract

A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and a carbonate compound. The process includes contacting a CO2- containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption. The biocatalyst improves absorption of the mixture comprising carbonate compounds and the carbonate compound promotes release of the bicarbonate ions from the ion-rich solution during desorption, producing a CO2 gas stream and an ion-depleted solution.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/86 - Catalytic processes

25.

FORMULATION AND PROCESS FOR CO2 CAPTURE USING AMINO ACIDS AND BIOCATALYSTS

      
Application Number CA2010001212
Publication Number 2011/014955
Status In Force
Filing Date 2010-08-04
Publication Date 2011-02-10
Owner CO2 SOLUTION INC. (Canada)
Inventor
  • Fradette, Sylvie
  • Gingras, Julie
  • Carley, Jonathan
  • Kelly, Glenn R.
  • Ceperkovic, Olivera

Abstract

A formulation and a process for CO2 capture, where a CO2-containing gas in contacted with water, biocatalyst and an amino acid compound, enabling the dissolution and transformation of the CO2 into bicarbonate ions and hydrogen ions, producing an ion-rich solution and a CO2-depleted gas. The amino acids may present slow absorption kinetics and having elevated stability such that absorption is enhanced in combination with the biocatalyst. The amino acid compound and the biocatalyst may be selected such that the active sites of the biocatalyst benefit from proton removal facilitated by the amino acid compounds, thus improving the CO2 absorption.

IPC Classes  ?

  • B01D 53/62 - Carbon oxides
  • B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
  • B01D 53/86 - Catalytic processes