42 - Scientific, technological and industrial services, research and design
Goods & Services
Software as a service featuring software for managing port operations, logistics, berthing, ship movements, and maritime safety management; providing on-line non-downloadable software for managing port operations, logistics, berthing, ship movements, and maritime safety management, and consultation services therefore
3.
Simultaneous operations coordination and planning system
A networked system shares operational information (tasks, positions, times, etc.) between dissimilar operators performing dissimilar operations in a same marine field. The shared information include associations (linkages and conflicts) that allows each operator to optimize its operations and complete tasks in a more efficient manner. As part of this system, a planning tool having a graphical user interface can be used to visualize plans at an operator (and nearby operators). Changes made to plans by one operator are shared with other operators via the system and illustrated in the interface at the other operators, thereby allowing the other operators to make their own respective operational changes in response.
A marine threat monitoring and defense system and method protects a target vessel in icy or other marine regions. The system uses communications, user interfaces, and data sources to identify marine obstacles (e.g., icebergs, ice floes, pack ice, etc.) near a target vessel performing set operations (e.g., a stationed structure performing drilling or production operations or a seismic survey vessel performing exploration operations with a planned route). The system monitors positions of these identified marine obstacles over time relative to the target vessel and predicts any potential threats. When a threat is predicted, the system plans deployment of support vessels, beacons, and the like to respond to the threat. For example, the system can direct a support vessel to divert the path or break up ice threatening the target vessel.
B63B 43/18 - Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collisionImproving safety of vessels, e.g. damage control, not otherwise provided for reducing collision damage
An analysis is proved to determine a candidate line for at least one vessel to traverse in a 3D seismic survey to achieve desired coverage either along a planned line or a new infill line. The analysis can also be used in a 4-D survey to determine the coverage of a candidate line relative to the baseline survey previously conducted. The analysis determines a coverage footprint of the common midpoint lines, at given offsets, so the user or automated system can select a candidate line to achieve the best coverage.
Operation of a marine vessel is disclosed. A marine vessel may be operated so as to determine that an end of a first sail line is approaching. Once determined, a turn path from the end of the first sail line to the beginning of a second sail line may be determined. The turn path may be determined based on at least one of current direction and current magnitude.
A networked system shares operational information (tasks, positions, times, etc.) between dissimilar operators performing dissimilar operations in a same marine field. The shared information include associations (linkages and conflicts) that allows each operator to optimize its operations and complete tasks in a more efficient manner. As part of this system, a planning tool having a graphical user interface can be used to visualize plans at an operator (and nearby operators). Changes made to plans by one operator are shared with other operators via the system and illustrated in the interface at the other operators, thereby allowing the other operators to make their own respective operational changes in response.
A marine threat monitoring and defense system and method protects a target vessel in icy or other marine regions. The system uses communications, user interfaces, and data sources to identify marine obstacles (e.g., icebergs, ice floes, pack ice, etc.) near a target vessel performing set operations (e.g., a stationed structure performing drilling or production operations or a seismic survey vessel performing exploration operations with a planned route). The system monitors positions of these identified marine obstacles over time relative to the target vessel and predicts any potential threats. When a threat is predicted, the system plans deployment of support vessels, beacons, and the like to respond to the threat. For example, the system can direct a support vessel to divert the path or break up ice threatening the target vessel.
B63B 43/18 - Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collisionImproving safety of vessels, e.g. damage control, not otherwise provided for reducing collision damage
B63J 99/00 - Subject matter not provided for in other groups of this subclass
9.
Method and apparatus for analyzing data in subsequent geophysical surveys
Methods and apparatuses are disclosed that assist in correlating subsequent geophysical surveys. In some embodiments, geophysical data may be generated including a first set of data from a monitor survey that is matched with a second set of data from a baseline survey. An attribute value may be generated for each datum in the first set of data, and the generated attribute value may be associated with the datum from the first set of data and at least one of a plurality of bins. In some embodiments, the attribute values may be based upon the geometric closeness of sources and receivers in the baseline and monitor surveys.
Methods and apparatuses are disclosed that assist in correlating subsequent geophysical surveys. In some embodiments, geophysical data may be generated including a first set of data from a monitor survey that is matched with a second set of data from a baseline survey. An attribute value may be generated for each datum in the first set of data and each attribute value generated may be stored with its corresponding datum. Then, the first set of data may be processed based on the stored attribute values. In some embodiments, the attribute values may be based upon the geometric closeness of sources and receivers in the baseline and monitor surveys.
A marine threat monitoring and defense system and method protects a target vessel in icy or other marine regions. The system uses communications, user interfaces, and data sources to identify marine obstacles (e.g., icebergs, ice floes, pack ice, etc.) near a target vessel performing set operations (e.g., a stationed structure performing drilling or production operations or a seismic survey vessel performing exploration operations with a planned route). The system monitors positions of these identified marine obstacles over time relative to the target vessel and predicts any potential threats. When a threat is predicted, the system plans deployment of support vessels, beacons, and the like to respond to the threat. For example, the system can direct a support vessel to divert the path or break up ice threatening the target vessel.
G01S 13/00 - Systems using the reflection or reradiation of radio waves, e.g. radar systemsAnalogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
G05D 1/02 - Control of position or course in two dimensions
12.
Method and apparatus for determining a location to acquire geophysical data
Methods, apparatuses, and systems are disclosed that assist in determining a location to acquire seismic data. In one embodiment, a method includes modeling acquisition of seismic data in a first location based on a first factor that impacts acquisition of seismic data in the first location. The method also includes generating a modeled attribute based on the modeling, and determining whether to acquire seismic data in the first location based on the modeled attribute or the first factor.