Disclosed is a contact lens the back surface of which has a shape such that the sagittal depth of a vertical meridian in the non-central surface differs from, and preferably is greater than, the sagittal depth of a vertical meridian in the non-central surface by an amount in the range 50μm to 500μm.
Disclosed is a stack of individually separable packages for a plurality of contact lenses, each individual lens being packaged between a first surface and a second surface, wherein the first surface is provided by a first one of the individually separable packages and the second surface is provided by a second one of the individually separable packages.
B65D 71/50 - Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottlesBales of material comprising a plurality of articles held together only partially by packaging elements formed otherwise than by folding a blank
B65D 81/22 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient in moist conditions or immersed in liquids
B65D 83/08 - Containers or packages with special means for dispensing contents for dispensing thin flat articles in succession
B65D 21/02 - Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together
B65B 55/16 - Sterilising contents prior to, or during, packaging by irradiation
B65D 83/04 - Containers or packages with special means for dispensing contents for dispensing annular, disc-shaped, spherical or like small articles, e.g. tablets or pills
The invention relates to a method of making a contact lens, the method comprising identifying the eccentricity of a lens produced in a mould half, lathing the lens and adjusting the path of the lathe to take account of the eccentricity, and a computer programme for controlling the lathe.
Disclosed is a stack of individually separable packages for a plurality of contact lenses, each individual lens being packaged between a first surface and a second surface, wherein the first surface is provided by a first one of the individually separable packages and the second surface is provided by a second one of the individually separable packages.
Disclosed is a stack of individually separable packages for a plurality of contact lenses, each individual lens being packaged between a first surface and a second surface, wherein the first surface is provided by a first one of the individually separable packages and the second surface is provided by a second one of the individually separable packages.
B65D 71/50 - Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottlesBales of material comprising a plurality of articles held together only partially by packaging elements formed otherwise than by folding a blank
B65D 81/22 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient in moist conditions or immersed in liquids
B65D 83/08 - Containers or packages with special means for dispensing contents for dispensing thin flat articles in succession
B65D 21/02 - Containers specially shaped, or provided with fittings or attachments, to facilitate nesting, stacking, or joining together
B65B 55/16 - Sterilising contents prior to, or during, packaging by irradiation
Disclosed is a device adapted to measure intraocular pressure comprising: a corneal contact lens having a pressure sensor mounted in a recess or cavity in the contact lens, and wherein the contact lens has a back surface which is formed so as to protrude in a desired portion beyond the profile of the adjacent part of the lens and thus to press against the cornea, which protruding portion experiences a reactive deformation which is detected directly or indirectly by the pressure sensor.
A61B 3/16 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for measuring intraocular pressure, e.g. tonometers
Disclosed is a method of determining an appropriately shaped soft contact lens for a subject with an irregular cornea, the method comprising the steps of: inferring or deducing the profile of the cornea over at least a portion thereof: selecting a first choice fitting lens, the selection being based on the profile of the cornea obtained in the preceding step; assessing the fit of the contact lens to the cornea, by investigating each of the following parameters; (i) translational movement of the lens on eye; (ii) rotation of the lens on eye; (iii) centration of the lens on eye; (iv) the perceived comfort of the lens for the subject; (v) the visual acuity of the subject when wearing the lens; and adjusting the choice of fitting lens, if required, according to the assessment and reiterating until a desired fit of lens to the cornea has been obtained.
Disclosed is a device adapted to measure intraocular pressure comprising: a corneal contact lens having a pressure sensor mounted in a recess or cavity in the contact lens, and wherein the contact lens has a back surface which is formed so as to protrude in a desired portion beyond the profile of the adjacent part of the lens and thus to press against the cornea, which protruding portion experiences a reactive deformation which is detected directly or indirectly by the pressure sensor.
A61B 3/16 - Objective types, i.e. instruments for examining the eyes independent of the patients perceptions or reactions for measuring intraocular pressure, e.g. tonometers
wherein the lens is to be made of a substance having a Young's modulus in the range 0.08 to 0.40 MPa, and wherein the junction thickness of the lens is in the range 0.15-0.40 mm.
Disclosed is a method of designing a soft contact lens to correct a visual defect in the eye of a human subject caused by abnormal corneal topography, the method comprising the steps of: (a) defining the posterior topography of the lens over at least a central optic zone to conform to that of the subject's cornea as previously determined; (b) defining the posterior topography of the lens over an outer portion to provide a flatter curve than that of the cornea, whilst retaining the previously defined topography over the central optic zone of the lens; (c) using empirical or theoretical data to predict or model the path of light rays passing from the cornea into the contact lens, and thereby adapting the topography of the anterior surface of the contact lens, over at least the central optic zone, to cause the light rays passing through the lens to conform to a desired wavefront (typically planar); and (d) defining the anterior surface of the contact lens over the outer portion to join the anterior optic zone to the posterior outer portion, the anterior surface over the outer portion conveniently comprising one or more thickened regions to confer rotational and/or translational stability on the lens in ocula.
Disclosed is a method of designing a soft contact lens, the method comprising the steps of: (a) measuring or defining a wavefront generated by passage of light through a selected eye and using the wavefront to generate a computer model of the optical characteristics of the selected eye; (b) measuring or defining the topography of the cornea of the selected eye; (c) incorporating into the computer model a soft contact lens, the posterior surface topography of which is defined by the topography of the cornea, offset by an arbitrary amount intended to represent the tear layer thickness of the selected eye, said lens having a defined thickness at a selected locus on the anterior surface; (d) calculating a desired topography for the anterior surface of the lens such that the wavefront will be corrected to assume a desired pattern (for example, preferably planar, the plane of which is perpendicular to the optical axis of the lens) when passing through the computer model eye/lens combination; (e) remodeling the lens off-eye by adapting the posterior topography of the lens to a desired posterior topography to be manufactured; and (f) recalculating a modified anterior topography required as a result of adapting the posterior topography, the modified anterior topography being intended to preserve the desired wavefront pattern defined in (d) when the lens is in situ on the selected eye.