A wireless charging system for recharging batteries in a medical environment includes a charging station. The charging station may include an opening to receive batteries and an outlet for dispensing charged batteries, wherein the outlet comprises a slot in a front cover. The charging station also includes a wireless power transmitter having a transmitting antenna.
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
H01F 27/36 - Electric or magnetic shields or screens
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
A multifunctional visualization instrument is provided that, in certain embodiments, includes a body having a proximal end and a distal end. The multifunctional visualization instrument includes a display screen on the body and a camera stick at the distal end of the body and comprising an arm and a camera. The arm of the camera stick is sized to fit within a channel of a removable laryngoscope blade. The multifunctional visualization instrument includes a port on a surface of the laryngoscope, configured to mate with an introducer and a steering input for steering the introducer, displayed on the display screen simultaneously with an image of the patient captured by the camera.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/012 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor characterised by internal passages or accessories therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A laryngoscope system includes a body having a handle and an arm, a camera mounted on a distal end of the arm, and a removable blade having a channel sized to fit over the arm to couple the blade to the body. The blade includes a magnet, and a sensor disposed in the body is responsive to the magnet. The laryngoscope system also includes a processor disposed in the body and programmed to enable at least one monitoring function in response to a signal from the sensor.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 1/06 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements
A61B 90/90 - Identification means for patients or instruments, e.g. tags
A61B 90/98 - Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
G01R 31/36 - Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
G01R 31/382 - Arrangements for monitoring battery or accumulator variables, e.g. SoC
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
H01M 50/209 - Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
H01M 50/24 - MountingsSecondary casings or framesRacks, modules or packsSuspension devicesShock absorbersTransport or carrying devicesHolders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
A steerable endoscope system is provided with an augmented view. An augmented reality display includes a rendered model of an anatomical structure corresponding to a patient anatomy pinned in the field of view, an endoscope marker moving through the virtual model, and an image from an endoscope at a location within the patient anatomy.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A wireless charging system for recharging batteries in a medical environment includes a charging station. The charging station may include an opening to receive batteries and an outlet for dispensing charged batteries, wherein the outlet comprises a slot in a front cover. The charging station also includes a wireless power transmitter having a transmitting antenna.
H01M 10/46 - Accumulators structurally combined with charging apparatus
H01F 27/36 - Electric or magnetic shields or screens
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A steerable endoscope is provided with active steering control. An endoscope includes a flexible tubular body with first and second articulating segments, and a camera. In an embodiment, the endoscope includes an orientation sensor. A controller for the endoscope performs an automated analysis of an alignment between the motion axis of the endoscope and the viewing axis of the camera, and actively steers the endoscope to improve the alignment.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A multifunctional laryngoscope is provided that includes a handle comprising a proximal end and a distal end and a display screen on the handle. The laryngoscope includes a laryngoscope camera at the distal end of the handle and an introducer comprising an orientation sensor at a distal end of the introducer. The laryngoscope includes a processor programmed to execute instructions for receiving from a steering input a steering command in a first reference frame, and mapping the steering command to a second reference frame oriented to the distal end of the introducer based on an orientation signal from the orientation sensor.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
10.
MULTIFUNCTIONAL VISUALIZATION INSTRUMENT WITH ORIENTATION CONTROL
A multifunctional laryngoscope is provided that includes a handle comprising a proximal end and a distal end and a display screen on the handle. The laryngoscope includes a laryngoscope camera at the distal end of the handle and an introducer comprising an orientation sensor at a distal end of the introducer. The laryngoscope includes a processor programmed to execute instructions for receiving from a steering input a steering command in a first reference frame, and mapping the steering command to a second reference frame oriented to the distal end of the introducer based on an orientation signal from the orientation sensor.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
Surgical apparatus and instruments; surgical and medical apparatus and instruments for use in general surgery; surgical devices, namely, vessel sealing systems comprised of electrosurgical generators, hand pieces, sealers and accessories therefor
A wireless charging system for recharging batteries in a medical environment includes a charging station. The charging station may include an opening to receive batteries and an outlet for dispensing charged batteries, wherein the outlet comprises a slot in a front cover. The charging station also includes a wireless power transmitter having a transmitting antenna.
H01M 10/46 - Accumulators structurally combined with charging apparatus
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H01F 27/36 - Electric or magnetic shields or screens
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
01 - Chemical and biological materials for industrial, scientific and agricultural use
10 - Medical apparatus and instruments
Goods & Services
Coating compounds for surgical sutures; chemicals used in industry, science and photography, as well as in agriculture, horticulture and forestry; unprocessed artificial resins, unprocessed plastics; manures; fire-extinguishing compositions; tempering and soldering preparations; chemical substances for preserving foodstuffs; tanning substances; adhesives used in industry. Surgical, medical, dental and veterinary apparatus and instruments, artificial limbs, eyes and teeth; orthopedic articles; suture materials.
14.
Movable handle for endoscopic vessel sealer and divider
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
G01R 31/382 - Arrangements for monitoring battery or accumulator variables, e.g. SoC
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
H01M 50/24 - MountingsSecondary casings or framesRacks, modules or packsSuspension devicesShock absorbersTransport or carrying devicesHolders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
H01M 50/209 - Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
G01R 31/36 - Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
17.
Systems and methods for calibrating and correcting a speckle contrast flowmeter
Disclosed herein are systems, methods, and devices for calibrating contrast measurements from laser speckle imaging systems to accurately determine unknown particle motion characteristics, such as flow rate. The calibration stores to memory calibration data, which may include a set of measurements from samples with known particle characteristics and/or estimates of noise, including the effects on contrast arising from undesired signals unrelated to the unknown particle motion characteristics. The calibration data may be accessed and used to correct an empirical measurement of contrast and/or interpolate a value of the unknown particle motion characteristic. The system may include a light source, photodetector, processor, and memory, which can be combined into a single device, such as a wearable device, for providing calibrated flow measurements. The device may be used, for example, to measure blood flow, cardiac output, and heart rate, and can be used to amplify the pulsatile signal.
Disclosed is a video laryngoscope having a body, an insertion section extending from the body generally parallel to a median plane of the laryngoscope extending through the body, and a display screen assembly extending from the body generally perpendicular to the median plane, the body having a grip portion intermediate the display screen assembly and the insertion section. The display screen assembly, including a display screen, extends laterally from the body and the inner edge of the display screen falls within the lateral extent of the body. The display screen may be adjustable about an axis.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A laryngoscope system includes a body having a handle and an arm, a camera mounted on a distal end of the arm, and a removable blade having a channel sized to fit over the arm to couple the blade to the body. The blade includes a magnet, and a sensor disposed in the body is responsive to the magnet. The laryngoscope system also includes a processor disposed in the body and programmed to enable at least one monitoring function in response to a signal from the sensor.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 1/06 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements
A microwave ablation device includes a cable assembly, a feedline, and a transmission line. The cable assembly is configured to connect to an energy source. The feedline is in electrical communication with the cable assembly and includes a first temperature sensor. The first temperature sensor is disposed at a first axial location along a length of the feedline and is configured to sense a temperature at the first axial location. The first temperature sensor extends along the length of the feedline. The transmission line extends from the first temperature sensor and is disposed parallel and in contact with an outer conductor of the feedline.
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
A wireless charging system for recharging batteries in a medical environment includes a charging station. The charging station may include an opening to receive batteries and an outlet for dispensing charged batteries, wherein the outlet comprises a slot in a front cover. The charging station also includes a wireless power transmitter having a transmitting antenna.
H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
H02J 50/40 - Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
H02J 50/70 - Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
H01F 27/36 - Electric or magnetic shields or screens
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Training and educational services, namely, presentations and individual in-person training for treating diabetes; educational services, namely, health coaching services for patients in the field of diabetes. Consulting services in the field of medical and scientific research; providing medical and scientific research information in the field of diabetes care and consultancy. Healthcare services, namely, disease management programs for people with diabetes; medical clinics; consulting services in the field of disease management.
23.
Determining blood flow using laser speckle imaging
In some examples, a system includes processing circuitry configured to generate a laser speckle contrast signal based on a received signal indicative of detected light, wherein the detected light is scatted by tissue from a coherent light source. The processing circuitry may also determine, from the laser speckle contrast signal, a flow value and determine, from the laser speckle contrast signal, a waveform metric. Based on the flow value and the waveform metric, the processing circuitry may determine a blood flow metric for the tissue and output a representation of the blood flow metric.
A61B 5/022 - Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skinOphthaldynamometers
A61B 5/0295 - Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
A61B 5/00 - Measuring for diagnostic purposes Identification of persons
A steerable endoscope system is provided with an augmented view. An augmented reality display includes a rendered model of an anatomical structure corresponding to a patient anatomy pinned in the field of view, an endoscope marker moving through the virtual model, and an image from an endoscope at a location within the patient anatomy.
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 90/50 - Supports for surgical instruments, e.g. articulated arms
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
An endoscope system is provided with a graphical orientation indicator. An endoscope includes a flexible tubular body with a steerable distal end having a camera. A controller for the endoscope presents a user interface that displays a view from the camera and a graphical orientation indicator visually representing an orientation of the distal end of the endoscope.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
26.
LARYNGOSCOPE WITH PHYSIOLOGICAL PARAMETER INDICATOR
A laryngoscope system includes a monitor having communication circuitry and that communicates physiological parameter information to communication circuitry of a paired laryngoscope. The paired laryngoscope includes a camera and a display configured to display image data from the camera. A processor of the laryngoscope is programmed to generate instructions to provide a physiological parameter indicator via the laryngoscope based on the received physiological parameter information from the monitor.
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value using optical sensors, e.g. spectral photometrical oximeters
An endoscope system is provided with a graphical orientation indicator. An endoscope includes a flexible tubular body with a steerable distal end having a camera. A controller for the endoscope presents a user interface that displays a view from the camera and a graphical orientation indicator visually representing an orientation of the distal end of the endoscope.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 1/018 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
A battery-powered, modular surgical device comprising an electrically powered surgical instrument that requires a pre-determined minimum amount of electrical energy to complete a surgical procedure, and a power module assembly that has a battery that powers the surgical instrument and has a current state of electrical charge, and a control circuit that is electrically coupled to the battery and the surgical instrument and has a memory and a microprocessor. The microprocessor determines the current state of electrical charge of the battery, compares the current state of electrical charge to the pre-determined minimum amount of electrical energy, permits the battery to discharge if the current state of electrical charge is above the pre-determined minimum amount of electrical energy, and maintains the battery in a non-discharge state if the current state of electrical charge is below the pre-determined minimum amount of electrical energy.
B06B 1/02 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy
A61B 50/20 - Holders specially adapted for surgical or diagnostic appliances or instruments
A61B 17/00 - Surgical instruments, devices or methods
A61B 50/30 - Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
A steerable endoscope is provided with active steering control. An endoscope includes a flexible tubular body with first and second articulating segments, and a camera. In an embodiment, the endoscope includes an orientation sensor. A controller for the endoscope performs an automated analysis of an alignment between the motion axis of the endoscope and the viewing axis of the camera, and actively steers the endoscope to improve the alignment.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 34/20 - Surgical navigation systemsDevices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 5/06 - Devices, other than using radiation, for detecting or locating foreign bodies
A steerable endoscope is provided with active steering control. An endoscope includes a flexible tubular body with first and second articulating segments, and a camera. In an embodiment, the endoscope includes an orientation sensor. A controller for the endoscope performs an automated analysis of an alignment between the motion axis of the endoscope and the viewing axis of the camera, and actively steers the endoscope to improve the alignment.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A multifunctional visualization instrument is provided that, in certain embodiments, includes a body having a proximal end and a distal end. The multifunctional visualization instrument includes a display screen on the body and a camera stick at the distal end of the body and comprising an arm and a camera. The arm of the camera stick is sized to fit within a channel of a removable laryngoscope blade. The multifunctional visualization instrument includes a port on a surface of the laryngoscope, configured to mate with an introducer and a steering input for steering the introducer, displayed on the display screen simultaneously with an image of the patient captured by the camera.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/012 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor characterised by internal passages or accessories therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
Disclosed is a laryngoscope insertion section having a curved superior surface, a curved inferior surface, and a channel extending from the proximal end the channel having an inferior surface with a greater curvature than the curvature of the inferior surface. The insertion section is compatible with laryngoscope hardware optimized for indirect viewing, yet enables direct viewing. The distance between the inferior and superior surfaces is at a maximum within the intermediate portion, and enables the dimensions of the proximal and distal portions to be minimized. Thus, the intermediate portion, located in the patient's oral cavity in use, is provided with greatest depth and strength where the greatest forces are received, whereas the distal and proximal portions are of reduced dimensions to minimize trauma to the patient's airway and mouth areas, respectively. Structural features providing the insertion section with improved strength, with a minimum of material and size, are also disclosed.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
The present disclosure is directed to a robotic surgical system and a corresponding method. The system includes at least one robot arm and a radiation source coupled to the robot arm. The system also includes a surgical table having a digital imaging receiver configured to output an electrical signal based on radiation received from the radiation source. A controller having a processor and a memory is configured to receive the electrical signal and generate an initial image of a patient on the surgical table based on the electrical signal. The controller transforms the initial image to a transformed image based on an orientation of the radiation source.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A multifunctional laryngoscope is provided that includes a handle comprising a proximal end and a distal end and a display screen on the handle. The laryngoscope includes a laryngoscope camera at the distal end of the handle and connects to an introducer comprising an orientation sensor at a distal end of the introducer. The laryngoscope includes a processor programmed to execute instructions for receiving from a steering input a steering command in a first reference frame, and mapping the steering command to a second reference frame oriented to the distal end of the introducer based on an orientation signal from the orientation sensor.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
35.
Multifunctional visualization instrument with orientation control
A multifunctional laryngoscope is provided that includes a handle comprising a proximal end and a distal end and a display screen on the handle. The laryngoscope includes a laryngoscope camera at the distal end of the handle and connects to an introducer comprising an orientation sensor at a distal end of the introducer. The laryngoscope includes a processor programmed to execute instructions for receiving from a steering input a steering command in a first reference frame, and mapping the steering command to a second reference frame oriented to the distal end of the introducer based on an orientation signal from the orientation sensor.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A catheter is provided including a first lumen and a second lumen. A first member is disposed for relative movement within the first lumen and defines a cavity, A second member is disposed for relative movement within the second lumen. The cavity of the first member is configured for disposal of the second member. The catheter may include an elongated tubular body that includes the first lumen and the second lumen. The first member may have a distal portion that extends beyond the distal end of the body. The distal portion may include the cavity. The cavity may be defined by a member lumen. The first and second members may include tubular stylettes. The second member may include a guidewire.
A video laryngoscope and elongate laryngoscope insertion section for a video laryngoscope, comprising a viewing port through which an imaging device within the insertion section can obtain images of a larynx, the insertion section extending between a distal end for insertion into a subject and an opposite proximal end, and having an inferior surface and an opposed superior surface, wherein the insertion section comprises a proximal region where the insertion section extends through a subject's teeth in use, a distal region extending to the distal end and an intermediate region therebetween, wherein the inferior surface of the insertion section comprises or consists of a curved region which extends from the proximal region through the intermediate region to the distal region, wherein the curved region of the inferior surface is continuously longitudinally curved along the length of the longitudinally curved region and wherein the longitudinal curvature of the curved region of the inferior surface varies in the intermediate region. Markings on an elongate laryngoscope insertion can be used to monitor depth of insertion and to indicate a path by which an endotracheal tube should be inserted.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
Disclosed is a video laryngoscope having a body, an insertion section extending from the body generally parallel to a median plane of the laryngoscope extending through the body, and a display screen assembly extending from the body generally perpendicular to the median plane, the body comprising a grip portion intermediate the display screen assembly and the insertion section. The display screen assembly, comprising a display screen, extends laterally from the body and the inner edge of the display screen falls within the lateral extent of the body. The grip portion is also of a minimum size to allow an adult to grip the laryngoscope, the hand abutting the screen assembly.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A laryngoscope insertion section comprising a tube guide including at least an inferior tube guiding member and a superior tube guiding member, wherein the thickness of the insertion section in a first region is less than the external diameter of the largest diameter endotracheal tube in an operating range of endotracheal tube sizes plus the thickness of the inferior tube guiding member plus the thickness of the superior tube guiding member. Typically, the insertion section comprises an elongate member and the tube guide is lateral of the elongate member. Typically, an endotracheal tube is retained within the tube guide in flexural tension.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
G01R 31/36 - Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
G01R 31/382 - Arrangements for monitoring battery or accumulator variables, e.g. SoC
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
H01M 50/24 - MountingsSecondary casings or framesRacks, modules or packsSuspension devicesShock absorbersTransport or carrying devicesHolders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
H01M 50/209 - Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
A multifunctional visualization instrument is provided that, in certain embodiments, includes a body having a proximal end and a distal end. The multifunctional visualization instrument includes a display screen on the body and a camera stick at the distal end of the body and comprising an arm and a camera. The arm of the camera stick is sized to fit within a channel of a removable laryngoscope blade. The multifunctional visualization instrument includes a port on a surface of the laryngoscope, configured to mate with an introducer and a steering input for steering the introducer, displayed on the display screen simultaneously with an image of the patient captured by the camera.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
44.
Laryngoscopes, laryngoscope arms and methods of manufacture
A video laryngoscope has an arm comprising a video camera, at least one electrical conductor extending to the video camera, an elongate electrical conductor retaining member retaining the electrical conductor and an overmoulding extending around the elongate cable retaining member and having a smooth outer surface has the benefit of allowing the laryngoscope arm to be readily cleaned or sterilised, and minimises the number of features, such as seams or joints, where dirt or infectious bodies may be retained.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A multifunctional visualization instrument is provided that, in certain embodiments, includes a body having a proximal end and a distal end. The multifunctional visualization instrument includes a display screen on the body and a camera stick at the distal end of the body and comprising an arm and a camera. The arm of the camera stick is sized to fit within a channel of a removable laryngoscope blade. The multifunctional visualization instrument includes a port on a surface of the laryngoscope, configured to mate with an introducer and a steering input for steering the introducer, displayed on the display screen simultaneously with an image of the patient captured by the camera.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/012 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor characterised by internal passages or accessories therefor
A laryngoscope system (10) includes a body (14) having a handle (20) and an arm (24), a camera (26) mounted on a distal end of the arm (24), and a removable blade (28) having a channel (128) sized to fit over the arm (24) to couple the blade (28) to the body (14). The blade (28) includes a magnet (32), and a sensor (34) disposed in the body (14) is responsive to the magnet (32). The laryngoscope system (10) also includes a processor (80) disposed in the body (14) and programmed to enable at least one monitoring function in response to a signal from the sensor (34).
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A laryngoscope system includes a body having a handle and an arm, a camera mounted on a distal end of the arm, and a removable blade having a channel sized to fit over the arm to couple the blade to the body. The blade includes a magnet, and a sensor disposed in the body is responsive to the magnet. The laryngoscope system also includes a processor disposed in the body and programmed to enable at least one monitoring function in response to a signal from the sensor.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A61B 1/06 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements
A61B 90/98 - Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
A61B 90/90 - Identification means for patients or instruments, e.g. tags
A bipolar forceps for sealing tissue includes an elongated shaft having opposing jaw members at a distal end thereof, each of the jaw members including an electrically conductive sealing surface. The jaw members are movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The bipolar forceps is connected to a source of electrical energy such that the jaw members are capable of conducting bipolar energy through tissue grasped therebetween to effect a seal. The distance between the electrically conductive sealing surfaces when tissue is held therebetween is adjusted based upon a sensed pre-surgical condition during activation. A bipolar forceps for sealing tissue includes an elongated shaft having opposing jaw members at a distal end thereof, each of the jaw members including an electrically conductive sealing surface. The jaw members are movable relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The bipolar forceps is connected to a source of electrical energy such that the jaw members are capable of conducting bipolar energy through tissue grasped therebetween to affect a seal. The distance between the electrically conductive sealing surfaces when tissue is held therebetween is adjusted based upon a sensed pre-surgical condition during activation.
A61B 17/22 - Implements for squeezing-off ulcers or the like on inner organs of the bodyImplements for scraping-out cavities of body organs, e.g. bonesSurgical instruments, devices or methods for invasive removal or destruction of calculus using mechanical vibrationsSurgical instruments, devices or methods for removing obstructions in blood vessels, not otherwise provided for
Devices, systems, and methods are disclosed for improved laser speckle imaging of samples, such as vascularized tissue, for the determination of the rate of movement of light scattering particles within the sample. The system includes a structure adjoining a light source and a photo-sensitive detector. The structure can be positioned adjacent the sample (e.g., coupled to the sample) and configured to orient the light source and detector relative the sample such that surface reflections, including specular reflections and diffuse reflections, are discouraged from entering the detection field of the detector. The separation distance along the structure between the light source and the detector may further enable selective depth penetration into the sample and biased sampling of multiply scattered photons. The system includes an operably coupled processor programmed to derive contrast metrics from the detector and to relate the contrast metrics to a rate of movement of the light scattering particles.
Surgical apparatus and instruments, not for use in the dental field; medical apparatus and instruments, not for use in the dental field; veterinary apparatus and instruments; suture materials.
52.
Perfusion assessment using transmission laser speckle imaging
Methods and apparatus for measuring perfusion using transmission laser speckle imaging are provided. The apparatus comprises a coherent light source and a detector configured to measure transmitted light associated with an unfocused image at one or more locations. The coherent light source and detector are positioned in a transmission geometry. The apparatus further comprises means for securing the coherent light source and the detector to the tissue sample in a fixed transmission geometry relative to the tissue sample. The apparatus may further comprise at least one processor to receive information from the detector and process detected variations in transmitted light intensity to determine a single metric of perfusion. The method may comprise the steps transilluminating a tissue sample with coherent light, recording spatial and/or temporal variations in the transmitted light signal, determining speckle contrast value(s), and computing a metric of perfusion.
Disclosed is a video laryngoscope having a body, an insertion section extending from the body generally parallel to a median plane of the laryngoscope extending through the body, and a display screen assembly extending from the body generally perpendicular to the median plane, the body comprising a grip portion intermediate the display screen assembly and the insertion section. The display screen assembly, comprising a display screen, extends laterally from the body and the inner edge of the display screen falls within the lateral extent of the body. The grip portion is also of a minimum size to allow an adult to grip the laryngoscope, the hand abutting the screen assembly.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
A catheter is provided including a first lumen and a second lumen. A first member is disposed for relative movement within the first lumen and defines a cavity. A second member is disposed for relative movement within the second lumen. The cavity of the first member is configured for disposal of the second member. The catheter may include an elongated tubular body that includes the first lumen and the second lumen. The first member may have a distal portion that extends beyond the distal end of the body. The distal portion may include the cavity. The cavity may be defined by a member lumen. The first and second members may include tubular stylettes. The second member may include a guidewire.
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
G01R 31/36 - Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
H01M 2/10 - Mountings; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
Disclosed is a laryngoscope insertion section having a curved superior surface and a curved inferior surface, and a channel extending from the proximal end the channel having an inferior internal surface with a greater curvature than the curvature of the inferior surface. The insertion section is compatible with laryngoscope hardware optimised for indirect viewing, yet enables direct viewing. Additionally, the distance between the inferior and superior surfaces is at a maximum within the intermediate portion, and enables the dimensions of the proximal and distal portions to be minimized. Thus, the intermediate portion, which is located in the patient's oral cavity in use, is provided with greatest depth and therefore strength where the greatest forces are received, whereas the distal and proximal portions are of reduced dimensions to as to minimize trauma to the patient's airway and mouth areas, respectively, in use. Further structural features providing the insertion section with improved strength, with a minimum of material and size, are also disclosed.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
An ultrasonic surgical device includes a handle body, an ultrasonic waveguide engaged with the handle body and extending distally therefrom and including a proximal end portion disposed at the handle body, an ultrasonic generator releasably engagable with the handle body and including a first set of contacts, and an ultrasonic transducer releasably engagable with the handle body independently of the ultrasonic generator. The ultrasonic transducer includes a distal end portion configured to engage the proximal end portion of the ultrasonic waveguide and a second set of contacts configured to electrically couple to the first set of contacts.
A circuit for generating a radio-frequency signal for a surgical device is disclosed. The circuit has a voltage regulator that supplies direct current (DC) voltage, a first MOSFET, a second MOSFET, and a MOSFET driver. The MOSFET driver receives the DC voltage supplied from the voltage regulator and has a local oscillator. The local oscillator switches the first MOSFET and the second MOSFET on and off at a frequency generated by the local oscillator. The circuit further includes a transformer connected to the first and second MOSFETs, having a center tap and a main voltage applied at the center tap, and providing an alternating current (AC) output.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 17/00 - Surgical instruments, devices or methods
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A battery-powered, modular surgical device includes an electrically powered surgical instrument operable to surgically interface with human tissue and a handle assembly connected to the surgical instrument. The handle assembly has a removable hand grip and a handle body. The hand grip is shaped to permit handling of the surgical device by one hand of an operator, has an upper portion and a cordless internal battery assembly that powers the surgical instrument. The internal battery assembly has at least one energy storage cell. The handle body is operable to removably connect at least the upper portion of the hand grip thereto and create an aseptic seal around at least a portion of the hand grip when connected thereto and electrically couple the internal battery assembly of the hand grip to the surgical instrument and thereby power the surgical instrument for interfacing surgically with the human tissue.
An ultrasonic surgical assembly includes an ultrasonic transducer operable to convert a received motional current into a movement of a cutting blade of an ultrasonic waveguide, a measurement circuit connected in a parallel configuration with the ultrasonic transducer, a variable power source operable to supply current through a set of connection points to the parallel configuration and thereby create the motional current in the ultrasonic transducer, and a current controller operable to regulate the motional current by varying an output of the variable power source, thereby maintaining a substantially constant rate of movement of the cutting blade across a variety of cutting loads.
Devices, systems, and methods are disclosed for improved laser speckle imaging of samples, such as vascularized tissue, for the determination of the rate of movement of light scattering particles within the sample. The system includes a structure adjoining a light source and a photo-sensitive detector. The structure can be positioned adjacent the sample (e.g., coupled to the sample) and configured to orient the light source and detector relative the sample such that surface reflections, including specular reflections and diffuse reflections, are discouraged from entering the detection field of the detector. The separation distance along the structure between the light source and the detector may further enable selective depth penetration into the sample and biased sampling of multiply scattered photons. The system includes an operably coupled processor programmed to derive contrast metrics from the detector and to relate the contrast metrics to a rate of movement of the light scattering particles.
A laryngoscope blade which improves the transmission of light from the laryngoscope to enhance the amount of light reflected from an area of interest in a patient. The laryngoscope blade has a channel which extends at least partially though the blade and receives a light source. The channel has a substantially transparent end face which is situated towards the blade end and has an optical clement adapted to reduce the ambient light signal from the light source in the channel.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A61B 1/06 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements
A61B 1/07 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
A laryngoscope insertion section comprising a tube guide including at least an inferior tube guiding member and a superior tube guiding member, wherein the thickness of the insertion section in a first region is less than the external diameter of the largest diameter endotracheal tube in an operating range of endotracheal tube sizes plus the thickness of the inferior tube guiding member plus the thickness of the superior tube guiding member. Typically, the insertion section comprises an elongate member and the tube guide is lateral of the elongate member. Typically, an endotracheal tube is retained within the tube guide in flexural tension.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
01 - Chemical and biological materials for industrial, scientific and agricultural use
10 - Medical apparatus and instruments
Goods & Services
Coating systems for surgical sutures; chemical preparations for coating surgical sutures; plastics and polymer coatings for suture materials. Surgical, medical and dental apparatus and instruments and parts and fittings therefor; suture materials; surgical sutures; sutures, staples, clips and suture reinforcement materials; needles for medical purposes; wound closure products and devices and accessories therefor.
The disclosed technology is directed to a RF power generator and feedback control system used to regulate the electrical power delivered to a cutting filament (i.e., a cutting electrode) of an electrosurgical instrument. The electrosurgical instrument uses the delivered energy to form a cutting arc for ablating a tissue mass to access a target tissue therein. The instrument forms a basket-like receptacle around the target tissue to excise the target tissue from the ablated tissue mass. As the instrument forms the receptacle, the length of exposed filament ablating the tissue changes. To this end, the RF power generator described herein is configured to vary the total power delivered during the deployment of the instrument based on a measurement of output power derived from a differential phase angle between a current sense output and a voltage sense output, in some embodiments, to maintain a uniform power density along the length of exposed filament.
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 90/90 - Identification means for patients or instruments, e.g. tags
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
A61B 10/02 - Instruments for taking cell samples or for biopsy
A61B 17/221 - Calculus gripping devices in the form of loops or baskets
A61B 18/04 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
A disposable ultrasonic surgical handle includes a disposable handle body defining a battery-holding compartment shaped to receive a battery therein and operable to couple a proximal end of an ultrasonic waveguide to an ultrasonic transducer therethrough. The body has a transducer dock exposed to the environment and interchangeably housing the transducer and a waveguide attachment dock shaped to align and attach the proximal end of the waveguide to the transducer and hold them at the body when the respectively docked at the transducer and attachment docks. A disposable driving-wave generation circuit in the handle body electrically contacts the battery and the transducer when the battery and the transducer are disposed respectively in the battery-holding compartment and the transducer dock. The circuit generates an output waveform sufficient to cause ultrasonic movement along the waveguide by exciting the transducer when the transducer is coupled to the waveguide.
A61B 17/128 - Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord for applying or removing clamps or clips
An end effector assembly for a forceps includes jaws, a cutting assembly, and at least one cam assembly. At least one jaw is moveable relative to the other about a pivot between open and closed positions for grasping tissue. At least one jaw includes a control trough that extends therealong. The pivot has first and second pivot bosses defining a pivot hole therebetween. The cutting assembly includes a blade and blade control portion, and defines a longitudinal axis through the blade and the control portion. The control portion slidably translates through the pivot hole defined between the pivot bosses to allow selective advancement thereof through the trough. The blade is disposed distally of the pivot and extends farther from the axis than an outer surface of the control portion. The cam assembly is coupled to the moveable jaw and is actuatable to move the movable jaw between the positions.
A61B 17/00 - Surgical instruments, devices or methods
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
72.
ELECTROSURGICAL METHOD AND APPARATUS WITH VARYING STIFFNESS CAPTURE COMPONENTS
An electrosurgical apparatus and method for cutting and resecting a tissue volume is described. The apparatus includes one or more electrosurgical filaments and capture components deployable by forward extension at or near a forward tip of an elongated shaft of the apparatus to form an elliptical path that defines, with the other capture components, a spheroidal receptacle configured to surround a tissue volume for resection. The elliptical path is formable by a first extension followed by a second extension, said first extension having a first axial component and a radial expansion component, and said second extension having a second axial component and a radial contraction component, where at least one of the capture components is of varying stiffness.
The disclosed technology is directed to a RF power generator and feedback control system used to regulate the electrical power delivered to a cutting filament (i.e., a cutting electrode) of an electrosurgical instrument. The electrosurgical instrument uses the delivered energy to form a cutting arc for ablating a tissue mass to access a target tissue therein. The instrument forms a basket-like receptacle around the target tissue to excise the target tissue from the ablated tissue mass. As the instrument forms the receptacle, the length of exposed filament ablating the tissue changes. To this end, the RF power generator described herein is configured to vary the total power delivered during the deployment of the instrument based on a measurement of output power derived from a differential phase angle between a current sense output and a voltage sense output, in some embodiments, to maintain a uniform power density along the length of exposed filament.
A control system for use with an electrosurgical generator which delivers electrosurgical energy to tissue has a control module. The module includes a processor executing an algorithm. The algorithm has the steps of determining a sensed voltage value corresponding to a sensed voltage signal output by the electrosurgical generator and determining a sensed current value corresponding to a sensed current signal output by the electrosurgical generator. The algorithm has the steps of determining phase information corresponding to a phase shift between the voltage signal and the current signal and determining a characteristic related to the electrosurgical energy delivered to the tissue using the phase information, the sensed voltage value and the sensed current value.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A laryngoscope insertion section for a laryngoscope, which is typically a video laryngoscope, includes a lateral tube guide configured to retain an endotracheal tube in a plane. A viewing port for a camera or other image collector is laterally displaced from the plane of the endotracheal tube. The said plane of the endotracheal tube is aligned substantially in the same plane as a patient's median plane and the tube can be advanced into the larynx using a natural curving motion similar to the motion used to introduce an endotracheal tube using a convention laryngoscope. In a preferred embodiment, the distal tip of the insertion section and a retained endotracheal tube will be located in the patient's median plane during intubation. As the tube guide retains endotracheal tubes substantially in a plane, lateral curvature is avoided, reducing resistance to advancement of the tube.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A61B 1/06 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements
A61B 1/07 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
77.
Laryngoscopes, laryngoscope arms and methods of manufacture
A video laryngoscope has an arm comprising a video camera, at least one electrical conductor extending to the video camera, an elongate electrical conductor retaining member retaining the electrical conductor and an overmolding extending around the elongate cable retaining member and having a smooth outer surface.
Providing a laryngoscope arm overmolded to provide a smooth outer surface has the benefit of allowing the laryngoscope arm to be readily cleaned or sterilized, and minimizes the number of features, such as seams or joints, where dirt or infectious bodies may be retained.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
Disclosed is a video laryngoscope having a body, an insertion section extending from the body generally parallel to a median plane of the laryngoscope extending through the body, and a display screen assembly extending from the body generally perpendicular to the median plane, the body comprising a grip portion intermediate the display screen assembly and the insertion section. The display screen assembly, comprising a display screen, extends laterally from the body and the inner edge of the display screen falls within the lateral extent of the body. The grip portion is also of a minimum size to allow an adult to grip the laryngoscope, the hand abutting the screen assembly.
Thus, the laryngoscope is of a minimum overall size, the screen is positioned as close as possible to the line of sight of a user directly viewing the distal end of the insertion section, during a medical procedure, facilitating the user alternating between direct and indirect viewing, whereas the screen does not prevent the user from manipulating the laryngoscope by applying thumb pressure to the body.
The laryngoscope may optionally be provided with thumb operable controls on the body or the screen. The screen may be adjustable about an axis, and, by virtue of the configuration and size of the laryngoscope, adjustment may be effected by the user's thumb, without the need to adjust the grip of the remaining digits.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/05 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
41 - Education, entertainment, sporting and cultural services
42 - Scientific, technological and industrial services, research and design
44 - Medical, veterinary, hygienic and cosmetic services; agriculture, horticulture and forestry services
Goods & Services
Training and educational services, namely, presentations and individual in-person training for treating diabetes; educational services, namely, health coaching services for patients in the field of diabetes. Consulting services in the field of medical and scientific research; providing medical and scientific research information in the field of diabetes care and consultancy; development of computer software. Healthcare services, namely, disease management programs for people with diabetes; medical clinics; consulting services in the field of disease management.
An endoscopic bipolar forceps includes a housing and a shaft, the shaft having an end effector assembly at its distal end. The end effector assembly includes two jaw members for grasping tissue therebetween. The jaw members are adapted to connect to an electrosurgical energy source which enable them to conduct energy through the tissue to create a tissue seal. A drive assembly is disposed within the housing which moves the jaw members. A switch is disposed within the housing which activates the electrosurgical energy. A knife assembly is included which is advanceable to cut tissue held between the jaw members. A movable handle is connected to the housing. Continual actuation of the movable handle engages the drive assembly to move the jaw members, engages the switch to activate the electrosurgical energy source to seal the tissue, and advances the knife assembly the cut the tissue disposed between the jaw members.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61B 17/285 - Surgical forceps combined with cutting implements
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 17/29 - Forceps for use in minimally invasive surgery
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
G01R 31/36 - Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
H01M 2/10 - Mountings; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
H02J 7/00 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
83.
Method of using vasoconstrictive agents during energy-based tissue therapy
A mammal undergoing an energy-based therapy is treated by administering at least one vasoconstrictive agent to the mammal prior to or during the procedure. The at least one vasoconstrictive agent is added in amounts sufficient to reduce or prevent vasodilation. This treatment method increases or promotes the size of the coagulation zone created after energy-based therapy.
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61K 31/522 - Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
A61K 31/519 - PyrimidinesHydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
A61K 31/53 - Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
A61K 31/00 - Medicinal preparations containing organic active ingredients
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
84.
Video laryngoscope and video laryngoscope insertion section
A video laryngoscope and elongate laryngoscope insertion section for a video laryngoscope, comprising a viewing port through which an imaging device within the insertion section can obtain images of a larynx, the insertion section extending between a distal end for insertion into a subject and an opposite proximal end, and having an inferior surface and an opposed superior surface, wherein the insertion section comprises a proximal region where the insertion section extends through a subject's teeth in use, a distal region extending to the distal end and an intermediate region therebetween, wherein the inferior surface of the insertion section comprises or consists of a curved region which extends from the proximal region through the intermediate region to the distal region, wherein the curved region of the inferior surface is continuously longitudinally curved along the length of the longitudinally curved region and wherein the longitudinal curvature of the curved region of the inferior surface varies in the intermediate region. Markings on an elongate laryngoscope insertion can be used to monitor depth of insertion and to indicate a path by which an endotracheal tube should be inserted.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A laryngoscope insertion section comprising a tube guide including at least an inferior tube guiding member and a superior tube guiding member, wherein the thickness of the insertion section in a first region is less than the external diameter of the largest diameter endotracheal tube in an operating range of endotracheal tube sizes plus the thickness of the inferior tube guiding member plus the thickness of the superior tube guiding member. Typically, the insertion section comprises an elongate member and the tube guide is lateral of the elongate member. Typically, an endotracheal tube is retained within the tube guide in flexural tension.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
09 - Scientific and electric apparatus and instruments
10 - Medical apparatus and instruments
Goods & Services
Video cameras for medical purposes; electric or electronic
display screens; visual display screens; software. Surgical, medical, dental and veterinary apparatus and
instruments; laryngoscopes; diagnostic imaging apparatus for
medical use; medical imaging apparatus.
A laryngoscope blade which improves the transmission of light from the laryngoscope to enhance the amount of light reflected from an area of interest in a patient. The laryngoscope blade has a channel which extends at least partially though the blade and receives a light source. The channel has a substantially transparent end face which is situated towards the blade end and has an optical element adapted to reduce the ambient light signal from the light source in the channel.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A61B 1/07 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
A61B 1/06 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor with illuminating arrangements
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
A61B 1/267 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the respiratory tract, e.g. laryngoscopes, bronchoscopes
G01R 31/36 - Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
H01M 2/10 - Mountings; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
H01M 6/50 - Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
H01M 10/48 - Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
A61B 1/04 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor combined with photographic or television appliances
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
An endoscopic bipolar forceps includes a housing and a shaft, the shaft having an end effector assembly at its distal end. The end effector assembly includes two jaw members for grasping tissue therebetween. The jaw members are adapted to connect to an electrosurgical energy source which enable them to conduct energy through the tissue to create a tissue seal. A drive assembly is disposed within the housing which moves the jaw members. A switch is disposed within the housing which activates the electrosurgical energy. A knife assembly is included which is advanceable to cut tissue held between the jaw members. A movable handle is connected to the housing. Continual actuation of the movable handle engages the drive assembly to move the jaw members, engages the switch to activate the electrosurgical energy source to seal the tissue, and advances the knife assembly the cut the tissue disposed between the jaw members.
A61B 18/08 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
A61B 17/285 - Surgical forceps combined with cutting implements
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
A61B 18/12 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 17/29 - Forceps for use in minimally invasive surgery
A61B 19/00 - Instruments, implements or accessories for surgery or diagnosis not covered by any of the groups A61B 1/00-A61B 18/00, e.g. for stereotaxis, sterile operation, luxation treatment, wound edge protectors(protective face masks A41D 13/11; surgeons' or patients' gowns or dresses A41D 13/12; devices for carrying-off, for treatment of, or for carrying-over, body liquids A61M 1/00)
A battery-powered, modular surgical device comprising an electrically powered surgical instrument that requires a pre-determined minimum amount of electrical energy to complete a surgical procedure, and a power module assembly that has a battery that powers the surgical instrument and has a current state of electrical charge, and a control circuit that is electrically coupled to the battery and the surgical instrument and has a memory and a microprocessor. The microprocessor determines the current state of electrical charge of the battery, compares the current state of electrical charge to the pre-determined minimum amount of electrical energy, permits the battery to discharge if the current state of electrical charge is above the pre-determined minimum amount of electrical energy, and maintains the battery in a non-discharge state if the current state of electrical charge is below the pre-determined minimum amount of electrical energy.
A medical suturing instrument in which the movement of an operation part is transmitted with a time lag to a loop forming part and a suture thread by means of a loop feed/return mechanism and a suture thread feed mechanism, and once a loop has been fed out from the tip end of a loop introduction needle, the suture thread is fed out from the tip end of a suture thread introduction needle.
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A61B 17/12 - Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
A61B 17/00 - Surgical instruments, devices or methods
A61B 17/06 - NeedlesHolders or packages for needles or suture materials
94.
Switched resonant ultrasonic power amplifier system
A switched resonant power amplifier system for ultrasonic transducers is disclosed. The system includes an amplifier that receives and processes a driver output signal for generating a drive signal that is provided to an ultrasonic device for controlling output of the ultrasonic device. An output control circuit receives and processes a signal related to a feedback signal generated by the ultrasonic device and a divider reference signal, and generates a compensated clock signal that is adjusted for at least one of phase and frequency differences between the received feedback signal and the divider reference signal. A compensated drive circuit receives and processes the compensated clock signal for generating the divider reference signal, and for generating the driver output signal.
H01L 41/04 - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR - Details thereof - Details of piezo-electric or electrostrictive elements
B06B 1/02 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy
A composite anoscope for ano-rectal diagnostic and surgery, wherein the anoscope (2) also comprises an internal component (1), to be inserted therein, and a suitably shorter external component (3), ending with a conic frustum mantle (18), wherein the anoscope (2) is to be inserted. The three components (1, 2, 3) are all conic frustum shaped hollow bodies having circular cross-section. The internal component (1), when inserted in the anoscope (2), forms therewith a single body having a compact and smooth external surface and an ogival tip. The external component (3) is provided close to its mouth with slotted wings (19, 20), to be fixed to the perianal skin for securing the whole composite anoscope during the diagnostic and surgical operations.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor
A61B 1/31 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopesIlluminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes
A61B 1/32 - Devices for opening or enlarging the visual field, e.g. of a tube of the body
A61B 17/02 - Surgical instruments, devices or methods for holding wounds open, e.g. retractorsTractors
Surgical devices, namely vessel sealing and tissue fusion systems comprised of electrosurgical generators, hand pieces, foot pedals, sealers, electrodes and accessories therefor.