A heart pump including a housing forming a cavity including at least one inlet and at least one outlet, an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet upon rotation of the impeller, a drive that rotates the impeller within the cavity and a magnetic bearing including at least one bearing coil that controls an axial position of the impeller within the cavity. One or more electronic processing devices are provided that are configured to determine a bearing indicator relating to axial forces on the impeller and use the bearing indicator to calculate at least one parameter.
A61M 60/178 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
A61M 60/183 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices drawing blood from both ventricles, e.g. bi-ventricular assist devices [BiVAD]
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A heart pump including: a housing forming a cavity including: at least one inlet aligned with an axis of the cavity; and, at least one outlet provided in a circumferential outer wall of the cavity; an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet; and, a drive for rotating the impeller in the cavity and wherein a flow path through the pump has a minimal cross-sectional area of at least 50 mm2.
A61M 60/178 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
A61M 60/216 - Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A61M 60/822 - Magnetic bearings specially adapted for being actively controlled
A heart pump including a housing defining a cavity including at least one inlet aligned with an axis of the cavity and at least one outlet provided in a circumferential outer wall of the cavity. An impeller is provided within the cavity, the impeller including a rotor and vanes mounted on the rotor for urging fluid from the inlet radially outwardly to the outlet. A drive is provided for rotating the impeller in the cavity, the drive including a plurality of circumferentially spaced permanent drive magnets mounted within and proximate a first face of the rotor, adjacent drive magnets having opposing polarities and a plurality of circumferentially spaced drive coils mounted within the housing proximate a first end of the cavity, each coil being wound on a respective drive stator pole of a drive stator and being substantially radially aligned with the drive magnets, the drive coils being configured to generate a drive magnetic field that cooperates with the drive magnets to thereby rotate the impeller. A magnetic bearing is also provided to thereby at least one of control an axial position of the impeller and at least partially restrain radial movement of the impeller.
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
F04D 13/06 - Units comprising pumps and their driving means the pump being electrically driven
A61M 60/196 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body replacing the entire heart, e.g. total artificial hearts [TAH]
A61M 60/822 - Magnetic bearings specially adapted for being actively controlled
A61M 60/178 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A61M 60/216 - Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
A61M 60/183 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices drawing blood from both ventricles, e.g. bi-ventricular assist devices [BiVAD]
A heart pump including a housing forming a cavity including at least one inlet and at least one outlet, an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet upon rotation of the impeller, a drive that rotates the impeller within the cavity, a magnetic bearing including at least one bearing coil that controls an axial position of the impeller within the cavity and a controller. The controller includes an electronic processing device that monitors changes in a bearing indicator in response to a perturbation in blood flow, the bearing indicator being at least partially indicative of operation of the magnetic bearing and controls the drive to thereby selectively change a rotational speed of the impeller at least partially in accordance with changes in the bearing indicator.
A61M 60/00 - Blood pumpsDevices for mechanical circulatory actuationBalloon pumps for circulatory assistance
A61M 60/178 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A61M 60/216 - Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
A61M 60/822 - Magnetic bearings specially adapted for being actively controlled
F04D 29/42 - CasingsConnections for working fluid for radial or helico-centrifugal pumps
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
F04D 1/00 - Radial-flow pumps, e.g. centrifugal pumpsHelico-centrifugal pumps
A61M 60/178 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
A61M 60/216 - Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
F04D 29/42 - CasingsConnections for working fluid for radial or helico-centrifugal pumps
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A61M 60/822 - Magnetic bearings specially adapted for being actively controlled
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
F04D 1/00 - Radial-flow pumps, e.g. centrifugal pumpsHelico-centrifugal pumps
A61M 60/122 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
F04D 1/00 - Radial-flow pumps, e.g. centrifugal pumpsHelico-centrifugal pumps
A heart pump including a housing defining a cavity including at least one inlet aligned with an axis of the cavity and at least one outlet provided in a circumferential outer wall of the cavity. An impeller is provided within the cavity, the impeller including a rotor and vanes mounted on the rotor for urging fluid from the inlet radially outwardly to the outlet. A drive is provided for rotating the impeller in the cavity, the drive including a plurality of circumferentially spaced permanent drive magnets mounted within and proximate a first face of the rotor, adjacent drive magnets having opposing polarities and a plurality of circumferentially spaced drive coils mounted within the housing proximate a first end of the cavity, each coil being wound on a respective drive stator pole of a drive stator and being substantially radially aligned with the drive magnets, the drive coils being configured to generate a drive magnetic field that cooperates with the drive magnets to thereby rotate the impeller. A magnetic bearing is also provided to thereby at least one of control an axial position of the impeller and at least partially restrain radial movement of the impeller.
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A61M 60/216 - Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
F04D 13/06 - Units comprising pumps and their driving means the pump being electrically driven
A61M 60/196 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body replacing the entire heart, e.g. total artificial hearts [TAH]
A61M 60/822 - Magnetic bearings specially adapted for being actively controlled
A61M 60/178 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
A61M 60/183 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices drawing blood from both ventricles, e.g. bi-ventricular assist devices [BiVAD]
H02K 7/14 - Structural association with mechanical loads, e.g. with hand-held machine tools or fans
A heart pump including a housing defining a cavity including at least one inlet and at least one outlet, an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet upon rotation of the impeller, a drive that rotates the impeller within the cavity, a magnetic bearing including at least one bearing coil that controls an axial position of the impeller within the cavity, a sensor that senses an axial position of the impeller within the cavity and a controller. The controller includes an electronic processing device that, in response to a change in axial hydraulic forces on the impeller determines an axial position of the impeller within the cavity, determines a reference power in accordance with the determined axial position and controls the magnetic bearing to cause the impeller to move until a bearing power indicator indicative of the power used by the magnetic bearing reaches the reference power.
A61M 60/122 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
A61M 1/00 - Suction or pumping devices for medical purposesDevices for carrying-off, for treatment of, or for carrying-over, body-liquidsDrainage systems
A61M 1/10 - Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps
A61M 1/12 - Blood pumps; Artificial hearts; Devices for mechanical circulatory assistance, e.g. intra-aortic balloon pumps implantable into the body
A heart pump including a housing forming a cavity including at least one inlet and at least one outlet, an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet upon rotation of the impeller, a drive that rotates the impeller within the cavity, a magnetic bearing including at least one bearing coil that controls an axial position of the impeller within the cavity and a controller. The controller includes an electronic processing device that monitors changes in a bearing indicator in response to a perturbation in blood flow, the bearing indicator being at least partially indicative of operation of the magnetic bearing and controls the drive to thereby selectively change a rotational speed of the impeller at least partially in accordance with changes in the bearing indicator.
A61M 60/122 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body
A61M 60/148 - Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient’s body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
A61M 60/419 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
A61M 60/422 - Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
F04D 1/00 - Radial-flow pumps, e.g. centrifugal pumpsHelico-centrifugal pumps
A heart pump including a housing defining a cavity including at least one inlet aligned with an axis of the cavity and at least one outlet provided in a circumferential outer wall of the cavity. An impeller is provided within the cavity, the impeller including a rotor and vanes mounted on the rotor for urging fluid from the inlet radially outwardly to the outlet. A drive is provided for rotating the impeller in the cavity, the drive including a plurality of circumferentially spaced permanent drive magnets mounted within and proximate a first face of the rotor, adjacent drive magnets having opposing polarities and a plurality of circumferentially spaced drive coils mounted within the housing proximate a first end of the cavity, each coil being wound on a respective drive stator pole of a drive stator and being substantially radially aligned with the drive magnets, the drive coils being configured to generate a drive magnetic field that cooperates with the drive magnets to thereby rotate the impeller. A magnetic bearing is also provided to thereby at least one of control an axial position of the impeller and at least partially restrain radial movement of the impeller.
A heart pump including: a housing forming a cavity including: at least one inlet aligned with an axis of the cavity; and, at least one outlet provided in a circumferential outer wall of the cavity; an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet; and, a drive for rotating the impeller in the cavity and wherein a flow path through the pump has a minimal cross-sectional area of at least 50mm2.
A heart pump including a housing forming a cavity including at least one inlet and at least one outlet, an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet upon rotation of the impeller, a drive that rotates the impeller within the cavity, a magnetic bearing including at least one bearing coil that controls an axial position of the impeller within the cavity and a controller. The controller includes an electronic processing device that monitors changes in a bearing indicator in response to a perturbation in blood flow, the bearing indicator being at least partially indicative of operation of the magnetic bearing and controls the drive to thereby selectively change a rotational speed of the impeller at least partially in accordance with changes in the bearing indicator.
A heart pump including a housing defining a cavity including at least one inlet and at least one outlet, an impeller provided within the cavity, the impeller including vanes for urging fluid from the inlet to the outlet upon rotation of the impeller, a drive that rotates the impeller within the cavity, a magnetic bearing including at least one bearing coil that controls an axial position of the impeller within the cavity, a sensor that senses an axial position of the impeller within the cavity and a controller. The controller includes an electronic processing device that, in response to a change in axial hydraulic forces on the impeller determines an axial position of the impeller within the cavity, determines a reference power in accordance with the determined axial position and controls the magnetic bearing to cause the impeller to move until a bearing power indicator indicative of the power used by the magnetic bearing reaches the reference power.