A method and system for converting copper cyanide to copper oxide is provided. The method includes contacting a copper cyanide solution with an acidic solution in a precipitation tank under reaction conditions sufficient to produce a copper cyanide slurry, removing the copper cyanide slurry from the precipitation tank, separating solid copper cyanide from the copper cyanide slurry in a first separation device, removing the solid copper cyanide from the first separation device, contacting the solid copper cyanide with a sodium hydroxide solution in a production tank under reaction conditions sufficient to produce a copper oxide slurry, removing the copper oxide slurry from the production tank, separating solid copper oxide from the copper oxide slurry in a second separation device, and removing from the second separation device any residual sodium hydroxide not reacted during the process of contacting the solid copper cyanide with the sodium hydroxide solution in the production tank.
This invention relates to a method for reducing decomposition of an aqueous sodium cyanide solution by passing an inert gas through the aqueous sodium cyanide solution to remove carbon dioxide from the solution, and/or storing the aqueous sodium cyanide solution under an inert gas or under a vacuum. This invention also relates to a method for reducing decomposition of a sodium cyanide slurry, a sodium cyanide paste, or a solid sodium cyanide composition by storing the sodium cyanide paste, the sodium cyanide slurry, or the solid sodium cyanide under an inert gas or under a vacuum.
This invention relates to a method for reducing decomposition of an aqueous sodium cyanide solution by passing an inert gas through the aqueous sodium cyanide solution to remove carbon dioxide from the solution, and/or storing the aqueous sodium cyanide solution under an inert gas or under a vacuum. This invention also relates to a method for reducing decomposition of a sodium cyanide slurry, a sodium cyanide paste, or a solid sodium cyanide composition by storing the sodium cyanide paste, the sodium cyanide slurry, or the solid sodium cyanide under an inert gas or under a vacuum.
B65D 81/20 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
4.
METHOD OF CONVERTING COPPER CYANIDE TO COPPER OXIDE AND SYSTEM THEREOF
A method and system for converting copper cyanide to copper oxide is provided. The method includes contacting a copper cyanide solution with an acidic solution in a precipitation tank under reaction conditions sufficient to produce a copper cyanide slurry, removing the copper cyanide slurry from the precipitation tank, separating solid copper cyanide from the copper cyanide slurry in a first separation device, removing the solid copper cyanide from the first separation device, contacting the solid copper cyanide with a sodium hydroxide solution in a production tank under reaction conditions sufficient to produce a copper oxide slurry, removing the copper oxide slurry from the production tank, separating solid copper oxide from the copper oxide slurry in a second separation device, and removing from the second separation device any residual sodium hydroxide not reacted during the process of contacting the solid copper cyanide with the sodium hydroxide solution in the production tank.
A method and system for converting copper cyanide to copper oxide is provided. The method includes contacting a copper cyanide solution with an acidic solution in a precipitation tank under reaction conditions sufficient to produce a copper cyanide slurry, removing the copper cyanide slurry from the precipitation tank, separating solid copper cyanide from the copper cyanide slurry in a first separation device, removing the solid copper cyanide from the first separation device, contacting the solid copper cyanide with a sodium hydroxide solution in a production tank under reaction conditions sufficient to produce a copper oxide slurry, removing the copper oxide slurry from the production tank, separating solid copper oxide from the copper oxide slurry in a second separation device, and removing from the second separation device any residual sodium hydroxide not reacted during the process of contacting the solid copper cyanide with the sodium hydroxide solution in the production tank.
A method and system for converting copper cyanide to copper oxide is provided. The method includes contacting a copper cyanide solution with an acidic solution in a precipitation tank under reaction conditions sufficient to produce a copper cyanide slurry, removing the copper cyanide slurry from the precipitation tank, separating solid copper cyanide from the copper cyanide slurry in a first separation device, removing the solid copper cyanide from the first separation device, contacting the solid copper cyanide with a sodium hydroxide solution in a production tank under reaction conditions sufficient to produce a copper oxide slurry, removing the copper oxide slurry from the production tank, separating solid copper oxide from the copper oxide slurry in a second separation device, and removing from the second separation device any residual sodium hydroxide not reacted during the process of contacting the solid copper cyanide with the sodium hydroxide solution in the production tank.
This disclosure relates to improved methods for alkali metal cyanide production, particularly to improved methods for sodium cyanide production. The improved method of producing sodium cyanide involves the step of contacting hydrogen cyanide with an aqueous solution of sodium carbonate or of a mixture of sodium carbonate and sodium bicarbonate to produce a sodium cyanide solution.
B01J 19/24 - Stationary reactors without moving elements inside
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
This disclosure relates to improved methods for alkali metal cyanide production, particularly to improved methods fo sodium cyanide production. The improved method of producing sodium cyanide involves the step of contacting hydrogen cyanide with an aqueous solution of sodium carbonate or of a mixture of sodium carbonate and sodium bicarbonate to produce a sodium cyanide solution.