Compositions and methods for the treatment of cancer are described, and, more preferably, to the treatment of cancers that do not express, or are otherwise deficient in, argininosuccinate synthetase, with enzymes that deplete L-Arginine in serum. In one embodiment, the present invention contemplates an arginase protein, such as a human Arginase I protein, comprising at least one amino acid substitution and a metal cofactor, said protein comprising an increased catalytic activity when compared with a native human Arginase I.
A61K 38/50 - Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
A61K 47/60 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
C12N 9/78 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
A61K 47/64 - Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
2.
METHOD AND COMPOSITION FOR TREATING ARGINASE 1 DEFICIENCY
A method and composition to treat a subject with arginase 1 (ARG1) deficiency (ARG1-D) and to rapidly reduce the levels of at least one of arginine and/or a guanidino compound in the subject.
A61K 47/60 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
A method of treating Arginase 1 (ARG1) deficiency (ARG1-D) in a subject, comprising administering a pegzilarginase to the subject, wherein the pegzilarginase is a pegylated human arginase 1 comprising a cobalt metal cofactor, and wherein the pegzilarginase is administered weekly at a dose of from about 0.05 mg/kg to about 0.2 mg/kg.
Methods and compositions therefor of treating GAMT deficiency or guanidino acetate (GAA) toxicity in a subject comprising administration of an arginine depleting enzyme. An therapeutic formulation can include an arginase, an arginine deiminase or a combination thereof and optionally other compounds, and can be adapted for intravenous or subcutaneous administration to a subject.
Methods and composition related to the engineering of a novel protein with methionine-γ-lyase enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-γ-lyase (CGL) comprising one or more amino acid substitutions and capable of degrading methionine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with methionine depletion using the disclosed proteins or nucleic acids.
C12Q 1/527 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving lyase
A method and composition to treat a subject with arginase 1 (ARG1) deficiency (ARG1-D) and to rapidly reduce the levels of at least one of arginine and/or a guanidino compound in the subject.
A method and composition to treat a subject with arginase 1 (ARG1) deficiency (ARG1-D) and to rapidly reduce the levels of at least one of arginine and/or a guanidino compound in the subject.
A61K 47/00 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient
A61K 38/50 - Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
A61K 9/00 - Medicinal preparations characterised by special physical form
A61K 48/00 - Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseasesGene therapy
A61K 45/06 - Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
A61K 47/60 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
Methods and composition related to the engineering of a novel protein with methionine-γ-lyase enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-γ-lyase (CGL) comprising one or more amino acid substitutions and capable of degrading methionine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with methionine depletion using the disclosed proteins or nucleic acids.
C12Q 1/527 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving lyase
Compositions and methods for the treatment of cancer are described, and, more preferably, to the treatment of cancers that do not express, or are otherwise deficient in, argininosuccinate synthetase, with enzymes that deplete L-Arginine in serum. In one embodiment, the present invention contemplates an arginase protein, such as a human Arginase I protein, comprising at least one amino acid substitution and a metal cofactor, said protein comprising an increased catalytic activity when compared with a native human Arginase I.
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
C12N 9/78 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
C12N 9/96 - Stabilising an enzyme by forming an adduct or a compositionForming enzyme conjugates
A61K 38/50 - Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
Compositions and methods for the treatment of cancer are described, and, more preferably, to the treatment of cancers that do not express, or are otherwise deficient in, argininosuccinate synthetase, with enzymes that deplete L-Arginine in serum. In one embodiment, the present invention contemplates an arginase protein, such as a human Arginase I protein, comprising at least one amino acid substitution and a metal cofactor, said protein comprising an increased catalytic activity when compared with a native human Arginase I.
C12N 9/78 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
C12N 9/96 - Stabilising an enzyme by forming an adduct or a compositionForming enzyme conjugates
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
A61K 38/50 - Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
Methods and composition related to the engineering of a novel protein with methionine-γ-lyase enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-γ-lyase (CGL) comprising one or more amino acid substitutions and capable of degrading methionine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with methionine depletion using the disclosed proteins or nucleic acids.
C12Q 1/527 - Measuring or testing processes involving enzymes, nucleic acids or microorganismsCompositions thereforProcesses of preparing such compositions involving lyase
Methods and composition related to the engineering of a novel protein with methionine-γ-lyase enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-γ-lyase (CGL) comprising one or more amino acid substitutions and capable of degrading methionine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with methionine depletion using the disclosed proteins or nucleic acids.
Compositions and methods for the treatment of cancer are described, and, more preferably, to the treatment of cancers that do not express, or are otherwise deficient in, argininosuccinate synthetase, with enzymes that deplete L-Arginine in serum. In one embodiment, the present invention contemplates an arginase protein, such as a human Arginase I protein, comprising at least one amino acid substitution and a metal cofactor, said protein comprising an increased catalytic activity when compared with a native human Arginase I.
C12N 9/78 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
C12N 9/96 - Stabilising an enzyme by forming an adduct or a compositionForming enzyme conjugates
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
A61K 38/50 - Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
Methods and composition for generation of arginase variants with high serum persistence are provided. For example, in certain aspects methods for purifying pegylated arginase are described. Furthermore, the invention provides stabilized arginase multimers or pharmaceutical composition thereof.
Methods and composition related to the engineering of a novel protein with methionine-γ-lyase enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-γ-lyase (CGL) comprising one or more amino acid substitutions and capable of degrading methionine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with methionine depletion using the disclosed proteins or nucleic acids.
Compositions and methods for the treatment of cancer are described, and, more preferably, to the treatment of cancers that do not express, or are otherwise deficient in, argininosuccinate synthetase, with enzymes that deplete L-Arginine in serum. In one embodiment, the present invention contemplates an arginase protein, such as a human Arginase I protein, comprising at least one amino acid substitution and a metal cofactor, said protein comprising an increased catalytic activity when compared with a native human Arginase I.
C12N 9/78 - Hydrolases (3.) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
C12N 9/96 - Stabilising an enzyme by forming an adduct or a compositionForming enzyme conjugates
C07H 21/04 - Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical