Aerogels comprising a hydrophobic polyimide moiety, including hydrophobic polyimide aerogels, as well as methods of manufacture and applications thereof, are generally described.
Aerogels comprising a hydrophobic polyimide moiety, including hydrophobic polyimide aerogels, as well as methods of manufacture and applications thereof, are generally described. The methods comprise the steps of forming a gel from a combination comprising a gel precursor and a solvent, and optionally a catalyst, and drying the gel to form the aerogel, wherein a hydrophobe is present at least one point in time after the beginning of forming the combination and before the completion of drying the gel.
C08J 9/00 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof
C08G 18/72 - Polyisocyanates or polyisothiocyanates
C08G 18/79 - Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
3.
PREPARATION OF CROSS-LINKED AEROGELS AND DERIVATIVES THEREOF
Three-dimensional nanoporous aerogels and suitable preparation methods are provided. Nanoporous aerogels may include a carbide material such as a silicon carbide, a metal carbide, or a metalloid carbide. Elemental (e.g., metallic or metalloid) aerogels may also be produced. In some embodiments, a cross-linked aerogel having a conformal coating on a sol-gel material is processed to form a carbide aerogel, metal aerogel, or metalloid aerogel. A three-dimensional nanoporous network may include a free radical initiator that reacts with a cross-linking agent to form the cross-linked aerogel. The cross-linked aerogel may be chemically aromatized and chemically carbonized to form a carbon-coated aerogel. The carbon-coated aerogel may be suitably processed to undergo a carbothermal reduction, yielding an aerogel where oxygen is chemically extracted. Residual carbon remaining on the surface of the aerogel may be removed via an appropriate cleaning treatment.
Systems and methods for producing aerogel materials are generally described. In certain cases, the methods do not require supercritical drying as part of the manufacturing process. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of large (e.g., meter-scale), substantially crack free, and/or mechanically strong aerogel materials.
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
5.
Polymer-aerogel/fiber and polymer-aerogel/textile composites and related systems and methods
The present disclosure generally relates to polymer-aerogel/fiber composite materials, polymer-aerogel/textile composite materials, and systems and methods for producing them. The gel material can comprise, in some embodiments, a network of polymer. The fiber and/or textile material can comprise at least one of any natural, synthetic, and/or mineral fiber. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of materials suitable for use in apparel, soft goods, and other consumer applications which may benefit from the properties of a polymer-aerogel/fiber composite and/or the polymer-aerogel/textile composite.
D04B 1/16 - Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
D04B 21/16 - Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threadsFabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
D06B 3/02 - Passing of textile materials through liquids, gases, or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fibres, slivers, or rovings
D06B 3/10 - Passing of textile materials through liquids, gases, or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
D06M 11/79 - Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereofSuch treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
D06M 15/564 - Polyureas, polyurethanes or other polymers having ureide or urethane linksPrecondensation products forming them
D06M 23/16 - Processes for the non-uniform application of treating agents, e.g. one-sided treatmentDifferential treatment
D06N 3/00 - Artificial leather, oilcloth, or like material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
D06N 3/12 - Artificial leather, oilcloth, or like material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
D06N 3/14 - Artificial leather, oilcloth, or like material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds with polyurethanes
6.
POROUS NANOSTRUCTURED POLYIMIDE NETWORKS AND METHODS OF MANUFACTURE
Porous three-dimensional networks of polyimide and porous three-dimensional networks of carbon and methods of their manufacture are described. For example, polyimide aerogels are prepared by mixing a dianhydride and a diisocyanate in a solvent comprising a pyrrolidone and acetonitrile at room temperature to form a sol-gel material and supercritically drying the sol-gel material to form the polyimide aerogel. Porous three-dimensional polyimide networks, such as polyimide aerogels, may also exhibit a fibrous morphology. Having a porous three-dimensional polyimide network undergo an additional step of pyrolysis may result in the three dimensional network being converted to a purely carbon skeleton, yielding a porous three-dimensional carbon network. The carbon network, having been derived from a fibrous polyimide network, may also exhibit a fibrous morphology.
C08G 18/34 - Carboxylic acidsEsters thereof with monohydroxyl compounds
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
C08G 73/10 - PolyimidesPolyester-imidesPolyamide-imidesPolyamide acids or similar polyimide precursors
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
C08L 79/08 - PolyimidesPolyester-imidesPolyamide-imidesPolyamide acids or similar polyimide precursors
H01G 11/38 - Carbon pastes or blendsBinders or additives therein
7.
LAYERED AEROGEL COMPOSITES, RELATED AEROGEL MATERIALS, AND METHODS OF MANUFACTURE
Composites comprising aerogel materials are generally described. Layered aerogel composites may be of great utility for a wide variety of applications including lightweight structures, ballistic panels, multilayer thermal and acoustic insulation, spacecraft reentry shielding, supercapacitors, batteries, acoustic insulation, and flexible garments. Layered aerogel composites may be prepared by combing layers of fiber-containing sheets and multisheet plies with aerogel materials. Composites comprising mechanically strong aerogels and reticulated aerogel structures are described. Various nanocomposite aerogel materials may be prepared to facilitate production of composites with desirable functions and properties. Layered aerogel composites and related aerogel materials described in the present disclosure have not been previously possible due to a lack of viable aerogel formulations, a lack of methods for adhering and joining aerogel materials to each other and other materials, and a lack of methods that enable combining of fibrous materials and aerogels into layered structures in the same material envelope. Aerogel composites described herein enable specific capabilities that have not been previously possible with aerogels or through other means, for example, the ability to efficiency slow impacts from bullets and other ballistic bodies using a lightweight (<2 g/cm3 density) material, bear load as structural members at a fraction of the weight of conventional technologies, or simultaneously serve as a structural or flexible material that stores electrical energy.
B32B 5/26 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by the presence of two or more layers which comprise fibres, filaments, granules, or powder, or are foamed or specifically porous one layer being a fibrous or filamentary layer another layer also being fibrous or filamentary
B32B 5/12 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments characterised by the relative arrangement of fibres or filaments of adjacent layers
F41H 5/04 - Plate construction composed of more than one layer
8.
THREE-DIMENSIONAL POROUS POLYUREA NETWORKS AND METHODS OF MANUFACTURE
Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
C08J 9/02 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
B82Y 30/00 - Nanotechnology for materials or surface science, e.g. nanocomposites
B82Y 40/00 - Manufacture or treatment of nanostructures
Aerogels comprising a hydrophobic polyimide moiety, including hydrophobic polyimide aerogels, as well as methods of manufacture and applications thereof, are generally described. The methods comprise the steps of forming a gel from a combination comprising a gel precursor and a solvent, and optionally a catalyst, and drying the gel to form the aerogel, wherein a hydrophobe is present at least one point in time after the beginning of forming the combination and before the completion of drying the gel.
B01J 13/00 - Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided forMaking microcapsules or microballoons
B01D 71/64 - PolyimidesPolyamide-imidesPolyester-imidesPolyamide acids or similar polyimide precursors
B01J 13/20 - After-treatment of capsule walls, e.g. hardening
C01B 33/18 - Preparation of finely divided silica neither in sol nor in gel formAfter-treatment thereof
10.
ARTICLES COMPRISING A COMBINATION OF POLYMER AEROGEL AND MELAMINE-FORMALDEHYDE FOAM AND RELATED SYSTEMS AND METHODS
Material combinations comprising a polymer aerogel and a melamine- formaldehyde foam, as well as methods of manufacture and applications thereof, are generally described herein.
Aerogels comprising a hydrophobic polyimide moiety, including hydrophobic polyimide aerogels, as well as methods of manufacture and applications thereof, are generally described.
High-temperature polymer aerogel composites, associated materials, associated methods of manufacture, and applications of polymer aerogel composites including engine covers comprising aerogel materials are generally described.
C08J 9/00 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
B01J 13/00 - Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided forMaking microcapsules or microballoons
13.
AEROGEL MATERIALS AND METHODS FOR THEIR PRODUCTION
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
C08G 18/09 - Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
C08G 18/34 - Carboxylic acidsEsters thereof with monohydroxyl compounds
C08G 18/28 - Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
C08G 18/24 - Catalysts containing metal compounds of tin
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
C08G 18/79 - Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
C08G 18/18 - Catalysts containing secondary or tertiary amines or salts thereof
Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties. Various properties of such networks of polyurethane particles (e.g., strength, stiffness, flexibility, thermal conductivity) may be tailored depending on which monomers are provided in the reaction.
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
B01J 20/20 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbonSolid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising carbon obtained by carbonising processes
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
C08G 18/79 - Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
Aerogels comprising a hydrophobic polyimide moiety, including hydrophobic polyimide aerogels, as well as methods of manufacture and applications thereof, are generally described.
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
B01J 20/22 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising organic material
C08G 73/06 - Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromoleculePolyhydrazidesPolyamide acids or similar polyimide precursors
C08G 73/10 - PolyimidesPolyester-imidesPolyamide-imidesPolyamide acids or similar polyimide precursors
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
16.
POLYMER-AEROGEL/FIBER AND POLYMER-AEROGEL/TEXTILE COMPOSITES AND RELATED SYSTEMS AND METHODS
The present disclosure generally relates to polymer-aerogel/fiber composite materials, polymer-aerogel/textile composite materials, and systems and methods for producing them. The gel material can comprise, in some embodiments, a network of polymer. The fiber and/or textile material can comprise at least one of any natural, synthetic, and/or mineral fiber. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of materials suitable for use in apparel, soft goods, and other consumer applications which may benefit from the properties of a polymer-aerogel/fiber composite and/or the polymer-aerogel/textile composite.
D03D 15/00 - Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
17.
Systems and methods for producing aerogel materials
Systems and methods for producing aerogel materials are generally described. In certain cases, the methods do not require supercritical drying as part of the manufacturing process. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of large (e.g., meter-scale), substantially crack free, and/or mechanically strong aerogel materials.
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
High-temperature polymer aerogel composites, associated materials, associated methods of manufacture, and applications of polymer aerogel composites including engine covers comprising aerogel materials are generally described.
B65D 85/84 - Containers, packaging elements or packages, specially adapted for particular articles or materials for corrosive chemicals
C08L 23/02 - Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bondCompositions of derivatives of such polymers not modified by chemical after-treatment
19.
Three-dimensional porous polyurea networks and methods of manufacture
Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
C08J 9/02 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties. Various properties of such networks of polyurethane particles (e.g., strength, stiffness, flexibility, thermal conductivity) may be tailored depending on which monomers are provided in the reaction.
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
B01J 20/20 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbonSolid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising carbon obtained by carbonising processes
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
C08G 18/79 - Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
Systems and methods for producing aerogel materials are generally described. In certain cases, the methods do not require supercritical drying as part of the manufacturing process. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of large (e.g., meter-scale), substantially crack free, and/or mechanically strong aerogel materials.
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
22.
Porous nanostructured polyimide networks and methods of manufacture
Porous three-dimensional networks of polyimide and porous three-dimensional networks of carbon and methods of their manufacture are described. For example, polyimide aerogels are prepared by mixing a dianhydride and a diisocyanate in a solvent comprising a pyrrolidone and acetonitrile at room temperature to form a sol-gel material and supercritically drying the sol-gel material to form the polyimide aerogel. Porous three-dimensional polyimide networks, such as polyimide aerogels, may also exhibit a fibrous morphology. Having a porous three-dimensional polyimide network undergo an additional step of pyrolysis may result in the three dimensional network being converted to a purely carbon skeleton, yielding a porous three-dimensional carbon network. The carbon network, having been derived from a fibrous polyimide network, may also exhibit a fibrous morphology.
B82Y 30/00 - Nanotechnology for materials or surface science, e.g. nanocomposites
B82Y 40/00 - Manufacture or treatment of nanostructures
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
C08L 79/08 - PolyimidesPolyester-imidesPolyamide-imidesPolyamide acids or similar polyimide precursors
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
Systems and methods for producing aerogel materials are generally described. In certain cases, the methods do not require supercritical drying as part of the manufacturing process. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of large (e.g., meter-scale), substantially crack free, and/or mechanically strong aerogel materials.
Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties. Various properties of such networks of polyurethane particles (e.g., strength, stiffness, flexibility, thermal conductivity) may be tailored depending on which monomers are provided in the reaction.
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
C08G 18/79 - Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
C08G 18/06 - Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
B01J 20/20 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbonSolid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising carbon obtained by carbonising processes
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
Porous three-dimensional networks of polyimide and porous three-dimensional networks of carbon and methods of their manufacture are described. For example, polyimide aerogels are prepared by mixing a dianhydride and a diisocyanate in a solvent comprising a pyrrolidone and acetonitrile at room temperature to form a sol-gel material and supercritically drying the sol-gel material to form the polyimide aerogel. Porous three-dimensional polyimide networks, such as polyimide aerogels, may also exhibit a fibrous morphology. Having a porous three-dimensional polyimide network undergo an additional step of pyrolysis may result in the three dimensional network being converted to a purely carbon skeleton, yielding a porous three-dimensional carbon network. The carbon network, having been derived from a fibrous polyimide network, may also exhibit a fibrous morphology.
C08G 73/10 - PolyimidesPolyester-imidesPolyamide-imidesPolyamide acids or similar polyimide precursors
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
C08L 79/08 - PolyimidesPolyester-imidesPolyamide-imidesPolyamide acids or similar polyimide precursors
C08G 18/76 - Polyisocyanates or polyisothiocyanates cyclic aromatic
Nanoporous three-dimensional networks of polyurethane particles, e.g., polyurethane aerogels, and methods of preparation are presented herein. Such nanoporous networks may include polyurethane particles made up of linked polyisocyanate and polyol monomers. In some cases, greater than about 95% of the linkages between the polyisocyanate monomers and the polyol monomers are urethane linkages. To prepare such networks, a mixture including polyisocyanate monomers (e.g., diisocyanates, triisocyanates), polyol monomers (diols, triols), and a solvent is provided. The polyisocyanate and polyol monomers may be aliphatic or aromatic. A polyurethane catalyst is added to the mixture causing formation of linkages between the polyisocyanate monomers and the polyol monomers. Phase separation of particles from the reaction medium can be controlled to enable formation of polyurethane networks with desirable nanomorphologies, specific surface area, and mechanical properties. Various properties of such networks of polyurethane particles (e.g., strength, stiffness, flexibility, thermal conductivity) may be tailored depending on which monomers are provided in the reaction.
B65D 39/00 - Closures arranged within necks or pouring openings or in discharge apertures, e.g. stoppers
C08J 9/28 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
01 - Chemical and biological materials for industrial, scientific and agricultural use
02 - Paints, varnishes, lacquers
37 - Construction and mining; installation and repair services
Goods & Services
Aerogels; chemicals used in industry, science and photography, as well as in agriculture, horticulture and forestry; unprocessed artificial resins, unprocessed plastics; manures; fire extinguishing compositions; tempering and soldering preparations; chemical substances for preserving foodstuffs; tanning substances; adhesives used in industry. Paints, varnishes, lacquers; preservatives against rust and against deterioration of wood; colorants; mordants; raw natural resins; metals in foil and powder form for painters, decorators, printers and artists. Building construction; repair; installation services.
Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
C08J 9/12 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
C08J 9/02 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
B82Y 30/00 - Nanotechnology for materials or surface science, e.g. nanocomposites
B82Y 40/00 - Manufacture or treatment of nanostructures
C08G 18/79 - Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
C08G 18/18 - Catalysts containing secondary or tertiary amines or salts thereof