C08F 28/00 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
C08F 228/00 - Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
C08F 273/00 - Macromolecular compounds obtained by polymerising monomers on to polymers of sulfur-containing monomers as defined in group
C08F 257/02 - Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group on to polymers of styrene or alkyl-substituted styrenes
C08F 257/00 - Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group
B01J 43/00 - Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groupsUse of material as amphoteric ion-exchangersTreatment of material for improving their amphoteric ion-exchange properties
C08F 220/36 - Esters containing nitrogen containing oxygen in addition to the carboxy oxygen
C08F 220/58 - Amides containing oxygen in addition to the carbonamido oxygen
C08F 26/02 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
C08F 28/02 - Homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
B01J 49/45 - Thermal regeneration of amphoteric ion-exchangers
B01D 39/00 - Filtering material for liquid or gaseous fluids
B01D 39/14 - Other self-supporting filtering material
The present invention relates to an ampholytic polymeric system obtainable by a process comprising the copolymerisation of (i) a monomer according to Formula (1), (ii) an ethylenically unsaturated cationic monomer and (iii) a (co)polymer comprising an ethylenically unsaturated anionic monomer which comprises a sulfonate group: (1) wherein X is O or NR2, R1 and R2 are independently selected from the group consisting of hydrogen and C1-C6 alkyl groups or wherein R1 and R2 form together a (CR1R2)n- chain, wherein n is 3 to 12, and wherein R3 is independently selected from the group consisting of hydrogen and CH3. The present invention further relates to the use of ampholytic polymeric system in separation processes.
B01J 43/00 - Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groupsUse of material as amphoteric ion-exchangersTreatment of material for improving their amphoteric ion-exchange properties
B01J 49/00 - Regeneration or reactivation of ion-exchangersApparatus therefor
C02F 1/42 - Treatment of water, waste water, or sewage by ion-exchange
The present invention relates to a process for separating a charged species from an aqueous system, wherein the process comprises the following steps: (a) a first aqueous system comprising the charged species is contacted at a first temperature with an ampholytic polymeric 5 system comprising cationic and anionic domains, wherein the charged species is bonded to the ampholytic polymeric system; and (b) the ampholytic polymeric system is contacted with a second aqueous system at a second temperature, wherein the charged species is released to the second aqueous system, wherein the second temperature is higher than the first temperature and wherein the second temperature is higher than the first temperature and wherein the second 10 temperature is less than 60° C.
B01J 43/00 - Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groupsUse of material as amphoteric ion-exchangersTreatment of material for improving their amphoteric ion-exchange properties
B01J 49/00 - Regeneration or reactivation of ion-exchangersApparatus therefor
C02F 1/42 - Treatment of water, waste water, or sewage by ion-exchange
4.
PROCESS FOR SEPARATING A CHARGED SPECIES FROM AN AQUEOUS SYSTEM
The present invention relates to a process for separating a charged species from an aqueous system, wherein the process comprises the following steps: (a) a first aqueous system comprising the charged species is contacted at a first temperature with an ampholytic polymeric 5 system comprising cationic and anionic domains, wherein the charged species is bonded to the ampholytic polymeric system; and (b) the ampholytic polymeric system is contacted with a second aqueous system at a second temperature, wherein the charged species is released to the second aqueous system, wherein the second temperature is higher than the first temperature and wherein the second temperature is higher than the first temperature and wherein the second 10 temperature is less than 60°C.
B01J 43/00 - Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groupsUse of material as amphoteric ion-exchangersTreatment of material for improving their amphoteric ion-exchange properties
B01J 49/00 - Regeneration or reactivation of ion-exchangersApparatus therefor
C02F 1/42 - Treatment of water, waste water, or sewage by ion-exchange