System and method for sequential circumferential deposition of thermoplastic composite prepreg material to successfully layer plies of prepreg tape, allowing the continuous processing of tubular shapes and rods
A system for sequential circumferential deposition of thermoplastic composite prepreg material to layer plies of prepreg tape, allowing the continuous processing of tubular shapes and rods, comprising a floating mandrel; a first heatable folding shoe configured to heat and wrap a first prepreg tape onto the floating mandrel; a first forming tube configured to heat and pultrude the first prepreg tape so as to form a first layer ply of prepreg tape on the floating mandrel; a second heatable folding shoe configured to heat and wrap a second prepreg tape onto the first layer ply of prepreg tape on the floating mandrel; a second forming tube configured to heat and pultrude the second prepreg tape so as to form a second layer ply of prepreg tape over the first layer ply of prepreg tape on the floating mandrel.
B29C 70/52 - Pultrusion, i.e. forming and compressing by continuously pulling through a die
B29C 70/30 - Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or coreShaping by spray-up, i.e. spraying of fibres on a mould, former or core
B29K 105/08 - Condition, form or state of moulded material containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
construction members of non-metal composite materials, namely, columns, beams and braces, and structures made therefrom, namely, modular and prefabricated buildings and towers, radar towers, radomes, composite pultrusion machines, composite pultrusion machinery
3.
Thermoplastic composite tubular lineal forming system and method
A method of processing a thermoplastic composite tubular lineal comprising providing a pre-pregged thermoplastic composite around an elongated stationary mandrel; wrapping the pre-pregged thermoplastic composite with a release material; heating the stationary mandrel so that the pre-pregged thermoplastic composite melts and the release material contracts, exerting pressure on the pre-pregged material; cooling the pre-pregged material and release material so as to form a thermoplastic composite tubular lineal in its final configuration; pulling the thermoplastic composite tubular lineal downstream; and removing the release material from the thermoplastic composite tubular lineal.
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours. The 3D thermoplastic pultrusion system and method including at least one of multiple pairs of shapeable and flexible bands and a rotating assembly that rotates the one or more sets of 3D thermoplastic forming machines to impart a twist to the thermoplastic composite.
B29C 51/26 - Component parts, details or accessoriesAuxiliary operations
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
B29C 51/20 - Thermoforming apparatus having movable moulds or mould parts
A 3D thermoplastic pultrusion system, comprises one or more sets of 3D thermoplastic forming machines; a CNC control system controlling the one or more sets of 3D thermoplastic forming machines to form a heated prepreg thermoplastic composite material into a 3D thermoplastic composite pultrusion, the one or more sets of 3D thermoplastic forming machines include a plurality of motion control CNC rotational motors and CNC actuators operatively coupled to the motion control CNC rotational motors, a flexible chilled band shapeable by the CNC actuators to form the heated prepreg thermoplastic composite material into the thermoplastic composite pultrusion, and bearings that the motion control CNC rotational motors pivot the actuators about and hold the actuators in position during a consolidation process.
B29C 47/88 - Heating or cooling the stream of extruded material
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
B29C 51/20 - Thermoforming apparatus having movable moulds or mould parts
B29C 51/26 - Component parts, details or accessoriesAuxiliary operations
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours. The 3D thermoplastic pultrusion system and method including at least one of one or more pairs of shapeable and flexible dual-temperature bands and a rotating assembly that rotates the one or more sets of 3D thermoplastic forming machines to impart a twist to the thermoplastic composite.
B29C 70/52 - Pultrusion, i.e. forming and compressing by continuously pulling through a die
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
B29C 51/26 - Component parts, details or accessoriesAuxiliary operations
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours.
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours.
A 3D thermoplastic pultrusion system, comprises one or more sets of 3D thermoplastic forming machines; a CNC control system controlling the one or more sets of 3D thermoplastic forming machines to form a heated prepreg thermoplastic composite material into a 3D thermoplastic composite pultrusion, the one or more sets of 3D thermoplastic forming machines include a plurality of motion control CNC rotational motors and CNC actuators operatively coupled to the motion control CNC rotational motors, a flexible chilled band shapeable by the CNC actuators to form the heated prepreg thermoplastic composite material into the thermoplastic composite pultrusion, and bearings that the motion control CNC rotational motors pivot the actuators about and hold the actuators in position during a consolidation process.
B29C 70/52 - Pultrusion, i.e. forming and compressing by continuously pulling through a die
B29C 51/20 - Thermoforming apparatus having movable moulds or mould parts
F01D 5/28 - Selecting particular materialsMeasures against erosion or corrosion
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
B29C 51/26 - Component parts, details or accessoriesAuxiliary operations
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours.
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours.
G05B 19/4099 - Surface or curve machining, making 3D objects, e.g. desktop manufacturing
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
A 3D thermoplastic pultrusion system and method based upon a 3D variable die system and including one or more sets of 3D thermoplastic forming machines to continuously produce thermoplastic composite pultrusions with at least one of varying cross-section geometry and constant surface contours, varying cross-section geometry and varying surface contours, and constant cross-section geometry and varying surface contours.
G05B 19/4099 - Surface or curve machining, making 3D objects, e.g. desktop manufacturing
B29C 51/14 - Shaping by thermoforming, e.g. shaping sheets in matched moulds or by deep-drawingApparatus therefor using multilayered preforms or sheets
A hybrid wind turbine tower support structure that combines pultruded fiber glass composites lineals with reinforced concrete, effectively creating a low cost structure for holding large, laterally-forced-thrusts from wind turbine rotor blades. The structure is designed to be lower in installed costs then its counterpart steel support structure, yet be capable of withstanding very large thrust loads, deflecting-under-load less than or equal to, but no more, under extreme wind loading, than its counterpart, steel support structure.
A radome for housing a radar system comprises a plurality of interconnected curved radome thermoplastic composite material panels, each curved radome thermoplastic composite material panel having a plurality of interconnecting edges, a foam core, an inner skin, an outer skin, and a plurality of three-dimensional fiber bundles tying the inner skin and the outer skin to each other through the foam core, inhibiting delamination. The radome includes a hydrophobic exterior surface that is self-cleaning and requires zero maintenance for 25 years.
A radome for housing a radar system comprises a plurality of interconnected curved radome thermoplastic composite material panels, each curved radome thermoplastic composite material panel having a plurality of interconnecting edges, a foam core, an inner skin, an outer skin, and a plurality of three-dimensional fiber bundles tying the inner skin and the outer skin to each other through the foam core, inhibiting delamination. The radome includes a hydrophobic exterior surface that is self-cleaning and requires zero maintenance for 25 years.
H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome
B29C 65/56 - Joining of preformed partsApparatus therefor using mechanical means
B29C 65/00 - Joining of preformed partsApparatus therefor
B29C 70/08 - Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, with or without non-reinforced layers
B29C 67/00 - Shaping techniques not covered by groups , or
F16B 5/00 - Joining sheets or plates to one another or to strips or bars parallel to them
A thermoplastic pultrusion die system for pultruding a thermoplastic composite includes a first pultrusion die member with a curved, concave top surface; a second pultrusion die member with a curved, convex bottom surface; a curved die cavity gap formed between the a curved, concave top surface of the first pultrusion die member and the curved, convex bottom surface of the second pultrusion die member; a die cavity gap adjustment mechanism that imparts movement to at least one of the first pultrusion die member and the second pultrusion die member to vary the die cavity gap from closed to a specified location to open at a specified location; a pultrusion gripper mechanism having one or more grippers in series, and a computer numerical control (CNC) computer system controlling the die cavity gap adjustment mechanism.
A thermoplastic pultrusion die system for pultruding a thermoplastic composite includes a first pultrusion die member; a second pultrusion die member; a die cavity gap formed between the first pultrusion die member and the second pultrusion die member; and a die cavity gap adjustment mechanism that imparts movement to at least one of the first pultrusion die member and the second pultrusion die member to vary the die cavity gap within a very tight die cavity gap tolerance.
A thermoplastic pultrusion die system for pultruding a thermoplastic composite includes a first pultrusion die member; a second pultrusion die member; a die cavity gap formed between the first pultrusion die member and the second pultrusion die member; and a die cavity gap adjustment mechanism that imparts movement to at least one of the first pultrusion die member and the second pultrusion die member to vary the die cavity gap within a very tight die cavity gap tolerance.
An interlocking support structure has an array of rectangular cells arranged in at least one layer, each cell having four sides, opposite ends, and eight corners, and sharing common sides and corners with any adjacent cells. The cells are formed by sets of spaced, parallel elongate members extending in x, y and z directions, with the x, y and z members interlocked with one another at the corners of the cells to form interlocking corner joints. Each structural member is hollow at least in the vicinity of each corner joint with which it intersects, and communicates with the other structural members at the respective corner joints. A plug of hardened, initially flowable material fills the hollow interior of the interlocking structural members at least at the corner joints and adheres to the internal surfaces of the members at the corner joints to secure the members together at each corner in the rectangular array.
A thermoplastic pultrusion die system for pultruding a thermoplastic composite includes a first pultrusion die member; a second pultrusion die member; a die cavity gap formed between the first pultrusion die member and the second pultrusion die member; and a die cavity gap adjustment mechanism that imparts movement to at least one of the first pultrusion die member and the second pultrusion die member to vary the die cavity gap within a very tight die cavity gap tolerance.
A CNC tensioning system for applying tension in one or more fibers or fiber bundles drawn into a fiber process in a fiber movement direction includes a reverse torque mechanism that applies a net torque on the one or more fibers or fiber bundles in a reverse direction from the fiber movement direction; a motion-control motor that drives the reverse torque mechanism to apply a net torque on the one or more fibers or fiber bundles in a reverse direction from the fiber movement direction; and a computer system controlling the motion-control motor to incrementally control net torque on the one or more fibers or fiber bundles in a reverse direction from the fiber movement direction in discrete incremental values.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
A composite laminate structure includes a first skin; a second skin; a core between the first skin and the second skin, the core including adjacent core sections and a Z-Y partition separating the adjacent core sections; and a plurality of distinct groupings of Z-axis fibers that extend from the first skin to the second skin through the adjacent core sections and the Z-Y partition separating the adjacent core sections.
B32B 17/02 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like in the form of fibres or filaments
B32B 5/08 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments the fibres or filaments of a layer being specially arranged or being of different substances
25.
SYSTEM AND METHOD FOR MAINTAINING THE LOCATION OF A FIBER DOFF INNER-DIAMETER-TOW AT THE POINT OF PAYOUT WITHIN A CONSTANT INERTIAL REFERENCE FRAME
A method of maintaining the location of a fiber doff inner-diameter-tow at a point of payout within a constant inertial reference frame includes providing a flat fiber tow payout system with a center-pull doff of flat fiber tow that pays out at a point of payout along an inner diameter of the center-pull doff with rotation of the center-pull doff about a vertically oriented axis of rotation, the flat fiber tow payout system including a constant inertial reference frame for payout of the tow along the inner diameter of the center-pull doff without twisting the tow; and accelerating and stopping rotation of the center-pull doff with the tow payout system so as to maintain payout of the flat fiber tow along the inner diameter of the center-pull doff in the constant inertial reference frame, preventing twisting of the tow.
B65H 67/04 - Arrangements for removing completed take-up packages and replacing by cores, formers, or empty receptacles at winding or depositing stationsTransferring material between adjacent full and empty take-up elements
D01H 9/04 - Doffing arrangements integral with spinning or twisting machines
26.
System and method for maintaining the location of a fiber doff inner-diameter-tow at the point of payout within a constant inertial reference frame
A method of maintaining the location of a fiber doff inner-diameter-tow at a point of payout within a constant inertial reference frame includes providing a flat fiber tow payout system with a center-pull doff of flat fiber tow that pays out at a point of payout along an inner diameter of the center-pull doff with rotation of the center-pull doff about a vertically oriented axis of rotation, the flat fiber tow payout system including a constant inertial reference frame for payout of the flat fiber tow along the inner diameter of the center-pull doff without twisting the flat fiber tow; and accelerating and stopping rotation of the center-pull doff with the flat fiber tow payout system so as to maintain payout of the flat fiber tow along the inner diameter of the center-pull doff in the constant inertial reference frame, preventing twisting of the flat fiber tow.
A method of manufacturing a composite panel includes manufacturing a composite panel having a first skin, a second skin, a core, and a plurality of distinct groupings of Z-axis fibers that extend through the core from the first skin to the second skin, wherein the Z-axis fibers include opposite ends respectively terminating at and integrated into the first skin and the second skin; and creating structural stringers in the composite panel by removing the second skin and substantially all of the core and the Z-axis fibers down to or adjacent to the first skin.
B32B 3/12 - Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. apertured or formed of separate pieces of material characterised by a layer of regularly-arranged cells whether integral or formed individually or by conjunction of separate strips, e.g. honeycomb structure
A method of placing a 90 degree ply on a separate 0 degree material includes providing 90 degree ply from a 90 degree ply material source; moving the 90 degree ply in a 90 degree ply carrier to a position over the 0 degree material; removing the 90 degree ply carrier from the 0 degree material and simultaneously pushing the 90 degree ply off of the 90 degree ply carrier and onto the 0 degree material; and severing the 90 degree ply from the 90 degree ply material source so that the 90 degree ply remains on the 0 degree material.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
(1) Composite structures and sandwich panels having outside skins and a core material that are reinforced with 3-dimensional composite fibers to tie skins and cores with translaminar reinforcement and for use in industrial, recreational, construction and transportation systems, including rail, land-based vehicles, marine and aerospace.
Composite structures and sandwich panels having outside skins and a core material that are reinforced with 3-dimensional composite fibers to tie skins and cores with translaminar reinforcement and for use in industrial, recreational, construction and transportation systems, including rail, land-based vehicles, marine and aerospace.
Composite structures and sandwich panels having outside skins and a core material that are reinforced with 3-dimensional composite fibers to tie skins and cores with trans-laminar reinforcement and for use in industrial, recreational, construction and transportation systems, including rail, land-based vehicles, marine and aerospace