Processing contaminated water containing volatile or/and semi-volatile compounds via flash evaporation. Method and system include: superheating contaminated water (via a superheating unit), for forming superheated contaminated water having a temperature equal to or higher than a predetermined threshold temperature; flash evaporating the superheated contaminated water (via a flash evaporation unit), for forming superheated contaminated steam; and thermally oxidizing the superheated contaminated steam (via a thermal oxidation unit), so as to thermally oxidize the volatile compounds contained therein, and form thermal oxidation gas/vapor products. Optionally, further includes integrated configuration and operation of a process control/data-information processing unit, and a heat recycling unit. Results in obtaining high yields and high energy efficiencies for removal of volatile compounds from contaminated water. Particularly applicable for processing water contaminated with volatile organic compounds (VOCs) or/and semi-volatile organic compounds (SVOCs), and volatile or/and semi-volatile inorganic compounds.
Processing solid waste containing fluorine compounds, and applications thereof. Solid waste processing method includes: providing and mixing (i) solid waste containing fluorine compounds and (ii) solid calcium hydroxide, for forming a mixture thereof; heating the mixture in chemical reducing (non-oxidizing) environment, thereby forming a heated product including solid calcium fluoride; and handling or/and processing the heated product, to form non-hazardous safely disposable material. Solid waste processing system includes: solid waste input unit; solid calcium hydroxide supply unit; mixing unit; heating unit; and product handling / product processing unit. Applicable to large scale commercial processes of, or involving, manufacturing materials and products containing fluorine compounds during which are generated large amounts of solid waste containing fluorine compounds, whereby such solid waste needs to be handled or/and processed, and disposed of.
Recovering bromine from solid waste containing bromine compounds, and applications thereof, such as for recovering bromine in a form suitable for reuse, or for manufacturing bromine salt (for example, calcium bromide). Bromine recovery method and system include: providing and mixing (i) solid waste containing bromine compounds and (ii) solid calcium hydroxide; heating the mixture in a chemical reducing (non-oxidizing) environment, thereby forming heated product consisting essentially of only solid calcium bromide (salt); and processing the heated product, to form bromine. Calcium bromide manufacturing method and system include: providing and mixing (i) solid waste containing bromine compounds and (ii) solid calcium hydroxide; heating the mixture in a chemical reducing (non-oxidizing) environment, thereby forming solid calcium bromide (salt). Applicable to processes of, or involving, manufacturing bromine-based flame (fire) retardant materials.
Processing contaminated water containing volatile or/and semi-volatile compounds via flash evaporation. Method and system include: superheating contaminated water (via a superheating unit), for forming superheated contaminated water having a temperature equal to or higher than a predetermined threshold temperature; flash evaporating the superheated contaminated water (via a flash evaporation unit), for forming superheated contaminated steam; and thermally oxidizing the superheated contaminated steam (via a thermal oxidation unit), so as to thermally oxidize the volatile compounds contained therein, and form thermal oxidation gas/vapor products. Optionally, further includes integrated configuration and operation of a process control / data-information processing unit, and a heat recycling unit. Results in obtaining high yields and high energy efficiencies for removal of volatile compounds from contaminated water. Particularly applicable for processing water contaminated with volatile organic compounds (VOCs) or/and semi-volatile organic compounds (SVOCs), and volatile or/and semi-volatile inorganic compounds.
The invention proposes a method of destruction of volatile organic and inorganic compounds in wastewater, this method includes following stages: stripping the aforementioned volatile compounds in a stripping-chemisorption column; preliminary heating the gaseous medium containing these volatile compounds in a first heat regenerator; thermal, flare or thermo-catalytic oxidation of the volatile compounds in circulating gaseous medium; cooling the gaseous medium in a second heat regenerator; chemisorption of acidic gases from the gaseous medium in the stripping-chemisorption column with stripping at the same time additional amount of the volatile compounds from the wastewater. After specific period, direction of the gaseous medium flow is alternated. The proposed method can be executed at elevated temperature. The invention includes as well systems realizing the proposed method.
A method of wastewater treatment comprises: providing waste water to a vessel within a solar collector; and superheating the waste water under pressure within the vessel using solar energy of the solar collector, thereby to provide oxidation conditions from said solar energy to oxidize organic matter. The water may then be passed to a flash chamber to vaporize and leave behind a brine with dissolved salts.
Safely processing fluid via monitoring and decreasing explosiveness of vapor-gas species formed therefrom, or contained therein. Fluid input unit 12, for transporting source fluid 24; first fluid processing unit 14, for receiving and processing fluid 26, and forming processed fluid including vapor-gas portion 30; vapor-gas explosiveness monitoring and decreasing unit 16, for measuring at least an indication of explosiveness level of vapor-gas portion 30, wherein if the measurement exceeds a pre-determined threshold explosiveness level (PDTEL), then vapor-gas portion 30 is condensed, for forming condensate and output vapor-gas 32 whose explosiveness level is less than lower explosion limit (LEL) of output vapor-gas 32; second fluid processing unit 18, for processing output vapor-gas 32, and forming processed vapor-gas product 34. Includes an output unit 20 for transporting processed vapor-gas product 34 as (vapor-gas, liquid, or/and solid) output products 36, for disposal, storage, or/and additional processing, and a central process control unit 22.
Disclosed are systems and methods useful in waste processing. Disclosed is the use of a regenerative thermal oxidation (RTO) unit (40) for production of industrially useable steam. Disclosed are systems including a stripping unit (11) associated with a regenerative thermal oxidation (RTO) unit (40) so that the stripping unit provides fuel for the RTO unit (40) and the RTO unit (40) provides a stripping gas for the stripping unit (11). Disclosed are systems including an RTO unit (40) providing steam to operate a vapor compression (VC) unit (60).
B01D 3/34 - Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
C02F 1/04 - Treatment of water, waste water, or sewage by heating by distillation or evaporation
C02F 9/00 - Multistage treatment of water, waste water or sewage
F01K 3/18 - Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
9.
Method and system of destruction of volatile compounds in wastewater
The invention proposes a method of destruction of volatile organic and inorganic compounds in wastewater, this method includes following stages: stripping the aforementioned volatile compounds in a stripping-chemisorption column; preliminary heating the gaseous medium containing these volatile compounds in a first heat regenerator; thermal, flare or thermo-catalytic oxidation of the volatile compounds in circulating gaseous medium; cooling the gaseous medium in a second heat regenerator; chemisorption of acidic gases from the gaseous medium in the stripping-chemisorption column with stripping at the same time additional amount of the volatile compounds from the wastewater. After specific period, direction of the gaseous medium flow is alternated. The proposed method can be executed at elevated temperature. The invention includes as well systems realizing the proposed method.