An electric motor includes a rotor and a stator that includes a plurality of coils arrayed along a rotational axis of the rotor. The rotor is potted with potting compound. The stator is potted with potting compound. Each coil of the stator is electrically connected to a power source to receive operating power from the power source. The coils are powered to cause the stator to electromagnetically drive rotation of the rotor on the rotational axis.
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further includes flux rings disposed on opposite axial sides of the coil and that are joined by flux returns. The stator phases electromagnetically drive rotation of the rotor on a rotational axis.
H02K 1/276 - Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
H02K 9/22 - Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
An electric machine includes a rotor configured to rotate on an axis and a stator spaced radially from the rotor. The stator includes a plurality of stator phases arrayed along the axis, each stator phase including a pair of flux rings and a coil extending about the axis and disposed between the pair of flux rings. The coil is formed form ribbon strand and a narrow edge of the ribbon strand is oriented radially. The flux rings are formed by ring segments that each extend partially about the axis and radially overlap with each other. The flux rings are aligned by pins that span between the flux rings. Adjacent stator phases are aligned by annular brackets that interface with the adjacent stator phases.
H02K 3/52 - Fastening salient pole windings or connections thereto
H02K 5/22 - Auxiliary parts of casings not covered by groups , e.g. shaped to form connection boxes or terminal boxes
H02K 16/02 - Machines with one stator and two rotors
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further includes flux rings disposed on opposite axial sides of the coil and that are joined by axial returns. The stator phases electromagnetically drive rotation of the rotor on the motor axis. Stator segments are formed by one or more stator phases grouped together. Rotor segments are formed by one or more rotor phases grouped together. Motor segments are formed by one or more stator segments and one or more associated rotor segments. Motor segments are stacked along a shaft to form the electric motor.
A fluid moving apparatus includes an electric motor having a rotor and a stator and a propeller. The rotor rotates relative to the stator on an axis to generate a rotational output. The rotational output is provided to the propeller to power the marine propulsion apparatus. The stator includes one or more coils configured to power rotation of the rotor. The one or more coils extend circumferentially around and can be coaxial on the axis. A portion of a housing of the motor extends into the aquatic environment to facilitate heat dissipation.
H02K 1/22 - Rotating parts of the magnetic circuit
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further includes flux rings disposed on opposite axial sides of the coil and that are joined by axial returns. The stator phases electromagnetically drive rotation of the rotor on the motor axis.
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further include teeth arrayed around the motor axis. Each tooth has a tooth face oriented towards the rotor. Multiple of the lamina forming each tooth are exposed at the tooth face and are configured to extend axially and radially to the tooth face. The stator phases magnetically interact with the rotor to drive rotation of the rotor on the motor axis.
A fluid moving apparatus includes an electric motor having a rotor and a stator and a propeller. The rotor rotates relative to the stator on an axis to generate a rotational output. The rotational output is provided to the propeller to power the marine propulsion apparatus. The stator includes one or more coils configured to power rotation of the rotor. The one or more coils extend circumferentially around and can be coaxial on the axis. A portion of a housing of the motor extends into the aquatic environment to facilitate heat dissipation.
H02K 1/22 - Rotating parts of the magnetic circuit
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
A grease inhibitor is disposed about a rotating shaft of an electric machine. The grease inhibitor is configured to inhibit flow of grease towards electromagnetic components of the electric machine along the shaft. The grease inhibitor includes an inner member that rotates with the shaft and that interfaces with a static component to form the grease inhibiting interface.
F16N 11/08 - Arrangements for supplying grease from a stationary reservoir or the equivalent in or on the machine or member to be lubricatedGrease cups with mechanical drive, other than directly by springs or weights
An electric motor includes a rotor and a stator that includes a plurality of coils arrayed along a rotational axis of the rotor. The rotor is potted with potting compound. The stator is potted with potting compound. Each coil of the stator is electrically connected to a power source to receive operating power from the power source. The coils are powered to cause the stator to electromagnetically drive rotation of the rotor on the rotational axis.
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further includes flux rings disposed on opposite axial sides of the coil and that are joined by flux returns. The stator phases electromagnetically drive rotation of the rotor on a rotational axis.
H02K 1/276 - Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
H02K 9/22 - Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
H02K 1/30 - Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
A transverse flux motor is formed by a stator portion and a rotor portion. The stator portion includes one or more phase assemblies formed by flux ring plates axially bracketing coil wire windings. The flux rings include teeth that magnetically interact with circumferentially opposed and adjacent teeth to form flux paths transverse to the axis of rotation of the rotor assembly.
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
A fluid moving apparatus includes an electric motor having a rotor and a stator and a propeller. The rotor rotates relative to the stator on an axis to generate a rotational output. The rotational output is provided to the propeller to power the marine propulsion apparatus. The stator includes one or more coils configured to power rotation of the rotor. The one or more coils extend circumferentially around and can be coaxial on the axis. A portion of a housing of the motor extends into the aquatic environment to facilitate heat dissipation.
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further includes flux rings disposed on opposite axial sides of the coil and that are joined by axial returns. The stator phases electromagnetically drive rotation of the rotor on the motor axis. Stator segments are formed by one or more stator phases grouped together. Rotor segments are formed by one or more rotor phases grouped together. Motor segments are formed by one or more stator segments and one or more associated rotor segments. Motor segments are stacked along a shaft to form the electric motor.
H02K 3/52 - Fastening salient pole windings or connections thereto
H02K 5/173 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
H02K 5/10 - Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. of water or fingers
H02K 7/14 - Structural association with mechanical loads, e.g. with hand-held machine tools or fans
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further include flux rings disposed on opposite axial sides of the coil and that are joined by axial returns. Each flux ring is formed by multiple lamina stacked together and includes a plurality of teeth arrayed around the motor axis. Each tooth has a tooth face oriented towards the rotor. Multiple of the lamina forming the flux ring are exposed at the tooth face. The stator phases magnetically interact with the rotor to drive rotation of the rotor on the motor axis.
H02K 21/12 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
A fluid moving apparatus includes an electric motor having a rotor and a stator and a propeller. The rotor rotates relative to the stator on an axis to generate a rotational output. The rotational output is provided to the propeller to power the marine propulsion apparatus. The stator includes one or more coils configured to power rotation of the rotor. The one or more coils extend circumferentially around and can be coaxial on the axis. A portion of a housing of the motor extends into the aquatic environment to facilitate heat dissipation.
H02K 21/12 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
H02K 16/00 - Machines with more than one rotor or stator
H02K 5/10 - Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. of water or fingers
An electric motor includes a rotor and a stator formed by a plurality of stator phases. The stator phases include coils that extend fully about the motor axis of the motor. The stator phases further includes flux rings disposed on opposite axial sides of the coil and that are joined by axial returns. The stator phases electromagnetically drive rotation of the rotor on the motor axis.
H02K 3/52 - Fastening salient pole windings or connections thereto
H02K 5/173 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
H02K 5/10 - Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. of water or fingers
H02K 7/14 - Structural association with mechanical loads, e.g. with hand-held machine tools or fans
A transverse flux motor is formed by a stator portion and a rotor portion. The stator portion includes one or more phase assemblies formed by flux ring plates axially bracketing coil wire windings. The flux rings include teeth that magnetically interact with circumferentially opposed and adjacent teeth to form flux paths transverse to the axis of rotation of the rotor assembly.
H02K 3/52 - Fastening salient pole windings or connections thereto
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 15/12 - Impregnating, moulding insulation, heating or drying of windings, stators, rotors or machines
A high efficiency transverse flux motor fan utilizes a transverse flux motor that can provide torque to drive fan blades at a reduced weight over conventional induction and brushless DC motors. A fan incorporating a transverse flux motor may be a residential ceiling fan or high volume low speed fan. Transverse flux motors are ideal for these applications as they have a higher efficiency at low revolutions per minute. A transverse flux motor may have a stator utilizing a ring shaped lamina that has extending members that form a coil channel. A lamina may be a unitary piece of material that is formed from a sheet of metal, thereby providing a very lightweight stator assembly. An exemplary fan may provide an airflow efficiency of more than about 236 L/s*W, (500 CFM/watt), an essential airflow density of more than about 2.36 L/s*g, (5 CFM/gram) and a power density of about 150 W/kg or more.
H02K 3/32 - Windings characterised by the shape, form or construction of the insulation
H02K 7/14 - Structural association with mechanical loads, e.g. with hand-held machine tools or fans
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
A self-cooling fan in configured with a vent feature that draws air into a fan housing and over a heat sink to dissipate heat generated by the motor and/or control unit. The self-cooling fan has a conduit with an attached end opening that couples with a cooling zone within the fan housing and extends along a portion of the fan blade(s). A vent feature is an opening in a conduit, at or near the extended end of the conduit, that allows air to exit the conduit. A vent feature may be a venturi feature. A venturi feature creates a vacuum within a conduit via outer diameter blade velocities interacting with venturi geometries when the blades are rotating, further promoting the drawing of air into the fan housing. A cooling channel allows air from outside of the fan assembly to enter into a cooling zone where a heat sink is configured.
A self-cooling fan in configured with a vent feature that draws air into a fan housing and over a heat sink to dissipate heat generated by the motor and/or control unit. The self-cooling fan has a conduit with an attached end opening that couples with a cooling zone within the fan housing and extends along a portion of the fan blade(s). A vent feature is an opening in a conduit, at or near the extended end of the conduit, that allows air to exit the conduit. A vent feature may be a venturi feature. A venturi feature creates a vacuum within a conduit via outer diameter blade velocities interacting with venturi geometries when the blades are rotating, further promoting the drawing of air into the fan housing. A cooling channel allows air from outside of the fan assembly to enter into a cooling zone where a heat sink is configured.
A high efficiency transverse flux motor fan utilizes a transverse flux motor that can provide torque to drive fan blades at a reduced weight over conventional induction and brushless DC motors. A fan incorporating a transverse flux motor may be a residential ceiling fan or high volume low speed fan. Transverse flux motors are ideal for these applications as they have a higher efficiency at low revolutions per minute. A transverse flux motor may have a staler utilizing a ring shaped lamina that has extending members that form a coil channel. A lamina may be a unitary piece of material that is formed from a sheet of metal, thereby providing a very lightweight stator assembly. An exemplary fan may provide an airflow efficiency of more than about 236 L/s*W, (SOOCFM/watt), an essential airflow density of more than about 2.36 L/s*g, (5 CFy/gram) and a power density of about 150W/kg or more.
An electrical machine includes a rotor for rotation about a rotational axis, a coil arranged circumferentially with respect to and encircling the rotational axis,, and a stator assembly. The stator assembly includes a unitary lamina comprising a plurality of extending members integral therewith, the extending members being bent to form a plurality of opposing extending members about the coll. The electrical machine is at least one of a transverse flux machine or a commutated flux machine. Methods of manufacturing stators for assembly with rotors to form electrical machines are also disclosed.
H02K 1/12 - Stationary parts of the magnetic circuit
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
An electrical machine includes a rotor for rotation about a rotational axis, a coil arranged circumferentially with respect to and encircling the rotational axis, and a stator assembly. The stator assembly includes a unitary lamina comprising a plurality of extending members integral therewith, the extending members being bent to form a plurality of opposing extending members about the coil. The electrical machine is at least one of a transverse flux machine or a commutated flux machine. Methods of manufacturing stators for assembly with rotors to form electrical machines are also disclosed.
H02K 1/12 - Stationary parts of the magnetic circuit
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
An electrical machine includes a rotor with a rotational axis, a coil arranged circumferentially with respect to and fully encircling the rotational axis, and a stator assembly. The stator assembly includes first and second lamination stacks comprising associated pluralities of laminae, the stacks being arranged circumferentially with respect to the rotational axis on opposing sides of the coil for conducting magnetic flux. The stacks are configured with gaps generally radially through the laminae thereof, defining separate circumferential segments in each laminae, to prevent creating a continuous electrical circuit around the rotational axis in the segments. Each laminae has a connecting ring spaced radially from the segments, and beams connecting the segments to the ring as a unitary piece. Back return elements extend axially between the stacks to provide a flux path therebetween, and are positioned circumferentially between adjacent parts of the beams and radially between the segments and the ring.
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 21/12 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets
28.
Transverse and/or commutated flux systems having segmented stator laminations
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve reduced overall cogging torque via implementation of a sixth-phase offset. Individual cogging torque waveforms in the electrical machine may be evenly distributed across one-sixth of a voltage phase or other suitable spacing, resulting in a reduced magnitude and/or increased sinusoidality of the overall cogging torque waveform for the electrical machine.
An electrical machine stator assembly comprises: an electroconductive coil arranged circumferentially with respect to the rotational axis; a plurality of pairs of side lamination assemblies arranged circumferentially with respect to the rotational axis; a plurality of pairs of switch lamination assemblies arranged circumferentially with respect to the rotational axis and positioned adjacent ends of side lamination assemblies proximal the rotor; and at least one tooth associated with each switch lamination assembly and proximal the rotor. Each switch lamination assembly comprises a first group of laminated materials aligned generally circumferentially and generally in a first direction with respect to the rotational axis, the first direction being one selected from the group consisting of the axial and radial directions with respect to the rotational axis. Each side lamination assembly comprises a second group of laminated materials aligned generally axially and generally radially with respect to the rotational axis.
An electrical machine stator assembly comprises: an electroconductive coil arranged circumferentially with respect to the rotational axis; a plurality of pairs of side lamination assemblies arranged circumferentially with respect to the rotational axis; a plurality of pairs of switch lamination assemblies arranged circumferentially with respect to the rotational axis and positioned adjacent ends of side lamination assemblies proximal the rotor; and at least one tooth associated with each switch lamination assembly and proximal the rotor. Each switch lamination assembly comprises a first group of laminated materials aligned generally circumferentially and generally in a first direction with respect to the rotational axis, the first direction being one selected from the group consisting of the axial and radial directions with respect to the rotational axis. Each side lamination assembly comprises a second group of laminated materials aligned generally axially and generally radially with respect to the rotational axis.
H02K 21/14 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
H02K 7/06 - Means for converting reciprocating motion into rotary motion or vice versa
H02K 16/00 - Machines with more than one rotor or stator
34.
Cogging torque reduction device for electrical machines
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be “balanced” to achieve reduced overall cogging torque via utilization of one or more cogging torque reduction devices. Cogging torque reduction devices may be configured and/or otherwise customized in order to reduce and/or minimize cogging torque in an electrical machine, by generating a counteracting cogging torque waveform that at least partially counteracts and/or cancels the initial cogging torque waveform of the electrical machine.
H02K 21/12 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets
H02K 1/06 - Details of the magnetic circuit characterised by the shape, form or construction
H02K 29/03 - Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
H02K 19/06 - Motors having windings on the stator and a variable-reluctance soft-iron rotor without windings, e.g. inductor motors
H02K 19/10 - Synchronous motors for multi-phase current
35.
Transverse and/or commutated flux systems having laminated and powdered metal portions
An electrical machine comprising a rotor, a coil and a stator comprising a lamination stack coupled to a tooth, wherein the electrical machine is at least one of a transversal flux machine is described. The electrical machine may be a transversal flux machine such as a transverse or commutated flux machine. A lamination ring is described comprising a plurality of lamination stacks. A lamination stack may comprise a plurality of trenches configured to retain a plurality of teeth. The tooth may comprise a portion of the switching surface, and a portion of a lamination stack may extend to the surface of the tooth to make up a portion of the switching surface. The electrical machine may be configured with a constant air gap, wherein no more than 15% variability in the distance between the stator switching surface and the rotor switching surface.
A adjustable Hall effect sensor system having a sensor positioning component is described. In one embodiment, the Hall effect sensor system is an independently adjustable sensor system, having a plurality of Hall effect sensor, wherein one Hall effect sensor may be displaced and adjusted without effecting the location of another Hall effect sensor. A sensor positioning component comprising a paddle coupled to a main body portion by a more narrow neck is described. A cam may be configured on a paddle and provide for fine tuning the position of a Hall effect sensor. In one embodiment the main body and extensions are comprised essentially of a circuit board.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of a dual wound coil. The coil ends of a dual wound coil can be on a common side, simplifying wiring. The dual wound coil may be configured with a low resistance, reducing resistive losses.
H02K 15/04 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings prior to their mounting into the machines
H02K 15/02 - Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
H02K 21/22 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
H02K 21/44 - Synchronous motors having permanent magnetsSynchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
39.
Transverse and/or commutated flux systems having laminated and powdered metal portions
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials in connection with powdered metal materials. For example, stacks of laminated materials may be coupled to powdered metal teeth to form portions of a stator in an electrical machine.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of extended magnets, overhung rotors, and/or stator tooth overlap. Extended magnets may reduce flux leakage between adjacent flux concentrators. Overhung rotors may reduce flux leakage, and may also facilitate voltage balancing in polyphase devices. Stator tooth overlap may reduce hysteresis losses, for example losses in flux concentrating portions of an electrical machine.
Disclosed are transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Certain rotors for use in transverse and commutated flux machines may be formed to facilitate a “many to many” flux switch configuration between flux concentrating stator portions having opposite polarities. Other rotors may be formed from a first material, and contain flux switches formed from a second material. Yet other rotors may be machined, pressed, stamped, folded, and/or otherwise mechanically formed. Via use of such rotors, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Disclosed are single- and poly-phase transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Exemplary devices, including polyphase devices, may variously be configured with an interior rotor and/or an interior stator. Other exemplary devices, including polyphase devices, may be configured in a slim, stacked, and/or nested configuration. Via use of such polyphase configurations, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of extended magnets, overhung rotors, and/or stator tooth overlap. Extended magnets may reduce flux leakage between adjacent flux concentrators. Overhung rotors may reduce flux leakage, and may also facilitate voltage balancing in polyphase devices. Stator tooth overlap may reduce hysteresis losses, for example losses in flux concentrating portions of an electrical machine.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to be coupled to an electric bicycle or other light electric vehicle. Certain exemplary electrical machines may be configured with a high torque density and/or lower operating losses, providing improved operational characteristics to an e-bike. Moreover, certain exemplary electrical machines may replace a gear cassette on a bicycle, allowing conversion of the bicycle from manual to electric operation.
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve reduced overall cogging torque via implementation of a sixth-phase offset. Individual cogging torque waveforms in the electrical machine may be evenly distributed across one-sixth of a voltage phase or other suitable spacing, resulting in a reduced magnitude and/or increased sinusoidality of the overall cogging torque waveform for the electrical machine.
Disclosed are transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Certain rotors for use in transverse and commutated flux machines may be formed to facilitate a “many to many” flux switch configuration between flux concentrating stator portions having opposite polarities. Other rotors may be formed from a first material, and contain flux switches formed from a second material. Yet other rotors may be machined, pressed, stamped, folded, and/or otherwise mechanically formed. Via use of such rotors, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Disclosed are single- and poly-phase transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Exemplary devices, including polyphase devices, may variously be configured with an interior rotor and/or an interior stator. Other exemplary devices, including polyphase devices, may be configured in a slim, stacked, and/or nested configuration. Via use of such polyphase configurations, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Disclosed are transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Certain exemplary stators for use in transverse and commutated flux machines may be configured with gaps therebetween, for example in order to counteract tolerance stackup. Other exemplary stators may be configured as partial stators having a limited number of magnets and/or flux concentrators thereon. Partial stators may facilitate ease of assembly and/or use with various rotors. Additionally, exemplary floating stators can allow a transverse and/or commutated flux machine to utilize an air gap independent of the diameter of a rotor. Via use of such exemplary stators, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
Disclosed are single- and poly-phase transverse and/or commutated flux machines and components thereof, and methods of making and using the same. Exemplary devices, including polyphase devices, may variously be configured with an interior rotor and/or an interior stator. Other exemplary devices, including polyphase devices, may be configured in a slim, stacked, and/or nested configuration. Via use of such polyphase configurations, transverse and/or commutated flux machines can achieve improved performance, efficiency, and/or be sized or otherwise configured for various applications.
A device for generating electrical or mechanical output, comprising a rotor coil, a rotor assembly with an axis, and having rotator extensions, a stator coil, and a stator assembly, the stator assembly having two sets of stator flux conductor extensions, the rotator end of the stator flux conductor extension having a stator conductor surface and the interior ends of the first set of stator flux conductor extensions abutting the interior ends of the second stator flux conductor extensions at an abutting junction, wherein rotating the rotor assembly about the axis alternates the rotor assembly between a first and second position in which each of the rotor extension surfaces alternately face the stator conductor surfaces of the first and second set of stator flux conductor extensions. The first and second positions of the rotor assembly lead to the conduction of magnetic flux in the device in opposite paths in the stator assembly generating an output in an output coil. Alternatively, flux conductive extensions can be mounted onto the rotor and an electromagnet or a permanent magnet onto the stator portion. A number of other variations are also shown, including configurations that reduce flux loss between the components. These other variations include a device with a disk-shaped rotor.