The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/25 - Output arrangements for video game devices
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
3.
USE OF PROJECTILE DATA TO CREATE A VIRTUAL REALITY SIMULATION OF A LIVE-ACTION SEQUENCE
Projectile data associated with a projectile launched by a player in a live-action sequence may be used to render an accurate graphical representation of the projectile (and its trajectory) within a virtual reality environment, e.g., for use in a virtual reality game or similar. For example, certain implementations described herein include the use of projectile data characterizing the path of a cricket ball bowled by a player (e.g., the "bowler") in a live-action cricket match for recreating the same (or substantially the same) path in a virtual reality cricket game. To this end, the present disclosure includes techniques for transforming projectile data for use in a virtual reality environment, creating realistic projectile movement in a virtual reality setting, and determining and recreating post-bounce behavior of a projectile for virtual representation of a bounced projectile.
Techniques for virtual reality simulation may include an accessory (e.g., a bat) for interacting with a virtual reality environment (e.g., simulating a live-action cricket match). The accessory may provide a user with haptic feedback that emulates sensations that one would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. To this end, the accessory may include one or more vibration motors in combination with one or more solenoids to emulate contact scenarios by providing feedback to a user in connection with contact between a virtual representation of the accessory and a projectile within a virtual reality environment. For example, in certain implementations, a solenoid may provide a feeling of an impact of the accessory with a projectile, while a vibration motor provides the feel of the aftershock of such contact between the accessory and a projectile.
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
6.
Virtual reality simulation of a live-action sequence
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
7.
Virtual reality simulation of a live-action sequence
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
8.
Virtual reality simulation of a live-action sequence
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
9.
Virtual reality simulation of a live-action sequence
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars
11.
Virtual reality simulation of a live-action sequence
The present disclosure generally relates to virtual reality simulation, and more specifically, in some implementations, to devices, systems, and methods for use in a virtual reality sports simulation. A system for virtual reality simulation may include an accessory (e.g., one or more of a bat, a glove, or a helmet) for interacting with a virtual reality environment. The accessory may provide the user with haptic feedback that emulates sensations that the user would experience when playing a live-action sport to provide the user with a more meaningful and realistic experience when playing a virtual reality game. Further, virtual reality simulations disclosed herein may include incorporating data from a live-action event (e.g., a live-action sporting event) into a virtual reality environment to provide a user with a realistic experience.
G06T 13/40 - 3D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/31 - Communication aspects specific to video games, e.g. between several handheld game devices at close range
A63F 13/428 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
A63F 13/573 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using trajectories of game objects, e.g. of a golf ball according to the point of impact
A63F 13/65 - Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor automatically by game devices or servers from real world data, e.g. measurement in live racing competition
A63F 13/52 - Controlling the output signals based on the game progress involving aspects of the displayed game scene
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/25 - Output arrangements for video game devices
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/245 - Constructional details thereof, e.g. game controllers with detachable joystick handles specially adapted to a particular type of game, e.g. steering wheels
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/54 - Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
A63F 13/577 - Simulating properties, behaviour or motion of objects in the game world, e.g. computing tyre load in a car race game using determination of contact between game characters or objects, e.g. to avoid collision between virtual racing cars