A method of producing petrochemicals using a hydrocarbon fuel cell includes the steps of operating the fuel cell to produce electricity, thermal energy, and one or more exhaust stream, the one or more exhaust stream comprising at least a carbon-containing gas and water, reacting at least a portion of the exhaust stream with the reactant stream of natural gas to produce one or more petrochemical streams in a reactor, and heating one or more reactants using at least a portion of at least one of the electricity and the thermal energy.
C07C 29/48 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
H01M 8/04014 - Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
2.
METHOD AND SYSTEM TO PRODUCE HYDROCARBON FEEDSTOCKS
A method that combines a fuel cell with a Gas Recovery Unit (GRU) to a methanol plant to produce methanol at near zero GHG emissions. The fuel cell generates steam, carbon dioxide and electricity. A GRU unit condenses, separates, recovers, pressurizes and reheats the fuel cell anode exhaust stream. The GRU prepares a stream of natural gas and steam to feed the fuel cell anode and a stream of carbon dioxide and air to feed the fuel cell cathode. The GRU also prepares streams of carbon dioxide and steam as reactants for the stoichiometric mixture with natural gas to produce synthesis gas in an electric catalytic reformer at a methanol plant. The electric catalytic reformer uses electricity, steam and/or carbon dioxide reactants produced by the fuel cell to produce synthesis gas for conversion to methanol with low GHG emissions.
C07C 29/151 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
B01J 19/24 - Stationary reactors without moving elements inside
H01M 8/0668 - Removal of carbon monoxide or carbon dioxide
A method to dry a gas stream that includes methane and condensable components that have a lower boiling point than methane by: combining the gas stream with a cold liquid stream in a gas mixer to produce a mixed stream that is colder than the gas stream and to condense a first portion of the condensable components; passing the mixed stream through a first separator to remove the condensed first portion and obtain a second gas stream; lowering a pressure and temperature of the second gas stream in an expansion device to obtain a third gas stream and condense a second portion of the condensable components; passing the third gas stream through a second separator to remove the condensed second portion and obtain a dried gas stream; and recirculating at least a portion of the condensed second portion into the in-line gas mixer as the cold liquid stream.
A rnethod to dry a gas strearn that includes methane and condensable components that have a lower boiling point than methane by: combining the gas stream with a cold liquid stream in a gas mixer to poduce a mixecl strearn that is colder than the gas strearn and to condense a first portion ofthe condensable components; passing the mixed streatn through a first separator to iemove the condensed first portion and obtain a second gas stream; lowering a pressure and temperature of the second gas strearn in an expansion device to obtain a third gas stream and condense a second portion of the condensable components; passing the third gas stream through a second separator to remove the condensed second portion and obtain a dried gas stream; and ieLirculating at least a portion ofthe condensed second portion into the in-line gas mixer as the cold liquid stream.
A method that combines a fuel cell with a Gas Recovery Unit (GRU) to a methanol plant to produce methanol at near zero GHG emissions. The fuel cell generates steam, carbon dioxide and electricity. A GRU unit condenses, separates, recovers, pressurizes and reheats the fuel cell anode exhaust stream. The GRU prepares a stream of natural gas and steam to feed the fuel cell anode and a stream of carbon dioxide and air to feed the fuel cell cathode. The GRU also prepares streams of carbon dioxide and steam as reactants for the stoichiometric mixture with natural gas to produce synthesis gas in an electric catalytic reformer at a methanol plant. The electric catalytic reformer uses electricity, steam and/or carbon dioxide reactants produced by the fuel cell to produce synthesis gas for conversion to methanol with low GHG emissions.
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
C01B 3/02 - Production of hydrogen or of gaseous mixtures containing hydrogen
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C10L 3/00 - Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclasses , ; Liquefied petroleum gas
H01M 8/0662 - Treatment of gaseous reactants or gaseous residues, e.g. cleaning
6.
METHOD AND SYSTEM TO PRODUCE HYDROCARBON FEEDSTOCKS
ABSTRACT OF THE DISCLOSURE A method that combines a fuel cell with a Gas Recovery Unit (GRU) to a methanol plant to produce methanol at near zero GHG emissions. The fuel cell generates steam, carbon dioxide and electricity. A GRU unit condenses, separates, recovers, pressurizes and reheats the fuel cell anode exhaust stream. The GRU prepares a stream of natural gas and steam to feed the fuel cell anode and a stream of carbon dioxide and air to feed the fuel cell cathode. The GRU also prepares streams of carbon dioxide and steam as reactants for the stoichiometric mixture with natural gas to produce synthesis gas in an electric catalytic reformer at a methanol plant. The fuel cell provides electricity for the electric catalytic reformer. The produced synthesis gas is converted into methanol in a methanol synthesis reactor. The fuel cell is a provider of; steam and carbon dioxide reactants and electricity for the electric catalytic reactor to produce synthesis gas for conversion to methanol at near zero GHG emissions, CA 3069717 2020-01-24
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
H01M 8/0662 - Treatment of gaseous reactants or gaseous residues, e.g. cleaning
C01B 3/02 - Production of hydrogen or of gaseous mixtures containing hydrogen
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C10L 3/00 - Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclasses , ; Liquefied petroleum gas
7.
Production of petrochemical feedstocks and products using a fuel cell
A method of producing petrochemicals using a hydrocarbon fuel cell includes the steps of operating the fuel cell to produce electricity, thermal energy, and one or more exhaust stream, the one or more exhaust stream comprising at least a carbon-containing gas and water, reacting at least a portion of the exhaust stream with the reactant stream of natural gas to produce one or more petrochemical streams in a reactor, and heating one or more reactants using at least a portion of at least one of the electricity and the thermal energy.
H01M 8/04 - Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
C07C 29/48 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
H01M 8/04014 - Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
8.
Method to recover and process methane and condensates from flare gas systems
A method to recover and process hydrocarbons from a gas flare system to produce natural gas liquids (NGL), cold compressed natural gas (CCNG), compressed natural gas (CNG) and liquid natural gas (LNG). The method process provides the energy required to recover and process the hydrocarbon gas stream through compression and expansion of the various streams.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
E21B 43/34 - Arrangements for separating materials produced by the well
9.
Method to recover LPG and condensates from refineries fuel gas streams
+ fractions upstream of a fractionator. The temperature of the gas stream entering the fractionator may be monitored downstream of the in-line mixer. The pre-cooled stream of high pressure natural gas is sufficiently cooled by flowing through a gas expander that, when mixed with the pre-cooled refinery fuel gas, the resulting temperature causes condensation of heavier hydrocarbon fractions before entering the fractionator. A further cooled, pressure expanded natural gas reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature may be controlled by a circulating reboiler stream.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
A method of upgrading oil using supercritical fluids generated by a fuel cell. The process uses supercritical carbon dioxide to control the specific gravity of the oil and supercritical water, the amount of which is controlled to achieve a desired oil/water ratio in processing oils to be upgraded. The process recovers the GHG emission stream from a fuel cell anode exhaust to produce supercritical fluids.
C09K 8/592 - Compositions used in combination with generated heat, e.g. by steam injection
C10G 9/36 - Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
E21B 43/16 - Enhanced recovery methods for obtaining hydrocarbons
E21B 43/24 - Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
E21B 43/40 - Separation associated with re-injection of separated materials
H01M 8/04119 - Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
H01M 8/0662 - Treatment of gaseous reactants or gaseous residues, e.g. cleaning
11.
PRODUCTION OF PETROCHEMICAL FEEDSTOCKS AND PRODUCTS USING A FUEL CELL
A method of producing petrochemicals using a hydrocarbon fuel cell includes the steps of operating the fuel cell to produce electricity, thermal energy, and one or more exhaust stream, the one or more exhaust stream comprising at least a carbon-containing gas and water, reacting at least a portion of the exhaust stream with the reactant stream of natural gas to produce one or more petrochemical streams in a reactor, and heating one or more reactants using at least a portion of at least one of the electricity and the thermal energy.
A method of producing petrochemicals using a hydrocarbon fuel cell includes the steps of operating the fuel cell to produce electricity, thermal energy, and one or more exhaust stream, the one or more exhaust stream comprising at least a carbon- containing gas and water, reacting at least a portion of the exhaust stream with the reactant stream of natural gas to produce one or more petrochemical streams in a reactor, and heating one or more reactants using at least a portion of at least one of the electricity and the thermal energy.
C07C 29/152 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
H01M 8/0662 - Treatment of gaseous reactants or gaseous residues, e.g. cleaning
C07C 29/15 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
13.
A METHOD TO RECOVER LPG AND CONDENSATES FROM REFINERIES FUEL GAS STREAMS
A method to recover hydrocarbonfractions from refineries gas streams involves a pre-cooled heat refinery fuel gas stream mixed with a pre-cooled and expanded supply of natural gas stream in an inline mixer to condense and recover at least C3 + fractions upstream of a fractionator. The temperature of the gas stream entering the fractionator may be monitored downstream of the in-line mixer. The pre-cooled stream of high pressure natural gas is sufficiently cooled by flowing through a gas expander that, when mixed with the pre- cooled refinery fuel gas, the resulting temperature causes condensation of heavier hydrocarbon fractions before entering the fractionator. A further cooled, pressure expanded natural gas reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature may be controlled by a circulating reboiler stream.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
C10L 3/10 - Working-up natural gas or synthetic natural gas
14.
A METHOD TO RECOVER LPG AND CONDENSATES FROM REFINERIES FUEL GAS STREAMS
33 + fractions upstream of a fractionator. The temperature of the gas stream entering the fractionator may be monitored downstream of the in-line mixer. The pre-cooled stream of high pressure natural gas is sufficiently cooled by flowing through a gas expander that, when mixed with the pre- cooled refinery fuel gas, the resulting temperature causes condensation of heavier hydrocarbon fractions before entering the fractionator. A further cooled, pressure expanded natural gas reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature may be controlled by a circulating reboiler stream.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
C10L 3/10 - Working-up natural gas or synthetic natural gas
15.
A METHOD TO RECOVER LPG AND CONDENSATES FROM REFINERIES FUEL GAS STREAMS
A method to recover hydrocarbonfractions from refineries gas streams involves a pre-cooled heat refinery fuel gas stream mixed with a pre-cooled and expanded supply of natural gas stream in an inline mixer to condense and recover at least C3+ fractions upstream of a fractionator. The temperature of the gas stream entering the fractionator may be monitored downstream of the in-line mixer. The pre-cooled stream of high pressure natural gas is sufficiently cooled by flowing through a gas expander that, when mixed with the pre-cooled refinery fuel gas, the resulting temperature causes condensation of heavier hydrocarbon fractions before entering the fractionator. A further cooled, pressure expanded natural gas reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature may be controlled by a circulating reboiler stream.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
C10L 3/00 - Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclasses , ; Liquefied petroleum gas
16.
A METHOD TO RECOVER AND PROCESS METHANE AND CONDENSATES FROM FLARE GAS SYSTEMS
A method to recover and process hydrocarbons from a gas flare system to produce natural gas liquids (NGL), cold compressed natural gas (CCNG), compressed natural gas (CNG) and liquid natural gas (LNG). The method process provides the energy required to recover and process the hydrocarbon gas stream through compression and expansion of the various streams.
A method of producing temperature and pressure conditioned fluids using a fuel cell. The fuel cell generates an anode exhaust stream of water vapour and carbon dioxide. The water in the exhaust stream is condensed and separated to produce a stream of water and a stream of carbon dioxide. A first portion of the stream of water is heated to produce a stream of steam, which is combined with the fuel to form the anode input stream. A stream of condensed carbon dioxide is obtained by condensing at least a portion of the carbon dioxide in the stream of carbon dioxide. At least one fluid is heated and compressed to a target temperature and pressure for each fluid, the at least one fluid comprising a second portion of the stream of water or at least a portion of the condensed carbon dioxide.
H01M 8/0668 - Removal of carbon monoxide or carbon dioxide
H01M 8/04014 - Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
H01M 8/04119 - Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
C09K 8/592 - Compositions used in combination with generated heat, e.g. by steam injection
C09K 8/594 - Compositions used in combination with injected gas
E21B 43/24 - Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
E21B 36/00 - Heating, cooling, or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
E21B 43/16 - Enhanced recovery methods for obtaining hydrocarbons
F24H 8/00 - Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
18.
Method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (LNG)
A method to pre-treat an inlet natural gas stream at gas pressure reduction stations to produce LNG removes water and carbon dioxide from a natural gas stream. The energy required for the process is provided by recovering pressure energy in the inlet gas stream. The process eliminates the conventional gas pre-heating process at pressure reductions stations employing gas combustion heaters. The process provides a method to produce LNG at natural gas pressure reduction that meets product specifications.
B01D 53/14 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
19.
Method of extracting coal bed methane using carbon dioxide
A method to extract methane from a coal bed seam with carbon dioxide produced and recovered from a fuel cell anode exhaust stream while simultaneously sequestering the carbon dioxide on the coal. The process produces methane to supply a fuel cell to generate electricity while reducing or eliminating GHG emissions.
E21B 43/00 - Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
B01D 53/00 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols
A method to enhance the production of oil from underground oil deposits recovers the anode exhaust stream components and thermal energy from a fuel cell for injection in a well pipeline to heat, displace and flow oil into a production well pipeline at optimal reservoir pressure and operating conditions. The process recovers and injects the GHG emission stream from a fuel cell anode exhaust stream into an oil reservoir to increase oil production.
C09K 8/592 - Compositions used in combination with generated heat, e.g. by steam injection
C09K 8/594 - Compositions used in combination with injected gas
E21B 43/24 - Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
H01M 8/0668 - Removal of carbon monoxide or carbon dioxide
E21B 36/00 - Heating, cooling, or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
E21B 43/16 - Enhanced recovery methods for obtaining hydrocarbons
F24H 8/00 - Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
H01M 8/04014 - Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
H01M 8/04119 - Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
A method to establish an adsorption/desorption process by injecting carbon dioxide into a coal bed involves injecting a carbon dioxide stream in a coal bed such that it is adsorbed by the coal bed and such that methane stored in the coal bed is desorbed and displaced. The displaced methane is extracted and processed for distribution.
A62D 3/00 - Processes for making harmful chemical substances harmless, or less harmful, by effecting a chemical change in the substances
B01D 53/02 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
22.
Method of preparing natural gas to produce liquid natural gas (LNG)
A method of stripping carbon dioxide from a stream of natural gas to be used in the production of liquid natural gas (LNG) comprises the steps of: passing a stream of natural gas through a stripping column; injecting a stripping agent into the stripping column, the stripping agent stripping carbon dioxide from the stream of natural gas and exiting the stripping column as a liquid phase; passing the stripping agent exiting the stripping column through a regenerator column to generate a carbon dioxide gas stream and a recovered stripping agent stream; and cooling the recovered stripping agent stream using a cryogenic vapour generated in the production of LNG and injecting the cooled, recovered stripping agent stream into the stripping column as the stripping agent.
B01D 53/14 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
A method to establish an adsorption/desorption process by injecting carbon dioxide into a coal bed involves injecting a carbon dioxide stream in a coal bed such that it is adsorbed by the coal bed and such that methane stored in the coal bed is desorbed and displaced. The displaced methane is extracted and processed for distribution.
A method to recover and process hydrocarbons from a gas flare system to produce natural gas liquids (NGL), cold compressed natural gas (CCNG), compressed natural gas (CNG) and liquid natural gas (LNG). The method process provides the energy required to recover and process the hydrocarbon gas stream through compression and expansion of the various streams.
F25J 3/00 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification
C10L 3/10 - Working-up natural gas or synthetic natural gas
E21B 43/34 - Arrangements for separating materials produced by the well
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
25.
Method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
A method is described for removing carbon dioxide during Liquid Natural Gas production from natural gas at gas pressure letdown stations. The above method removes carbon dioxide from a Liquid Natural Gas production stream by using hydrocarbon fractions taken from a gas for consumption stream as a carbon dioxide stripping adsorption agent for a stripping column used to remove carbon dioxide.
F25J 3/08 - Separating gaseous impurities from gases or gaseous mixtures
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
26.
METHOD OF EXTRACTING COAL BED METHANE USING CARBON DIOXIDE
A method to extract methane from a coal bed seam with carbon dioxide produced and recovered from a fuel cell anode exhaust stream while simultaneously sequestering the carbon dioxide on the coal. The process produces methane to supply a fuel cell to generate electricity while reducing or eliminating GHG emissions.
E21B 43/16 - Enhanced recovery methods for obtaining hydrocarbons
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
H01M 8/04007 - Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
H01M 8/0668 - Removal of carbon monoxide or carbon dioxide
27.
METHOD OF EXTRACTING COAL BED METHANE USING CARBON DIOXIDE
A method to extract methane from a coal bed seam with carbon dioxide produced and recovered from a fuel cell anode exhaust stream while simultaneously sequestering the carbon dioxide on the coal. The process produces methane to supply a fuel cell to generate electricity while reducing or eliminating GHG emissions.
H01M 8/04007 - Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
H01M 8/0668 - Removal of carbon monoxide or carbon dioxide
E21B 43/16 - Enhanced recovery methods for obtaining hydrocarbons
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
A method of upgrading oil using supercritical fluids generated by a fuel cell. The process uses supercritical carbon dioxide to control the specific gravity of the oil and supercritical water, the amount of which is controlled to achieve a desired oil/water ratio in processing oils to be upgraded. The process recovers the GHG emission stream from a fuel cell anode exhaust to produce supercritical fluids.
C10G 31/06 - Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
C10G 9/40 - Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by indirect contact with preheated fluid other than hot combustion gases
H01M 8/0662 - Treatment of gaseous reactants or gaseous residues, e.g. cleaning
A method of upgrading oil using supercritical fluids generated by a fuel cell. The process uses supercritical carbon dioxide to control the specific gravity of the oil and supercritical water, the amount of which is controlled to achieve a desired oil/water ratio in processing oils to be upgraded. The process recovers the GHG emission stream from a fuel cell anode exhaust to produce supercritical fluids.
A method of producing temperature and pressure conditioned fluids using a fuel cell. The fuel cell generates an anode exhaust stream of water vapour and carbon dioxide. The water in the exhaust stream is condensed and separated to produce a stream of water and a stream of carbon dioxide. A first portion of the stream of water is heated to produce a stream of steam, which is combined with the fuel to form the anode input stream. A stream of condensed carbon dioxide is obtained by condensing at least a portion of the carbon dioxide in the stream of carbon dioxide. At least one fluid is heated and compressed to a target temperature and pressure for each fluid, the at least one fluid comprising a second portion of the stream of water or at least a portion of the condensed carbon dioxide.
A method of producing temperature and pressure conditioned fluids using a fuel cell. The fuel cell generates an anode exhaust stream of water vapour and carbon dioxide. The water in the exhaust stream is condensed and separated to produce a stream of water and a stream of carbon dioxide. A first portion of the stream of water is heated to produce a stream of steam, which is combined with the fuel to form the anode input stream. A stream of condensed carbon dioxide is obtained by condensing at least a portion of the carbon dioxide in the stream of carbon dioxide. At least one fluid is heated and compressed to a target temperature and pressure for each fluid, the at least one fluid comprising a second portion of the stream of water or at least a portion of the condensed carbon dioxide.
A method to enhance the production of oil from underground oil deposits recovers the anode exhaust stream components and thermal energy from a fuel cell for injection in a well pipeline to heat, displace and flow oil into a production well pipeline at optimal reservoir pressure and operating conditions. The process recovers and injects the GHG emission stream from a fuel cell anode exhaust stream into an oil reservoir to increase oil production.
A method to enhance the production of oil from underground oil deposits recovers the anode exhaust stream components and thermal energy from a fuel cell for injection in a well pipeline to heat, displace and flow oil into a production well pipeline at optimal reservoir pressure and operating conditions. The process recovers and injects the GHG emission stream from a fuel cell anode exhaust stream into an oil reservoir to increase oil production.
A method of stripping carbon dioxide from a stream of natural gas to be used in the production of liquid natural gas (LNG) comprises the steps of: passing a stream of natural gas through a stripping column; injecting a stripping agent into the stripping column, the stripping agent stripping carbon dioxide from the stream of natural gas and exiting the stripping column as a liquid phase; passing the stripping agent exiting the stripping column through a regenerator column to generate a carbon dioxide gas stream and a recovered stripping agent stream; and cooling the recovered stripping agent stream using a cryogenic vapour generated in the production of LNG and injecting the cooled, recovered stripping agent stream into the stripping column as the stripping agent.
C10L 3/10 - Working-up natural gas or synthetic natural gas
B01D 53/14 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
A method to pre-treat an inlet natural gas stream at gas pressure reduction stations to produce LNG removes water and carbon dioxide from a natural gas stream. The energy required for the process is provided by recovering pressure energy in the inlet gas stream. The process eliminates the conventional gas pre-heating process at pressure reductions stations employing gas combustion heaters. The process provides a method to produce LNG at natural gas pressure reduction that meets product specifications.
A method to pre-treat an inlet natural gas stream at gas pressure reduction stations to produce LNG removes water and carbon dioxide from a natural gas stream. The energy required for the process is provided by recovering pressure energy in the inlet gas stream. The process eliminates the conventional gas pre-heating process at pressure reductions stations employing gas combustion heaters. The process provides a method to produce LNG at natural gas pressure reduction that meets product specifications.
A method of stripping carbon dioxide from a stream of natural gas to be used in the production of liquid natural gas (LNG) comprises the steps of: passing a stream of natural gas through a stripping column; injecting a stripping agent into the stripping column, the stripping agent stripping carbon dioxide from the stream of natural gas and exiting the stripping column as a liquid phase; passing the stripping agent exiting the stripping column through a regenerator column to generate a carbon dioxide gas stream and a recovered stripping agent stream; and cooling the recovered stripping agent stream using a cryogenic vapour generated in the production of LNG and injecting the cooled, recovered stripping agent stream into the stripping column as the stripping agent.
C10L 3/10 - Working-up natural gas or synthetic natural gas
B01D 53/14 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
There is provided a method to produce PLNG and CCNG at Straddle Plants. In contrast to present practice at Straddle Plants, there is added a slipstream of high pressure, pre-treated, pre-cooled natural gas stream to feed a new PLNG and or CCNG production section. This slipstream is further cooled in a heat exchanger by a counter-current vapour fraction of the expanded gas before entering an expander apparatus. The cooled gas is expanded into a separator. The cold vapour fraction from the separator is routed and expanded to the Straddle Plant fractionator. The produced PLNG is routed to storage.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
39.
A METHOD TO PRODUCE PLNG AND CCNG AT STRADDLE PLANTS
There is provided a method to produce PLNG and CCNG at Straddle Plants. In contrast to present practice at Straddle Plants, there is added a slipstream of high pressure, pre-treated, pre-cooled natural gas stream to feed a new PLNG and or CCNG production section. This slipstream is further cooled in a heat exchanger by a counter- current vapour fraction of the expanded gas before entering an expander apparatus. The cooled gas is expanded into a separator. The cold vapour fraction from the separator is routed and expanded to the Straddle Plant fractionator. The produced PLNG is routed to storage.
A method to produce LNG at straddle plants. In contrast to known methods, there is provided a slipstream of a high pressure, pre-treated, pre-cooled natural gas stream to a straddle LNG plant section. The slipstream is further cooled, and processed in a high pressure column to a methane content of 85% or 85 plus by mole. The processed stream is further treated to remove carbon dioxide. The de-carbonated high pressure stream is further cooled in a heat exchanger by a counter-current vapor fraction of the expanded gas before entering an expander apparatus. The processed, treated and cooled gas is expanded into a separator. The produced LNG fraction is pumped to storage. A portion of the LNG fraction is used as a reflux stream to the high pressure column. The cold vapor fraction from the separator flows through counter-current heat exchangers, giving up its coolth energy before being re-compressed into the high pressure transmission gas pipeline.
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
C10L 3/10 - Working-up natural gas or synthetic natural gas
41.
A METHOD OF REMOVING CARBON DIOXIDE DURING LIQUID NATURAL GAS PRODUCTION FROM NATURAL GAS AT GAS PRESSURE LETDOWN STATIONS
A method is described for removing carbon dioxide during Liquid Natural Gas production from natural gas at gas pressure letdown stations. The above method removes carbon dioxide from a Liquid Natural Gas production stream by using hydrocarbon fractions taken from a gas for consumption stream as a carbon dioxide stripping adsorption agent for a stripping column used to remove carbon dioxide.
A method is described for removing carbon dioxide during Liquid Natural Gas production from natural gas at gas pressure letdown stations. The above method removes carbon dioxide from a Liquid Natural Gas production stream by using hydrocarbon fractions taken from a gas for consumption stream as a carbon dioxide stripping adsorption agent for a stripping column used to remove carbon dioxide.
A method and apparatus for upgrading heavy oil is described, having a symbiotic relationship between a cracking reactor vessel and a steam reformer vessel. A first portion of an uncracked residue oil stream from the cracking reactor vessel is passed through a heat exchanger positioned within the steam reformer vessel and back to the cracking reactor vessel, such that a heat exchange takes place which heats the uncracked residue oil stream to promote cracking. A second portion of the uncracked residue oil stream from the cracking reactor vessel is injected directly into the steam reformer vessel. That portion of the uncracked residue oil stream not vaporized in the steam reformer vessel is converted into coke which becomes deposited in a fluidized bed of the steam reformer vessel. The fluidized bed activates steam which reacts with the coke to generate hydrogen. Hydrogen from the steam reformer vessel is directed into the cracking reactor vessel to assist with cracking.
C10G 47/02 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions characterised by the catalyst used
C10G 47/26 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
C10G 47/30 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions with moving solid particles according to the "fluidised bed" technique
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
44.
Method to produce LNG at gas pressure letdown stations in natural gas transmission pipeline systems
There is described a method to produce LNG at gas pressure letdown stations. A high pressure gas stream is pre-cooled, dewatered, and then divided into two streams: a diverted LNG production stream (LNG stream) and a gas to end users stream (User stream). Carbon dioxide is removed from the LNG stream and the LNG stream is compressed. The LNG stream is then precooled by passing through one or more heat exchangers. Hydrocarbon condensate is removed from the LNG steam by passing the LNG stream through a first Knock Out drum. The LNG stream is then depressured by passing through a JT valve to depressurize the gas vapour exiting the first Knock Out drum and discharge it into a second Knock Out drum where the LNG is captured.
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
45.
Method of producing and distributing liquid natural gas
A method for producing liquid natural gas (LNG) includes the following steps. Compressor stations forming part of existing natural-gas distribution network are identified. Compressor stations that are geographically suited for localized distribution of LNG are selected. Natural gas flowing through the selected compressor stations is diverted to provide a high pressure first natural gas stream and a high pressure second natural gas stream. A pressure of the first natural gas stream is lowered to produce cold temperatures through pressure let-down gas expansion and then the first natural gas stream is consumed as a fuel gas for an engine driving a compressor at the compressor station. The second natural gas stream is first cooled with the cold temperatures generated by the first natural gas stream, and then expanded to a lower pressure, thus producing LNG.
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
C10L 3/10 - Working-up natural gas or synthetic natural gas
46.
Method to recover LPG and condensates from refineries fuel gas streams
+ fractions before entering the fractionator. A LNG reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature is controlled by a circulating reboiler stream.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
C01B 3/50 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
C10G 5/06 - Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
47.
Temperature controlled method to liquefy gas and a production plant using the method
A method for liquefying gas involving pre-treating the gas stream in a pre-treater to remove impurities, and then passing the gas stream through a first flow path of a first heat exchanger to lower a temperature of the gas stream. The gas stream is then passed through the gas expansion turbine to lower a pressure of the gas stream and further decrease the temperature of the gas stream. The gas stream is then passed into a primary separator to separate the gas stream into a liquid stream and a cold gas stream. The liquid stream is collected. Selected quantities of the cold gas stream are passed through a second flow path of the first heat exchanger whereby a heat exchange takes place to cool the gas stream flowing through the first flow path to maintain the temperature of the gas stream entering the gas expansion turbine at a temperature which promotes the production of liquids.
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
A method to produce LNG at straddle plants. In contrast to known methods, there is provided a slipstream of a high pressure, pre-treated, pre-cooled natural gas stream to a straddle LNG plant section. The slipstream is further cooled, and processed in a high pressure column to a methane content of 85% or 85 plus by mole. The processed stream is further treated to remove carbon dioxide. The de-carbonated high pressure stream is further cooled in a heat exchanger by a counter-current vapour fraction of the expanded gas before entering an expander apparatus. The processed, treated and cooled gas is expanded into a separator. The produced LNG fraction is pumped to storage. A portion of the LNG fraction is used as a reflux stream to the high pressure column. The cold vapour fraction from the separator flows through counter-current heat exchangers, giving up its coolth energy before being re- compressed into the high pressure transmission gas pipeline.
A method to produce LNG at straddle plants. In contrast to known methods, there is provided a slipstream of a high pressure, pre-treated, pre-cooled natural gas stream to a straddle LNG plant section. The slipstream is further cooled, and processed in a high pressure column to a methane content of 85% or 85 plus by mole. The processed stream is further treated to remove carbon dioxide. The de-carbonated high pressure stream is further cooled in a heat exchanger by a counter-current vapour fraction of the expanded gas before entering an expander apparatus. The processed, treated and cooled gas is expanded into a separator. The produced LNG fraction is pumped to storage. A portion of the LNG fraction is used as a reflux stream to the high pressure column. The cold vapour fraction from the separator flows through counter-current heat exchangers, giving up its coolth energy before being recompressed into the high pressure transmission gas pipeline.
A cascading processor is described which includes a processor body having an upper inlet and a lower outlet, such that materials pass by force of gravity from inlet to the outlet. The processor body has a plurality of processing levels which are sequentially vertically spaced progressively downwardly from the inlet to the outlet, such that materials cascade by force of gravity from one processing level to another processing level as the materials pass through the processor body front the inlet to the outlet. This cascading processor was developed for recovery of bitumen front oil sands, but can be used to process oil shales or to process biomasses.
C10G 1/02 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
C10G 47/00 - Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, to obtain lower boiling fractions
C01B 3/06 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
C01B 3/44 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles using the fluidised bed technique
C01B 3/48 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
C10G 1/04 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
F27D 21/00 - Arrangement of monitoring devices; Arrangements of safety devices
A method and apparatus for upgrading heavy oil is described, having a symbiotic relationship between a cracking reactor vessel and a steam reformer vessel. A first portion of an uncracked residue oil stream from the cracking reactor vessel is passed through a heat exchanger positioned within the steam reformer vessel and back to the cracking reactor vessel, such that a heat exchange takes place which heats the uncracked residue oil stream to promote cracking. A second portion of the uncracked residue oil stream from the cracking reactor vessel is injected directly into the steam reformer vessel. That portion of the uncracked residue oil stream not vaporized in the steam reformer vessel is converted into coke which becomes deposited in a fluidized bed of the steam reformer vessel. The fluidized bed activates steam which reacts with the coke to generate hydrogen. Hydrogen from the steam reformer vessel is directed into the cracking reactor vessel to assist with cracking.
C10G 63/04 - Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only including at least one cracking step
A method and apparatus for upgrading heavy oil is described, having a symbiotic relationship between a cracking reactor vessel and a steam reformer vessel. A first portion of an uncracked residue oil stream from the cracking reactor vessel is passed through a heat exchanger positioned within the steam reformer vessel and back to the cracking reactor vessel, such that a heat exchange takes place which heats the uncracked residue oil stream to promote cracking. A second portion of the uncracked residue oil stream from the cracking reactor vessel is injected directly into the steam reformer vessel. That portion of the uncracked residue oil stream not vaporized in the steam reformer vessel is converted into coke which becomes deposited in a fluidized bed of the steam reformer vessel. The fluidized bed activates steam which reacts with the coke to generate hydrogen. Hydrogen from the steam reformer vessel is directed into the cracking reactor vessel to assist with cracking.
C10G 63/04 - Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only including at least one cracking step
53.
A METHOD TO PRODUCE LNG AT GAS PRESSURE LETDOWN STATIONS IN NATURAL GAS TRANSMISSION PIPELINE SYSTEMS
There is described a method to produce LNG at gas pressure letdown stations. A high pressure gas stream is pre-cooled, dewatered, and then divided into two streams: a diverted LNG production stream (LNG stream) and a gas to end users stream (User stream). Carbon dioxide is removed from the LNG stream and the LNG stream is compressed. The LNG stream is then precooled by passing through one or more heat exchangers. Hydrocarbon condensate is removed from the LNG steam by passing the LNG stream through a first Knock Out drum. The LNG stream is then depressured by passing through a JT valve to depressurize the gas vapour exiting the first Knock Out drum and discharge it into a second Knock Out drum where the LNG is captured.
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
C10L 3/06 - Natural gas; Synthetic natural gas obtained by processes not covered by , or
54.
A METHOD TO PRODUCE LNG AT GAS PRESSURE LETDOWN STATIONS IN NATURAL GAS TRANSMISSION PIPELINE SYSTEMS
There is described a method to produce LNG at gas pressure letdown stations. A high pressure gas stream is pre-cooled, dewatered, and then divided into two streams: a diverted LNG production stream (LNG stream) and a gas to end users stream (User stream). Carbon dioxide is removed from the LNG stream and the LNG stream is compressed. The LNG stream is then precooled by passing through one or more heat exchangers. Hydrocarbon condensate is removed from the LNG steam by passing the LNG stream through a first Knock Out drum. The LNG stream is then depressured by passing through a JT valve to depressurize the gas vapour exiting the first Knock Out drum and discharge it into a second Knock Out drum where the LNG is captured.
A method for producing liquid natural gas (LNG) includes the following steps. Compressor stations forming part of existing natural-gas distribution network are identified. Compressor stations that are geographically suited for localized distribution of LNG are selected. Natural gas flowing through the selected compressor stations is diverted to provide a high pressure first natural gas stream and a high pressure second natural gas stream. A pressure of the first natural gas stream is lowered to produce cold temperatures through pressure let-down gas expansion and then the first natural gas stream is consumed as a fuel gas for an engine driving a compressor at the compressor station. The second natural gas stream is first cooled with the cold temperatures generated by the first natural gas stream, and then expanded to a lower pressure, thus producing LNG.
A method for producing liquid natural gas (LNG) includes the following steps. Compressor stations forming part of existing natural-gas distribution network are identified. Compressor stations that are geographically suited for localized distribution of LNG are selected. Natural gas flowing through the selected compressor stations is diverted to provide a high pressure first natural gas stream and a high pressure second natural gas stream. A pressure of the first natural gas stream is lowered to produce cold temperatures through pressure let-down gas expansion and then the first natural gas stream is consumed as a fuel gas for an engine driving a compressor at the compressor station. The second natural gas stream is first cooled with the cold temperatures generated by the first natural gas stream, and then expanded to a lower pressure, thus producing LNG.
A method to recover olefins and C2+ fractions from refineries gas streams. The traditional recovery methods employed at refineries are absorption with solvents and cryogenic technology using compression and expansion aided by external refrigeration systems. In contrast to known methods, there is provided first a pre-cooling heat exchanger on a feed line feeding the gas stream to a in-line mixer, secondly by injecting and mixing a stream of LNG to condense the C2+ fractions upstream of the fractionator. The temperature of the gas stream entering the fractionator is monitored downstream of the in-line mixer. A LNG stream is temperature controlled to flow through the injection inlet and mix with the feed gas at a temperature which results in the condensation of the C2+ fractions before entering the fractionator. A LNG reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature is controlled by a circulating reboiler stream.
A method to recover olefins and C2+ fractions from refineries gas streams. The traditional recovery methods employed at refineries are absorption with solvents and cryogenic technology using compression and expansion aided by external refrigeration systems. In contrast to known methods, there is provided first a pre-cooling heat exchanger on a feed line feeding the gas stream to a in-line mixer, secondly by injecting and mixing a stream of LNG to condense the C2+ fractions upstream of the fractionator. The temperature of the gas stream entering the fractionator is monitored downstream of the in- line mixer. A LNG stream is temperature controlled to flow through the injection inlet and mix with the feed gas at a temperature which results in the condensation of the C2+ fractions before entering the fractionator. A LNG reflux stream is temperature controlled to maintain fractionator overhead temperature. The fractionator bottoms temperature is controlled by a circulating reboiler stream.
A method for liquefying gas involving pre-treating the gas stream in a pre- treater to remove impurities, and then passing the gas stream through a first flow path of a first heat exchanger to lower a temperature of the gas stream. The gas stream is then passed though the gas expansion turbine to lower a pressure of the gas stream and further decrease the temperature of the gas stream. The gas stream is then passed into a primary separator to separate the gas stream into a liquid stream and a cold gas stream. The liquid stream is collected. Selected quantities of the cold gas stream are passed through a second flow path of the first heat exchanger whereby a heat exchange takes place to cool the gas stream flowing through the first flow path to maintain the temperature of the gas stream entering the gas expansion turbine at a temperature which promotes the production of liquids.
The present invention provides a method for maximizing NGL's recovery at straddle plants and produce LNG. The method involves producing LNG and using the produced LNG as an external cooling source to control the operation of a de-methanizer column.
A method for production of liquid natural gas (LNG) at natural gas liquids (NGLs) recovery plants that maximizes NGLs recovery by producing LNG and using the produced LNG as an external cooling source to control the operation of a de-methanizer column at the NLG recovery facility. In at least one embodiment, LNG is added from an LNG overhead receiver by direct mixing to control the temperature profile in the NGL de-methanizer column. The temperature in an overhead product of the de-methanizer column is controlled by controlling addition of LNG as a reflux stream. The temperature in an expanded feed gas to the de-methanizer column is controlled by controlling addition of LNG as a tempering gas, while stripping of carbon dioxide from an NGL product stream is controlled by controlling the addition of LNG as stripping gas.
F25J 3/02 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
F25J 1/00 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
A cascading processor is described which includes a processor body having an upper inlet and a lower outlet, such that materials pass by force of gravity from inlet to the outlet. The processor body has a plurality of processing levels which are sequentially vertically spaced progressively downwardly from the inlet to the outlet, such that materials cascade by force of gravity from one processing level to another processing level as the materials pass through the processor body from the inlet to the outlet. This cascading processor was developed for recovery of bitumen from oil sands, but can be used to process oil shales or to process biomasses.
B03B 9/02 - General arrangement of separating plant, e.g. flow sheets specially adapted for oil-sand, oil-chalk, oil-shales, ozokerite, bitumen, or the like
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
A cascading processor is described which includes a processor body having an upper inlet and a lower outlet, such that materials pass by force of gravity from inlet to the outlet. The processor body has a plurality of processing levels which are sequentially vertically spaced progressively downwardly from the inlet to the outlet, such that materials cascade by force of gravity from one processing level to another processing level as the materials pass through the processor body from the inlet to the outlet. This cascading processor was developed for recovery of bitumen from oil sands, but can be used to process oil shales or to process biomasses.
C10G 1/00 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
B03B 9/02 - General arrangement of separating plant, e.g. flow sheets specially adapted for oil-sand, oil-chalk, oil-shales, ozokerite, bitumen, or the like
64.
Method to upgrade heavy oil in a temperature gradient reactor (TGR)
A method of upgrading heavy oil in which the heavy oil is preheated to above a boiling point of water to remove water as steam and lighter fractions as vapors. The heavy oil passes downwardly through a series of sequential horizontal heat gradients in a temperature gradient reactor. A temperature of each sequential heat gradient progressively increases so that lighter fractions of the heavy oil vaporize with minimal cracking and heavier heavy oil fractions continue to fall by force of gravity downwards. As they pass through further sequential heat gradients of progressively increasing temperature, they tend to crack into lighter fractions in the presence of nascent hydrogen. Coke, formed from heavier heavy oil fractions generated and deposited on a fluidized catalytic bed a bottom of the temperature gradient reactor, is fluidized with superheated steam. The superheated steam generates the nascent hydrogen required to promote hydrogen reactions by indirect heated steam reforming and water-gas shift reactions.
C10B 55/10 - Coking mineral oils, bitumen, tar or the like, or mixtures thereof, with solid carbonaceous materials with solid materials with moving solid materials in dispersed form according to the "fluidised bed" technique
C10G 47/22 - Non-catalytic cracking in the presence of hydrogen
C01B 3/10 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals by reaction of water vapour with metals
C10G 31/06 - Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by heating, cooling, or pressure treatment
C10G 69/04 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
65.
METHOD OF RECOVERY OF NATURAL GAS LIQUIDS FROM NATURAL GAS AT NGLS RECOVERY PLANTS
A method to recover natural gas liquids from natural gas streams at NGL recovery plants. The present invention relates to methods using liquid natural gas (LNG) as an external source of stored cold energy to reduce the energy and improve the operation of NGL distillation columns. More particularly, the present invention provides methods to efficiently and economically achieve higher recoveries of natural gas liquids at NGL recovery plants.
A method of upgrading heavy oil in which the heavy oil is preheated to above a boiling point of water to remove water as steam and lighter fractions as vapours. The heavy oil passes downwardly through a series of sequential horizontal heat gradients in a temperature gradient reactor. A temperature of each sequential heat gradient progressively increases so that lighter fractions of the heavy oil vaporize with minimal cracking and heavier heavy oil fractions continue to fall by force of gravity downwards. As they pass through further sequential heat gradients of progressively increasing temperature, they tend to crack into lighter fractions in the presence of nascent hydrogen. Coke, formed from heavier heavy oil fractions generated and deposited on a fluidized catalytic bed a bottom of the temperature gradient reactor, is fluidized with superheated steam. The superheated steam generates the nascent hydrogen required to promote hydrogen reactions by indirect heated steam reforming and water-gas shift reactions.
C10G 49/18 - Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups , , , , or in the presence of hydrogen-generating compounds, e.g. ammonia, water, hydrogen sulfide
C10B 55/00 - Coking mineral oils, bitumen, tar or the like, or mixtures thereof, with solid carbonaceous materials
67.
Extraction and upgrading of bitumen from oil sands
A method to extract and process bitumen from oil sands involves processing in a pulse enhanced fluidized bed steam reactor, cracking the heavy hydrocarbon fractions, producing hydrogen in situ within the reactor and hydrogenating the cracked fractions using the natural bifunctional catalyst present in the oil sands. This method produces inert oil sands for soil rehabilitation and an upgraded oil stream.
C10G 1/04 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
68.
EXTRACTION AND UPGRADING OF BITUMEN FROM OIL SANDS
A method to extract and process bitumen from oil sands involves processing in a pulse enhanced fluidised bed steam reactor, cracking the heavy hydrocarbon fractions, producing hydrogen in situ within the reactor and hydrogenating the cracked fractions using the natural bifunctional catalyst present in the oil sands. This method produces inert oil sands for soil rehabilitation and an upgraded oil stream.
C10G 1/06 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
69.
Method to condense and recover carbon dioxide from fuel cells
A method to condense and recover carbon dioxide. A first step involve providing at more than one heat exchanger, with each heat exchanger having a first flow path for passage of a first fluid and a second flow path for passage of a second fluid. A second step involves passing a stream of very cold natural gas sequentially along the first flow path of each heat exchanger until it is heated for distribution and concurrently passing a gaseous stream rich in carbon dioxide sequentially along the second flow path of each heat exchanger, allowing a gaseous portion of the gaseous stream rich in carbon dioxide to pass to a next sequential heat exchanger and capturing in a collection vessel the condensed carbon dioxide. This processes results in a cryogenic heat exchange in which natural gas at Metering and Pressure Reduction Stations is first cooled by reducing its pressure through a gas expander or a pressure reducing valve and then heated in a series of stages and the gaseous stream rich in carbon dioxide stream is separated in a series of stages through sequential cryogenic carbon dioxide separation and recovery.
A method of increasing the storage capacity of a natural gas storage cavern involves the step of adding liquefied natural gas to gaseous natural gas in the natural gas storage cavern. The addition of liquefied natural gas serves to reduce the temperature and associated pressure of gaseous natural gas in the natural gas storage cavern, thereby increasing the capacity of the natural gas storage cavern.
A method to pre-heat gas at gas Pressure Reducing Stations. A first step involve providing at least one electrical line heater having a flow path for passage of natural gas through electrical heating elements. A second step involves passing the high pressure cold natural gas stream along electrical heating elements and heating it up before de-pressurization. A third step involves the expansion of the high pressure heated gas in a enclosed vessel that houses a gas expander and power generator. The expansion of the gas generates shaft work which is converted into electrical power by the power generator and the expanded low pressure gas cools the power generator. This process results in the recovery of energy to replace the slipstream of natural that is presently used to pre-heat gas at Pressure Reduction Stations.
F01K 25/02 - Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
72.
Method to produce natural gas liquids NGLs at gas Pressure Reduction Stations
A method to recover NGL's at gas Pressure Reducing Stations. A first step involve providing at least one heat exchanger having a flow path for passage of high pressure natural gas with a counter current depressurized lean cold gas. A second step involves passing the high pressure natural gas stream in a counter current flow with the lean cold gas and cooling it before de-pressurization. A third step involves the expansion of the high pressure cooled gas in a gas expander. The expansion of the gas generates shaft work which is converted into electrical power by the power generator and the expanded low pressure and cold gas enters a separator where NGL's are recovered. This process results in the recovery NGL's, electricity and the displacement of a slipstream of natural that is presently used to pre-heat gas at Pressure Reduction Stations.
A method for selective extraction of natural gas liquids from “rich” natural gas. The method involves interacting a rich natural gas stream with Liquid Natural Gas (LNG) by mixing Liquid Natural Gas into the rich natural gas stream to lower the temperature of the rich natural gas stream to a selected hydrocarbon dew point, whereby a selected hydrocarbon liquid carried in the rich natural gas stream is condensed.
F25J 3/00 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification
B01D 53/00 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols
74.
Method to increase storage capacity of natural gas storage caverns with a refrigeration system
A method to increase the storage capacity of a natural gas storage cavern includes effecting a heat exchange in a heat exchanger between a stream of coolant from a refrigeration or cooling plant and a natural gas stream to cool the natural gas stream prior to injecting the natural gas stream into the natural gas storage cavern.
A method to increase the storage capacity of a natural gas storage cavern includes effecting a heat exchange in a heat exchanger between a stream of coolant from a refrigeration or cooling plant and a natural gas stream to cool the natural gas stream prior to injecting the natural gas stream into the natural gas storage cavern.
A method of conditioning natural gas in preparation for storage, involves taking an existing stream of continuously flowing natural gas flowing through a gas line (12) on its way to end users and diverting a portion of the stream of continuously flowing natural gas to a storage facility through a storage diversion line (22). The pressure of the natural gas is lowered, as is the temperature by the Joule-Thompson effect. The natural gas is passed in a single pass through a series of heat exchangers (18, 28,30, 32) prior to resuming flow through the gas line (12) at the lowered pressure. The diverted natural gas is liquefied in preparation for storage by effecting a heat exchange with the natural gas.
A method to increase gas mass flow loading rates to a gas storage cavern includes using liquid natural gas (LNG) to cool natural gas in a natural gas flow line upstream of a compressor used to compress gas for storage in to a gas storage cavern.
B65G 5/00 - Storing fluids in natural or artificial cavities or chambers in the earth
F17C 5/00 - Methods or apparatus for filling pressure vessels with liquefied, solidified, or compressed gases
F17C 13/00 - VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES - Details of vessels or of the filling or discharging of vessels
F28F 27/00 - Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
78.
Method to condense and recover carbon dioxide (CO2) from CO2 containing gas streams
F25J 3/00 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification
B01D 53/00 - Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
79.
METHOD TO PRODUCE NATURAL GAS LIQUIDS (NGL'S) AT GAS PRESSURE REDUCTION STATIONS
A method to recover NGL's at gas Pressure Reducing Stations. A first step involve providing at least one heat exchanger having a flow path for passage of high pressure natural gas with a counter current depressurized lean cold gas. A second step involves passing the high pressure natural gas stream in a counter current flow with the lean cold gas and cooling it before de-pressurization. A third step involves the expansion of the high pressure cooled gas in a gas expander. The expansion of the gas generates shaft work which is converted into electrical power by the power generator and the expanded low pressure and cold gas enters a separator where NGL's are recovered. This process results in the recovery NGL's, electricity and the displacement of a slipstream of natural that is presently used to pre- heat gas at Pressure Reduction Stations.
A method to pre-heat gas at gas Pressure Reducing Stations. A first step involve providing at least one electrical line heater having a flow path for passage of natural gas through electrical heating elements. A second step involves passing the high pressure cold natural gas stream along electrical heating elements and heating it up before de-pressurization. A third step involves the expansion of the high pressure heated gas in a enclosed vessel that houses a gas expander and power generator. The expansion of the gas generates shaft work which is converted into electrical power by the power generator and the expanded low pressure gas cools the power generator. This process results in the recovery of energy to replace the slipstream of natural that is presently used to pre-heat gas at Pressure Reduction Stations.
F02C 1/04 - Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
F16L 53/32 - Heating of pipes or pipe systems using hot fluids
C10G 75/00 - Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
81.
METHOD TO CONDENSE AND RECOVER CARBON DIOXIDE FROM FUEL CELLS
A method to condense and recover carbon dioxide. A first step involve providing at more than one heat exchanger, with each heat exchanger having a first flow path for passage of a first fluid and a second flow path for passage of a second fluid. A second step involves passing a stream of very cold natural gas sequentially along the first flow path of each heat exchanger until it is heated for distribution and concurrently passing a gaseous stream rich in carbon dioxide sequentially along the second flow path of each heat exchanger, allowing a gaseous portion of the gaseous stream rich in carbon dioxide to pass to a next sequential heat exchanger and capturing in a collection vessel the condensed carbon dioxide. This processes results in a cryogenic heat exchange in which natural gas at Metering and Pressure Reduction Stations is first cooled by reducing its pressure through a gas expander or a pressure reducing valve and then heated in a series of stages and the gaseous stream rich in carbon dioxide stream is separated in a series of stages through sequential cryogenic carbon dioxide separation and recovery.
F28D 7/00 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
H01M 8/0668 - Removal of carbon monoxide or carbon dioxide
F28B 1/06 - Condensers in which the steam or vapour is separated from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
F28D 7/08 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
82.
METHOD TO CONDENSE AND RECOVER CARBON DIOXIDE (CO2) FROM CO2 CONTAINING GAS STREAMS
A method to condense and recover CO2 from CO2 containing streams. A first step involve providing at more than one heat exchanger, with each heat exchanger having a first flow path for passage of a first fluid and a second flow path for passage of a second fluid. A second step involves passing a stream of very cold natural gas sequentially along the second flow path of each heat exchanger until it is heated for distribution and concurrently passing a CO2 containing stream sequentially along the first flow path of each heat exchanger, allowing the water vapor portion of the CO2 containing stream to condense and precipitate on the condensing heat exchangers. A third step involves passing a water vapor free CO2 containing stream to a cryogenic heat exchanger to condense, precipitate and recover CO2. This processes results in the recovery of CO2 and water vapor from CO2 containing streams using condensing heat exchangers, chiller, compressor, expander and power generator to recover the low value thermal heat available in CO2 containing waste streams.
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
83.
METHOD FOR SELECTIVE EXTRACTION OF NATURAL GAS LIQUIDS FROM "RICH" NATURAL GAS
A method for selective extraction of natural gas liquids from "rich" natural gas. The method involves the step of effecting a heat exchange between a rich natural gas stream and a refrigerant fluid to lower a temperature of the rich natural gas stream. The heat exchange is controlled to lower the temperature of the rich natural gas stream to a selected hydrocarbon dew point in order to condense at least one selected hydrocarbon liquids carried in the rich natural gas stream.
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
C10L 3/10 - Working-up natural gas or synthetic natural gas
F25J 1/02 - Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen
E21B 43/34 - Arrangements for separating materials produced by the well
84.
METHOD FOR SELECTIVE EXTRACTION OF NATURAL GAS LIQUIDS FROM "RICH" NATURAL GAS
A method for selective extraction of natural gas liquids from "rich" natural gas. The method involves interacting a rich natural gas stream with Liquid Natural Gas (LNG) by mixing Liquid Natural Gas into the rich natural gas stream to lower the temperature of the rich natural gas stream to a selected hydrocarbon dew point, whereby a selected hydrocarbon liquid carried in the rich natural gas stream is condensed.
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
C07C 7/10 - Purification, separation or stabilisation of hydrocarbons; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
C10L 3/10 - Working-up natural gas or synthetic natural gas
E21B 43/34 - Arrangements for separating materials produced by the well
A method for re-gasification of liquid natural gas involves positioning a storage vessel for liquid natural gas at a facility that has at least one refrigeration unit with circulating fluid heat transfer medium. A second step involves providing at least one heat exchanger. A heat exchange takes place during circulation through the heat exchanger between the liquid natural gas and the circulating fluid heat transfer medium which raises the temperature of the liquid natural gas changing it from a liquid phase to a gaseous phase in preparation for consumption and which lowers the temperature of the circulating fluid heat transfer medium in preparation for use in the at least one refrigeration unit.
A method of increasing the storage capacity of a natural gas storage cavern, involves the step of adding liquefied natural gas to gaseous natural gas in the natural gas storage caverns. The addition of liquefied natural gas serves to reduce the temperature and associated pressure of gaseous natural gas in the natural gas storage cavern, thereby increasing the capacity of the natural gas storage cavern.
A method of conditioning natural gas in preparation for storage, involves taking an existing stream of continuously flowing natural gas flowing through a gas line on its way to end users and diverting a portion of the stream of continuously flowing natural gas to a storage facility through a storage diversion line. The pressure of the natural gas is lowered, as is the temperature by the Joules-Thompson effect. The natural gas is passed in a single pass through a series of heat exchangers prior to resuming flow through the gas line at the lowered pressure. The diverted natural gas is liquefied in preparation for storage by effecting a heat exchange with the natural gas.