The present invention relates to systems and methods for accessing the spine to place implants. In one embodiment, a system includes an adjustable rod structure having four rods radially surrounding a probe, a ring and a retractor. The adjustable rod structure is configured to have a closed and open profile controlled by the retractor such that the open profile creates a space between rods of the structure. The ring is configured to be placed within retracted rods to maintain the open profile after retraction. In a method embodiment, the adjustable rod structure is inserted through a percutaneous incision in the closed position until it reaches a target site. The retractor is then attached to the rods and used to retract the rods. The probe is then removed from within an opening created and a ring is advanced into the opening to hold the rods in place.
A surgical instrument system including an endoscope having an elongated housing extending between a proximal instrument end and a distal instrument end. The surgical instrument system may further include an irrigation sleeve having a sleeve body extending between a proximal sleeve end and a distal sleeve end. The irrigation sleeve may further have a first lumen and a second lumen spaced out of fluid communication with the first lumen, the first lumen formed in the sleeve body for receiving at least a portion of the elongated housing of the endoscope with the distal instrument end arranged adjacent to the distal sleeve end. The second lumen may be formed in the sleeve body and extend between a lumen inlet adapted for fluid communication with an irrigation source and a lumen outlet arranged to direct irrigation fluid toward the distal instrument end.
A system for processing patient data associated with a joint of a patient. The system including a computing device executing instructions to provide a bone model of the joint that is representative of the joint of the patient in a first pose. The instructions further including rearranging the bone models relative to each other to mimic a second pose of the joint of the patient from at least one image or model representative of the joint of the patient in the second pose. The instructions further including planning a joint replacement procedure with the bone models after rearranging the plurality of bone models to mimic the second pose of the joint of the patient from the at least one image or model representative of the joint of the patient in the second pose.
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
In one embodiment, an expander set includes a first and second expander. The first expander includes an outer surface having a first engagement feature and a groove and the second expander includes an inside surface having a second engagement feature adapted to engage with the first engagement feature. The inside surface of the second expander is shaped to correspond to a portion of the outer surface of the first expander. Additionally, the groove on the outer surface of the first expander is sized and shaped to accommodate a rod of a retraction system such that when the first expander is advanced within the retraction system, the rod remains within the groove. When the first and second expanders are engaged with one another, they define an oblong cross-section.
A powered surgical tool system. The system includes a handpiece having a motor and a front end attachment removably coupled to the handpiece. The attachment has a nose defining a bore for receiving a shaft of a cutting accessory connectable to a motor of the powered surgical tool for rotation. The nose also defines an enclosed channel separate from the bore. The channel extends longitudinally and helically along the nose such that the enclosed channel curves around the nose to curve around the bore. The channel has a variable pitch as the enclosed channel extends longitudinally. An irrigation fitting is in fluid communication with the enclosed channel in the nose and is adapted to receive an irrigating fluid and flow the fluid through the enclosed channel.
The invention relates to a resorptive intramedullary implant between two bones or two bone fragments. The implant includes a single-piece body (1) having a generally elongate shape and having, at each end, areas for anchoring to the bone portions in question, characterized in that one of said areas (A1) has a cylindrical cross-section while the other area (A2) has a flat cross-section.
A system includes tubular members removably positionable over a passageway device connected to a connecting element attached to a vertebra. The tubular members may each include a sidewall having an opening positionable adjacent a proximal end of the passageway device when the tubular member is positioned over the passageway device. The tubular members include channels therein to receive respective blades of the passageway devices. One of the tubular members may be a counter torque tube, and another two of the tubular members may be a hinge shaft and a ball shaft, respectively, of a compression and distraction system. The blades of each passageway device may be integrally formed with a cage of the connecting element to form a monolithic blade-screw. The blades of the monolithic blade-screw may be constructed by affixing distal ends of non-threaded blade extensions to proximal ends of threaded reduction portions integrally connected to the cage.
A method of generating a correction plan for correcting a deformed bone includes inputting to a computer system a first image of the deformed bone in a first plane and inputting to the computer system a second image of the deformed bone in a second plane. Image processing techniques are employed to identify a plurality of anatomical landmarks of the deformed bone in the first image. The first image of the deformed bone is displayed on a display device. A graphical of the deformed bone is autonomously generated and graphically overlaid on the first image of the deformed bone on the display device, the graphical template including a plurality of lines, each line connected at each end to a landmark point corresponding to one of the anatomical landmarks. A model of the deformed bone may be autonomously generated based on the graphical template.
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 17/62 - Ring frames, i.e. devices extending around the bones to be positioned
A61B 34/00 - Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
9.
Surgical Saw for Actuating a Saw Blade with an Oscillating Head, the Saw Having a Coupling Assembly for Releasably Holding the Saw Blade
A method of navigating a surgical saw with a navigation system having a navigation processor. The method comprising attaching a saw blade to a head of the surgical saw and determining a position of the surgical saw. The method also comprises touching a tracked pointer to one or more reference points on the saw blade and tracking the position and orientation of the tracked pointer as the tracked pointer is touched to the one or more reference points on the saw blade. The method further comprises determining an angular orientation of the saw blade based on the tracked pointer and the one or more reference points on the saw blade, and the navigation system determining the position and orientation of the saw blade relative to saw based on the position and orientation of the saw, the angular orientation of the saw blade, and a characteristic of the saw blade.
Disclosed herein are external fixation frames for correcting bone deformities. The external fixation frames include a top fixation ring and a bottom fixation ring coupled to one another by at least two struts. A half ring is coupled to bottom fixation ring. The bottom fixation ring is u-shaped. One or more rocker members may be coupled to the bottom fixation ring. The half ring may be hingedly coupled to the bottom fixation ring such that it can rotate with respect to the bottom fixation ring from a first position to a second position.
A bone implant includes a proximal end, a distal end, a first portion extending between the proximal and distal ends having a maximum and minimum portion height, and a second portion extending between the proximal and distal ends having a maximum and minimum portion height. The second portion is connected to the first portion at the proximal end and the distal end and at least one of the first portion and the second portion is moveable relative to the other of the first portion and the second portion so as to transition the bone implant between a relaxed state wherein the first and second portions are separated by a first distance and a contracted state wherein the first and second portions are separated by a second distance different from the first distance. At least one of the proximal end and the distal end have the minimum portion height.
A knife configured for use with an electrosurgical forceps having curved jaw members and a method of manufacturing the same. The knife includes a distal body having an inner side and an outer side, a first etching on the outer side of the distal body defining a distal cutting edge and a second etching on the outer side of the distal body extending along a portion of a length of the distal body to define relatively protruded and relatively recessed surfaces extending along a portion of the length of the distal body on the outer side thereof.
A tracker for a surgical navigation system, a tracker system, and a surgical navigation system are provided. The tracker comprises a carrier and an electrical circuit disposed on the carrier. The electrical circuit comprises at least one infrared light emitting diode, IR-LED, and a battery or a wireless power reception device configured to receive power wirelessly, wherein the battery or the wireless power reception device is configured to provide power to operate the at least one IR-LED. The electrical circuit is configured to limit a current for at least one of the at least one IR-LED to not exceed 15 mA.
A screw insertion system has a screw having a threaded shaft and a head. The head has a conically tapered outer surface, the taper increasing in distance from a central longitudinal axis of the screw from a free end of the head towards a larger diameter adjacent the connection between the head and the threaded shaft. The conically tapered head outer surface has preferably two helically extending partially rounded threads. The head has a drive element for engaging a driver. A tubular screw holder has an outer surface and internal bore extending between a leading end and a trailing end for receiving the screw. The leading end having a conically tapered inner threaded portion for engaging the conically tapered outer thread of the screw head. The tubular screw holder outer surface having a diameter less than or equal to the maximum diameter of the conically tapered head.
In some embodiments, a synthetic (virtual) orthopedic treatment device (e.g. a virtual external fixator representing a physical fixator attachable to a patients anatomic structure) is displayed concurrently in two views (e.g. anterior-posterior and lateral) along corresponding digital medical images (e.g. X-rays), and rotation/translation user input received along one of the images is used to concurrently control both displays of the orthopedic treatment device to reflect the rotation/translation user input.
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 17/62 - Ring frames, i.e. devices extending around the bones to be positioned
G06F 3/04815 - Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
G06F 3/0483 - Interaction with page-structured environments, e.g. book metaphor
G06F 3/04842 - Selection of displayed objects or displayed text elements
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
An adjustable length strut includes two joints, a threaded rod extending between the joints, and a tube adapted to receive the threaded rod. An actuation mechanism with gear teeth extending radially outward of the strut axis is rotatably fixed to the threaded rod. A protrusion may be coupled to an end of the threaded rod by a rotatable collar, with the protrusion extending through a slot in the tube to mark the length of the strut. A modular attachment member may be adapted to be couple to the first joint and include a worm gear adapted to engage gear teeth of the actuation mechanism. The modular attachment member may include a radiofrequency identity tag mechanism adapted to be read by a tag reader of a tool, the tool adapted to couple to the attachment member to rotate the worm gear to increase or decrease the effective length of the strut.
A navigable probe system and method of use is provided. The system may include a handle assembly having a locking mechanism enclosed and a stylus, a cannula, and a tracking device extending from the handle assembly. The stylus may include undercuts for receiving pins of the locking mechanism. A cam of the handle assembly may rotate such that in a first position, the pins of the locking mechanism may be engaged with the undercuts and in a second position, the pins of the locking mechanism may be disengaged from the undercuts releasing the stylus from the locking mechanism. The stylus may be slidably engaged with an inner diameter of the cannula. In some arrangements, the handle assembly may include a quick connect system that in a first position attaches the cannula to the handle assembly and in a second position releases the handle assembly and thus stylus from the cannula.
A61B 34/20 - Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
A61B 90/10 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
18.
Surgical Sagittal Blade Cartridge With A Reinforced Guide Bar
A surgical sagittal saw cartridge that includes a guide bar formed from an inner plate and opposed outer plates, the inner plate defining a head. The cartridge has a blade that is disposed against the head of the inner plate. The inner plate may comprise an inner tine and/or two opposed outer tines. The inner tine may be formed to define the head against which the blade is disposed. The outer tines may extend distally so as to define a space between the outer tines in which the blade is seated.
B23D 51/16 - Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of drives or feed mechanisms for straight tools, e.g. saw blades, or bows
B23D 61/00 - Tools for sawing machines or sawing devices; Clamping devices for these tools
B27B 19/00 - Other reciprocating saws with power drive; Fret-saws
19.
Surgical Saw System Including A Reciprocating Saw Blade Cartridge
A surgical saw system including a saw, a blade cartridge and an attachment. The saw including a housing and a reciprocating shaft. The blade cartridge that may be removably coupled to the saw includes a bar and a rack. The bar includes a first holding feature. The rack is moveably disposed within the bar and is configured to removably couple to the reciprocating shaft of the saw. The attachment is disposed between and connecting the bar of the blade cartridge to the saw. The attachment may include a coupling feature in selective releasable engagement with the first holding feature of the bar to hold the bar static relative to the saw. The blade cartridge may also include a drive link that extends from reciprocating shaft of the saw and the rack for imparting the reciprocal motion of the reciprocating shaft to the rack.
A spinal interbody device (IBD) includes a solid wall that at least partially defines a boundary of the IBD and a porous body connected to the solid wall. The porous body includes a plurality of sections that form at least a portion of both a superior and inferior bone interface side of the IBD. Each section of the porous body has a different porosity than an adjacent section such that the porosities increase toward a center of the IBD.
A powered surgical handpiece system including a cutting accessory having a shaft extending along an axis and having a distal tissue working member and a proximal section. The proximal section includes retention features and a flat. The system includes a drive shaft having a bore for receiving the proximal section of the cutting accessory. A collet attached to the drive shaft includes a base, a leg, and a foot. The collet rotates with the drive shaft and the foot seats against the shaft of the cutting accessory. A lock assembly selectively moves the foot of the collet from a run state and a load state. An alignment collar has a non-circular opening such that when the flat of the shaft of the cutting accessory presses against a planar surface of the alignment collar, retention features are aligned with the foot of the collet.
A tracker, a surgical tool system, a surgical navigation system, and a method for operating a surgical navigation system are provided. The tracker is configured to be associated with a patient or a surgical tool that is to be tracked by the surgical navigation system. The tracker comprises an optical fibre having a longitudinal extension and configured to be optically coupled to a light source such that the optical fibre transmits light emitted by the light source. The optical fibre has a lateral surface along its longitudinal extension and is configured to emit light via at least a portion of the lateral surface.
In one embodiment, an expander set includes a first and second expander. The first expander includes an outer surface having a first engagement feature and a groove and the second expander includes an inside surface having a second engagement feature adapted to engage with the first engagement feature. The inside surface of the second expander is shaped to correspond to a portion of the outer surface of the first expander. Additionally, the groove on the outer surface of the first expander is sized and shaped to accommodate a rod of a retraction system such that when the first expander is advanced within the retraction system, the rod remains within the groove. When the first and second expanders are engaged with one another, they define an oblong cross-section.
The present disclosure relates to software used in planning the correction of bone deformities preoperatively or postoperatively, and in particular relates to virtually manipulating rings and struts of an external fixation frame in order to plan the steps for making a desired correction to two or more bone portions of a patient. The software can be used prior to surgery, allowing a user to virtually define a bone deformity, and virtually add and manipulate fixation rings and struts to the bone deformity. Based on the virtual manipulations, a correction plan can be generated that describes length adjustments that should be made to the plurality of model struts over a period of time to correct the bone deformity. The software can also be used after surgical fixation of the fixation frame and struts to the deformed bone.
A61B 17/62 - Ring frames, i.e. devices extending around the bones to be positioned
A61B 17/66 - Compression or distraction mechanisms
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
The invention is directed a hemostatic foam, to a process for preparing a biodegradable hemostatic foam, and to the use of said foam. The hemostatic foam comprises a blend of a chitosan hemostatic agent and a polymer, which polymer provides the foam with a porosity of 85-99% and a foam density of 0.01-0.2 g/cm3.
A system for percutaneous spinal fusion may include two spaced apart blades connected together by a coupling such that the blades define a percutaneous pathway from a skin incision to an implanted pedicle fastener. The coupling may be c-shaped and may have at least one flexible tab for engaging one or more holes along the length of the blades. If one of the blades becomes disconnected from the pedicle fastener, a supplemental access device may be provided comprising a tubular body having a channel therein for receiving the other of the blades. If both of the blades become disconnected, a supplemental access device may be provided comprising a gripping member received within a locking member. The gripping member may have two legs engageable with the pedicle fastener, and the locking member may move along the gripping member to prevent the legs from disengaging the pedicle fastener.
An external fixation system includes first and second fixation members having first and second pluralities of mounting holes, respectively. The first and second plurality of holes are configured to receive first and second ends of a plurality of struts, each strut having a default or initial mounting position. A simulation of the correction may be performed with the struts in the default positions, but it may be determined that the correction is not achievable. Additional simulations of the correction may be performed with the ends of the struts in different mounting positions to determine if other mounting positions of the struts allow the correction to be completed. During the correction, if one of the struts reaches a maximum length, it may be disconnected and reconnected to a different mounting hole so that, after being reconnected, the strut may be further increased in length to continue the correction.
A system for processing patient data associated with a joint of a patient. The system comprising a computing device executing instructions to generate a 3D patient bone model of the joint in a non-weighted pose. The instructions rearrange 3D first and second bone models in order to mimic a weighted pose of the joint of the patient from a 2D image of the joint of the patient in a weighted pose by performing the steps of: generating a plurality of 2D projections of poses of the 3D patient bone model; comparing the plurality of 2D projections to contour lines of the first bone and the second bone in the 2D image; identifying particular 2D projections that best-fit a shape and size of the contour lines; and arranging the 3D first and second bone models relative to each other according to orientations represented by the particular 2D projections that were identified.
G06T 15/00 - 3D [Three Dimensional] image rendering
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
G06T 19/20 - Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A cutting assembly configured to be removably coupled to a drive assembly of a surgical instrument. An inner tube is coaxially and rotatably disposed within an outer tube and defines a lumen in communication with a cutting window. A projection is disposed within the lumen of the inner tube. The projection may include a distal first portion displaced radially inward relative to an interior surface of the inner tube, and a proximal second portion angled relative to the distal first portion. A distance between a proximal boundary of the cutting window and a nearest point on the projection may be less than a diameter of the lumen. An inner surface of the projection permits cutting action to continue until the material is sufficiently reduced to pass between a proximal boundary of the cutting window and the insert. The projection may be formed by an insert secured within the inner tube.
An implant delivery system comprises an elongate tubular member having a lumen, a tubular implant coaxially disposed within the lumen of the elongate tubular member, and a delivery assembly having a distal portion coaxially disposed within tubular implant. The delivery assembly comprises a delivery wire, an engaging bumper fixedly coupled to the delivery wire, a stopper bumper fixedly coupled to the delivery wire, and a floating element slidably coupled around the delivery wire and disposed between the bumpers, thereby limiting linear translation of the floating element therebetween. The floating element has an engaging portion configured to engage the engaging bumper when the delivery wire is axially translated relative to the elongate member in a first direction. The floating element is configured to radially expand outward to frictionally engage the implant when the engaging portion of the floating element engages the engaging bumper.
A61F 2/966 - Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
Disclosed herein are strut attachments for external fixation frames. The strut attachments provide solutions for frame configurations in which it is not possible to attach a strut at its ends to corresponding rings. The strut attachments may be considered an outrigger type of mechanism that achieves more travel out of completely collapsed struts. The strut attachments, each having a pivot and a hinge joint, allow a strut to be attached on the level of a first ring and extend at least partially proximally or distally to a second ring depending on the frame of reference of the ring system. These strut attachments may be used when the fully collapsed length of the strut will not allow the rings to get any closer to one another than is needed or proscribed. In such cases, the strut attachments allow for even tighter ring to ring distance.
A femoral nail includes a proximal section, a distal section remote from the proximal section, and an intermediate section disposed between the proximal section and distal section and having first and second curved portions. The first curved portion is positioned closer to the proximal section than the second curved portion. The second curved portion is curved in a first plane, and the first curved portion is curved in the first plane and a second and third plane.
A computer-implemented technique for generating a data set that geometrically defines a bone plate design is presented. A method implementation of this technique comprises visualizing, based on shape data of a bone, a bone model on a display device, deriving, responsive to a user interaction signal that is indicative of a user interaction relative to the bone model, plate design data representative of a plate-specific design property, and generating a data set that geometrically defines a bone plate design from at least the plate design data and one or more generic plate parameters.
A tool for implementing a correction plan in an external fixation frame having a plurality of adjustment elements or screws, for example, generally includes a driver, a motor, a controller, and a processor. The driver is adapted to engage and rotate each of the screws. The motor is coupled the driver and adapted to rotate the driver. The controller is connected to the motor and configured to control operation of the motor. The processor adapted configured to: receive correction plan data; receive identification data including information for identifying at least one of the plurality of screws; determine movement of at least one of the plurality of the screws based on the correction plan data and the identification data; and send signals indicative of the determined movement to the controller in order to rotate at least one of the plurality of screws according to a predetermined correction plan.
A61B 17/66 - Compression or distraction mechanisms
A61B 17/62 - Ring frames, i.e. devices extending around the bones to be positioned
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 90/98 - Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
Disclosed herein is a spinal implant with a solid frame and a porous inner layer. The implant may have a cavity defined by the porous inner layer. The solid frame may have one or more ribs extending from a medial wall to a lateral wall. The thickness of the porous layer may vary relative the thickness of the solid frame at various locations. An inserter to place a spinal implant and a method to perform same are also disclosed.
Implants including non-resorbable frameworks and resorbable components, as well as methods of use thereof are disclosed. The embodiments include different combinations of a non-resorbable framework (in some case structural and in other cases non-structural), and a resorbable component embedded within and/or around the framework (again, in some cases structural and in other cases non-structural). The disclosed implants provide an efficient means of providing structural support for the vertebral bodies post-implantation, as well as encouraging resorption of the implant and fusion of the associated vertebral bodies without negative side effects and/or failure, such as subsidence of the implant or cracking/fracturing of a portion of the implant when implanted.
In one embodiment, a surgical rigid arm (100, 150, 200, 900) includes a first portion (102, 152, 202, 902), a second portion (103, 153, 203, 903) and a central portion (105, 154, 205, 906), where the central portion is extends between the first and second portions. A first end of the first portion and a second end of the second portion are each attached to a peripheral side (14) of a surgical bed (10, 30) such that the first portion and the second portion extend from the surgical bed in a first direction. The central portion extends substantially horizontally and is positioned over the surgical bed, the central portion being connected to the surgical instrument such that a load from the surgical instrument is distributed across the central portion to the first portion and second portion to provide rigid support for the surgical instrument.
A method of treating a bone fracture includes taking a first 2D image of an implant and a reference body with an imaging device; creating a 3D orientation of the reference body and the implant based on the 2D image; determining an actual axis of delivery of a bone screw through an opening extending through the implant; determining an optimal axis of delivery of the bone screw through the opening such that the optimal axis of delivery guides the bone screw toward a medically optimal location; and moving the implant such that the optimal axis of delivery and the actual axis of delivery coincide.
A61B 6/00 - Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
A61B 34/00 - Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
G16H 20/40 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
A bone graft loading system includes a loading funnel, syringe, cannula, plunger, and loading tool. The loading funnel includes an interior passageway to receive the cannula and a syringe docking portion. The syringe may be coupled to the syringe docking portion so that it extends along a longitudinal axis that is transverse to the longitudinal axes of the cannula and the loading funnel. A user may advance bone graft from the syringe to a holding area of the loading funnel. The user may then move the loading tool through the holding area and into the interior space of the cannula to load the cannula with bone graft. This process may be repeated until the cannula is fully loaded with bone graft. The cannula and the plunger inside the cannula may then be removed from the loading funnel and coupled to an injector assembly for use in surgery.
In some embodiments, a synthetic (virtual) orthopedic treatment device (e.g. a virtual external fixator representing a physical fixator attachable to a patients anatomic structure) is displayed concurrently in two views (e.g. anterior-posterior and lateral) along corresponding digital medical images (e.g. X-rays), and rotation/translation user input received along one of the images is used to concurrently control both displays of the orthopedic treatment device to reflect the rotation/translation user input.
G06F 3/04815 - Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
G06F 3/0483 - Interaction with page-structured environments, e.g. book metaphor
G06F 3/04842 - Selection of displayed objects or displayed text elements
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
43.
Tissue Retraction And Vertebral Displacement Devices, Systems, And Methods For Posterior Spinal Fusion
Devices for retracting tissue during a minimally-invasive, posterior spinal fusion procedure include a blade positionable along a passageway device connected to a connecting element implanted in a vertebra of the spine, such that the blade covers at least a portion of a longitudinal opening of the passageway device. The blade may be coupled to the passageway device by receiving the passageway device with a receiving portion. Systems for displacing the vertebrae of the spine include first and second extenders, the distal ends of each of which are configured to engage the connecting elements. Each extender may include a shaft configured to be securely engaged within a cage of the respective connecting element. The devices and systems of the present invention may be used in connection with an interbody fusion technique performed through an opening extending between the passageway devices, and an intermediate retractor blade may provide additional tissue retraction.
A vaso-occlusive device delivery assembly includes a pusher assembly having proximal and distal ends, a conductive sacrificial link disposed at the distal end of the pusher assembly, and a vaso-occlusive device secured to the pusher assembly by the sacrificial link. The pusher assembly includes first and second conductors extending between the proximal and distal ends thereof. The sacrificial link is electrically coupled between the first and second conductors, such that the first conductor, sacrificial link and second conductor form an electrical circuit, and, when a disintegration current is applied through the sacrificial link through the first and second conductors, the sacrificial link thermally disintegrates, thereby releasing the attachment member and vaso-occlusive device from the pusher assembly.
A61B 17/12 - Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
45.
Stereotactic Computer Assisted Surgery Method and System
A computer assisted surgical system that includes an apparatus for imaging a region of interest of a portion of an anatomy of a subject; a memory containing executable instructions; and a processor programmed using the instructions to receive two or more two-dimensional images of the region of interest taken at different angles from the apparatus and process the two or more two-dimensional images to produce three dimensional information associated with the region of interest.
A61B 90/11 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
Vaso-occlusive apparatuses, including implants, and methods of using them to treat aneurysms. For example, described herein are expandable vaso-occlusive implants that include one or more soft and expandable braided member coupled to a pushable member such as a coil that maybe inserted and retrieved from within an aneurism using a delivery catheter. In particular, the expandable implants described herein are configured to allow relatively soft and elongate implants to be pushed out of a cannula without binding up within the cannula.
A61B 17/12 - Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
A femur plate is provided, the femur plate comprising a first end portion anatomically pre-formed to conform to a trochanter region of the femur and a second end portion anatomically pre-formed to conform to a condyle region of the femur, wherein the second end portion comprises at least one first opening configured to receive a bone fastener. The femur plate further comprises an elongate shaft extending from the first end portion to the second end portion, the elongate shaft comprising at least one second opening configured to receive a bone fastener. Furthermore, a periprosthetic implant system comprising the femur plate and a method of implanting the femur plate are provided.
A spinal implant apparatus that is an expandable spacer including features to minimize or eliminate spacer cant or offset during and after completing the expansion process. The spacer includes a top component, a base component in engagement with the top component, and an expansion mechanism arranged to change the top component's position with respect to the base component. The mechanism for causing expansion may be a screw, a cam, a wedge or other form of distracting device. In one embodiment, the expandable spacer includes a base component with a set of towers and a top component with a set of corresponding silos, where the towers and silos are configured to minimize or eliminate tilt of the top component as it extends upwardly from the base component.
A sleeve fits over the barrel of a bat. The sleeve defines an opening such that, when the sleeve is applied to the bat, a significant portion of the barrel of the bat is revealed. The sleeve is made of a light-weight, sound-dampening material, such that when the batter hits a pitched ball in an area of the bat covered by the sleeve, the normal “crack” or “ping” of the ball hitting the bat is not heard. Instead, the batter hears a duller, less sharp sound, providing immediate feedback to the batter that he/she did not hit the ball in the desired area of the bat.
A63B 69/00 - Training appliances or apparatus for special sports
A63B 60/54 - APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT - Details or accessories of golf clubs, bats, rackets or the like with means for damping vibrations
Disclosed herein are an orthopedic rod-to-rod connector and rod-to-rod connector assemblies for spinal fusion surgery. The rod-to-rod connector may include a first connector portion and a second connector portion. The first connector portion may have a first aperture configured to receive at least a portion of a bone-engaging screw and a first spinal rod. The second connector portion may be rotatably connected with the first connector portion and may include a second aperture to receive a second spinal rod. The second connector portion may be L-shaped and may include a set screw to control rotation of the first connector portion with respect to the second connector portion.
A front end attachment for a powered surgical tool. The front end attachment includes a nose. The nose defines a bore for receiving a shaft of a cutting accessory that is connectable to a motor of the powered surgical tool. The nose also defines a groove separate from the bore. The groove is formed in an outer surface of the nose and extends longitudinally along the nose. An irrigation fitting includes a tube that is seated in the groove of the nose. The irrigation fitting is adapted to receive an irrigating fluid. A heat shrink tubing is disposed over the outer surface of the nose to extend over and enclose the groove. The heat shrink tubing secures the irrigation fitting to the nose.
Navigation system and method for tracking movement of a patient during surgery. Image data is acquired by imaging the patient with a base layer of a skin-based patient tracking apparatus secured to the patient's skin. The skin-based patient tracking apparatus includes a plurality of optical surgical tracking elements. A computer processor arrangement is adapted to implement a navigation routine. The patient position is registered to the image data. The movement of the patient is tracked based on movement of the plurality of optical surgical tracking elements. The movement of the patient's skin is tracked by determining positions of the optical surgical tracking elements both before and after a deformation of the skin-based patient tracking apparatus. Movement of the patient's skin results in corresponding movement of the surgical tracking elements to provide a dynamic reference frame for use in continuously tracking movement of a patient's skin during surgery.
A method of generating a correction plan for correcting a deformed bone includes inputting to a computer system a first image of the deformed bone in a first plane and inputting to the computer system a second image of the deformed bone in a second plane. Image processing techniques are employed to identify a plurality of anatomical landmarks of the deformed bone in the first image. The first image of the deformed bone is displayed on a display device. A graphical of the deformed bone is autonomously generated and graphically overlaid on the first image of the deformed bone on the display device, the graphical template including a plurality of lines, each line connected at each end to a landmark point corresponding to one of the anatomical landmarks. A model of the deformed bone may be autonomously generated based on the graphical template.
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
A61B 34/00 - Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
A61B 17/62 - Ring frames, i.e. devices extending around the bones to be positioned
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
The present invention provides a compression and distraction shaft assembly used to apply compression and distraction to bones including vertebrae. Shaft A assembly and shaft B assembly are attached together via a polyaxial fulcrum. The polyaxial fulcrum allows all rotational degrees of freedom between shaft A assembly and shaft B assembly. Such fulcrum, during compression and distraction, does not impart ancillary stresses or motion to vertebrae. An hourglass-shaped bore for engaging pliers is formed in approximately middle of both the shaft A assembly and the shaft B assembly. Distraction pliers having cylindrical tips are used to apply distraction to vertebrae. Once handles are pressed to impart an appropriate amount of distraction to the vertebrae, they are locked in this position. Compression pliers having cylindrical tips are used to apply compression to vertebrae. Once handles are pressed to impart an appropriate amount of compression to the vertebrae, they are locked in this position.
The invention relates to a plate fixed between two bone parts by way of screws engaged in holes formed in the thickness of said plate. The plate comprises an angled member or rib which is inclined according to an angle of between about 30° and 60° in relation to the plane defined by the plate. The angled member or rib has a hole for engaging a screw and is located in the central part of the width, over a determined part of the length of the plate, so that the screw brings the two bone parts into a compressive position.
An expandable rod system includes a first rod portion having an internal cavity, a second rod portion sealingly positioned within the internal cavity of the first rod portion and moveable in a first axial direction relative to the first rod portion, and an osmotic chamber for receiving an osmotic agent to facilitate movement of the second rod portion to expand the rod system. The rod system includes a lock assembly engageable with the second rod portion to prevent the second rod portion from moving in a second axial direction. The lock assembly includes a tapered ramped portion and a bearing member that is moveable within the tapered ramped portion such that when compression forces are imparted on the second rod portion, the bearing member becomes wedged in the tapered ramped portion.
A braided vaso-occlusive member formed out of first plurality of filaments interwoven with a second plurality of filaments, wherein filaments of the first plurality are helically wound in a first rotational direction along an elongate axis of the braided member, and filaments of the second plurality are wound in a second rotational direction opposite the first rotational direction, such that filaments of the first plurality cross over and/or under filaments of the second plurality at each of a plurality cross-over locations axially spaced along the elongate axis of the braided member, wherein at each cross-over location, the filaments of the first plurality cross over at least two consecutive filaments of the second plurality, then cross under only a single filament of the second plurality, and then cross over at least two additional consecutive filaments of the second plurality.
B21F 45/00 - Wire-working in the manufacture of other particular articles
A61B 17/12 - Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
A61F 2/90 - Stents in a form characterised by wire-like elements; Stents in a form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
D04C 1/06 - Braid or lace serving particular purposes
An adjustable length strut includes two joints, a threaded rod extending between the joints, and a tube adapted to receive the threaded rod. An actuation mechanism with gear teeth extending radially outward of the strut axis is rotatably fixed to the threaded rod. A protrusion may be coupled to an end of the threaded rod by a rotatable collar, with the protrusion extending through a slot in the tube to mark the length of the strut. A modular attachment member may be adapted to be couple to the first joint and include a worm gear adapted to engage gear teeth of the actuation mechanism. The modular attachment member may include a radiofrequency identity tag mechanism adapted to be read by a tag reader of a tool, the tool adapted to couple to the attachment member to rotate the worm gear to increase or decrease the effective length of the strut.
A posterior spinal fusion system may include a plurality of cannulas that mate with cages polyaxially coupled to pedicle screws. The cannulas maintain access to the pedicle screws to facilitate percutaneous insertion of a fusion rod into engagement with the cages. Each cannula has a pair of blades that may be held together by an abutment member that at least partially encircles the blades. Each abutment member abuts the skin to define a variable subcutaneous length of the corresponding cannula. Each abutment members is also lockably removable from the corresponding blades to enable the blades to pivot with respect to the connecting element to a position in which they can be withdrawn from the connecting element. The blades of each cannula are spaced apart to provide first and second slots of each cannula, through which the fusion rod can be percutaneously inserted.
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
In one embodiment, an assembly includes a retractor and at least one cylindrical rod attached to the retractor. The rod has a fixed length portion and a spring portion. The spring portion of the rod has a longitudinal dimension that changes as a function of loading on the rod. When the rod is in contact with a solid surface such as a bone, it maintains contact with such surface even while changing shape due to loading on the rod. When the assembly includes multiple rods attached to the retractor, both spring-based rods and other types of rods may be used in combination.
A polyaxial screwdriver for inserting a bone screw in a vertebra. A polyaxial bone screw assembly includes a coupling element. When a screw engaging end of the polyaxial screwdriver is lowered on the head of the bone screw, the complimentary surfaces of the screw engaging end of the screwdriver and the head of the screw self-align. A ratchet mechanism formed in the screwdriver provides progressive and automatic locking of the polyaxial screwdriver to the coupling element and prevents the accidental unthreading from the coupling element. In another embodiment of the polyaxial screwdriver, a collet slides over the outside surface of the upper end of the coupling element and locks on to the coupling element. In yet another embodiment of a polyaxial screwdriver, the outer sleeve of the polyaxial screwdriver has a split end that securely engages the coupling element.
A surgical tool including an inelastic and elastic cable to impart a bend to a shaft. A steering assembly is coupled to the shaft and configured to cause longitudinal displacement of the shaft relative to the body to tension the cables to bend the shaft bendable section in a direction of the flexible inelastic cable. The surgical tool may include an active tip with one of the cables being configured to supply energy to the active tip. The surgical tool may be a shaver that includes a shaver shaft having a flexible section configured to be aligned with a shaft bendable section with the motor of the shaver supported on a cradle of a body. The shaft bendable section may be formed by links with the flexible inelastic cable being arcuately spaced apart from tabs within sockets that engage adjacent links.
A61B 1/00 - Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
In one embodiment, a system includes a retractor with a plurality of rods that are cylindrical over part of their length, a light source, and a fiber optic cable, where at least one rod includes a body with an opening therein. The opening extends from an upper surface of the rod, through an interior of the rod, and then to a side surface of the rod located between ends of the rod. The opening is sized so that at least a single monofilament fiber optic cable is disposable therethrough. The system is adapted so that any number of rods may include a fiber optic cable disposed therein and so that the cable may be easily removed or inserted from the rod during use of the retractor.
An ultrasonic tip and methods of operating the same. The ultrasonic tip comprises a shaft including a base and a flexible body. The body comprises a first portion and a second portion. The body is coupled to the base at the first portion and extends from the first portion to the second portion along a longitudinal axis. The second portion includes a cutting portion comprising a neck, and a head extending radially from the longitudinal axis. The head is coupled to the neck. A circular aperture is disposed between the head and the neck to define an inner circumferential surface. The head and the neck form an outer circumferential surface comprising a plurality of cutting teeth, the outer circumferential surface having a first thickness at the head that is greater than a second thickness at the neck.
A fastener configured for spinal applications includes a head having a channel adapted to receive a spinal rod and a shaft extending from the head to a distal tip and having a thread, at least a portion of the thread being serrated. The serrated portion of the thread includes peaks and troughs and can extend along about 35 percent of a length of the thread.
In one embodiment, the present disclosure relates to an instrument adapted for use in an anterior to psoas spinal access procedure. The instrument includes a body, a first arm and a second arm. A first rod extends from the first arm at an angle thereto while a second rod extends from the second arm at an angle thereto. Each of the first rod and the second rod include a length with a first portion and a second portion, the first portion having a convex surface perimeter and the second portion having a perimeter different from the first portion and being convex in part. In some embodiments, a kit includes the instrument and a blade adapted for use in conjunction with the instrument in an anterior to psoas spinal access procedure.
A surgical instrument system including an endoscope having an elongated housing extending between a proximal instrument end and a distal instrument end. The surgical instrument system may further include an irrigation sleeve having a sleeve body extending between a proximal sleeve end and a distal sleeve end. The irrigation sleeve may further have a first lumen and a second lumen spaced out of fluid communication with the first lumen, the first lumen formed in the sleeve body for receiving at least a portion of the elongated housing of the endoscope with the distal instrument end arranged adjacent to the distal sleeve end. The second lumen may be formed in the sleeve body and extend between a lumen inlet adapted for fluid communication with an irrigation source and a lumen outlet arranged to direct irrigation fluid toward the distal instrument end.
A screw insertion system has a screw having a threaded shaft and a head. The head has a conically tapered outer surface, the taper increasing in distance from a central longitudinal axis of the screw from a free end of the head towards a larger diameter adjacent the connection between the head and the threaded shaft. The conically tapered head outer surface has preferably two helically extending partially rounded threads. The head has a drive element for engaging a driver. A tubular screw holder has an outer surface and internal bore extending between a leading end and a trailing end for receiving the screw. The leading end having a conically tapered inner threaded portion for engaging the conically tapered outer thread of the screw head. The tubular screw holder outer surface having a diameter less than or equal to the maximum diameter of the conically tapered head.
Disclosed herein are a spinal fixation assembly and method to provide adequate rigidity and support for a vertebral column without requiring additional pedicle screws and spinal rods. The spinal fixation assembly includes a spinal rod loop with multiple sides configured to be attached to a vertebral body with two or more pedicle screws. Each pedicle screw is adapted to fit at various locations along the spinal rod loop.
A spinal implant that allows for fluid injection of material is disclosed. The implant includes a fitting with a passage and holes that are in fluid communication with the passage. The holes extend through upper and lower surfaces and/or into a central cavity of the implant. The implant allows for material to be introduced into the implant after initial implantation thereof. Methods of implanting the implant are also disclosed.
A monolithic rib plate is described. The rib plate comprises multiple first screw orifices located substantially along a first line and connected by first bridges, multiple second screw orifices located laterally on one side of the first line and connected by second bridges, wherein one or more of the second bridges have a smaller cross-section than the first bridges, and third bridges, each connecting one of the second screw orifices with one of the first screw orifices. Also described is a rib plate system comprising the monolithic rib plate and at least one of one or more polyaxial locking screws, a tool for removing the second bridges, a tool for bending the monolithic rib plate, and one or more orifice bridge plates.
A method of treating an anatomical cavity of a patient comprises introducing an infusion/aspiration catheter into the patient, such that a plurality of arms of the catheter reside within the anatomical cavity, delivering a fluid into the at least one of a connector, such that fluid exits the at least one fluid port of at least one of the arms, thereby infusing the anatomical cavity with the fluid, and aspirating the fluid into the at least one fluid port of at least one of the arms, such that the fluid exits the connector(s).
Vaso-occlusive apparatuses, including implants, and methods of using them to treat aneurysms. The vaso-occlusive implants described herein include one or more soft and expandable braided member coupled to a pushable member such as a coil that maybe inserted and retrieved from within an aneurism using a delivery catheter as well as a friction element between the soft braided member and the coil. The friction element allows the relatively soft and elongate implant to be pushed out of a cannula without binding up within the cannula.
A61B 17/12 - Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
A bone fastener includes a head, and a screw portion extends from the head. The screw portion includes a shaft and a thread extending along and about the shaft. The thread has a height extending from a root to a tip thereof. The thread also has first and second portions disposed between the root and the tip. The second portion has a porous structure configured to promote bone ingrowth and has a porosity greater than that of the first portion.
A vaso-occlusive treatment system includes a delivery assembly; and a vaso-occlusive device detachably coupled to the delivery assembly by a delivery assembly junction. The vaso-occlusive device includes a braided portion formed out of one or more composite wires, a coiled portion coupled to the braided portion, and an intra-device junction coupling the braided portion to the coiled portion. Each composite wire includes a core made from a core metallic material, and an external layer made from an external metallic material different from the core metallic material. One of the core and the external layer has a greater radiopacity and a lesser stiffness, respectively, than the other one of the core and the external layer.
A61B 17/12 - Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
A bone implant includes a proximal end, a distal end, a first portion extending between the proximal and distal ends having a maximum and minimum portion height, and a second portion extending between the proximal and distal ends having a maximum and minimum portion height. The second portion is connected to the first portion at the proximal end and the distal end and at least one of the first portion and the second portion is moveable relative to the other of the first portion and the second portion so as to transition the bone implant between a relaxed state wherein the first and second portions are separated by a first distance and a contracted state wherein the first and second portions are separated by a second distance different from the first distance. At least one of the proximal end and the distal end have the minimum portion height.
Bone harvesting tools and methods of use thereof are disclosed. In an embodiment, the tool comprises a chamber having a first aperture, a second aperture, an internal cavity, and a suction source fluidly connected with the chamber. The suction source is effective to generate negative pressure within the internal cavity of the chamber. The tool also has a reamer having a reaming portion, the reamer being sized to extend through the first and second apertures of the chamber, wherein the reamer is movable relative to the chamber. Additionally, the tool includes a storage container fluidly connected to the internal cavity of the chamber and effective to receive bone and/or cellular material extracted from the patient, the bone and/or cellular material being extracted during reaming a bone of the patient with the reamer.
A technique for processing patient-specific image data for computer assisted surgical navigation. A database is provided including multiple first data sets of two- or three-dimensional image data. Each first data set is representative of first shape data or first biometric data of a skin surface of at least one patient. The method further comprises obtaining, by an optical camera system, a second data set of two- or three-dimensional image data of a skin surface of a particular patient and deriving second shape data or second biometric data of the skin surface from the second data set. By comparing the second shape data or second biometric data with the first shape data or the first biometric data of one or more first data sets, a similarity score is calculated. A signal generated based on the similarity score triggers one of selection and de-selection of a first data set.
An implant for bone fixation is presented. The implant comprises an elongated member configured to be wound around bone parts that are to be fixed. Further, an engagement feature is provided that is coupled to the elongated member and configured to engage a portion of the elongated member so as to secure the implant in a loop around the bone parts. A fastening member is arranged between and coupled to the elongated member and the engagement member. The fastening member comprises at least one opening for receiving a bone fastener. In one variant, at least one visual indicator indicating a region of the fastening member to be severed in order to detach the implant is provided. In another variant, at least one of the engagement member and the elongated member are coupled to the fastening member by injection molding.
An instrument for spinal rotation that aligns and holds direct vertebral rotation (DVR) lever arms relative to each other to achieve an initial axial alignment of a segment of vertebrae and allows the final DVR rotation by rotating the instrument and lever arms together. A method of direct vertebral rotation that allows rotating the vertebrae to be aligned relative to each other, and collectively rotating the vertebrae to be aligned relative to adjacent spinal segments by rotating the direct vertebral rotation instrument. A system for direct vertebral rotation having at least two pedicle screws. The system also includes at least two levers attachable to the pedicle screws and a clamping instrument configured to clamp the levers.
An implant system for use in orthopaedic surgery for fixation of bone includes an intramedullary nail and a coupling member. The intramedullary nail includes a proximal portion defining a longitudinal axis. The proximal portion includes an axial bore defining an axis substantially parallel to the longitudinal axis of the proximal portion and a transverse bore configured to receive a bone fastener. The coupling member includes a through hole and is movably arranged within the axial bore of the proximal portion. Further, the coupling member includes a drive portion and a bone fastener engagement portion. The drive portion is in one variant non-rotatably coupled to the bone fastener engagement portion. The bone fastener engagement portion is configured to engage the bone fastener penetrating the transverse bore. In one variant the engagement is realized via an extended contact region.
A surgical sagittal saw cartridge that includes a guide bar formed from an inner plate and opposed outer plates, the inner plate defining a head. The cartridge has a blade that is disposed against the head of the inner plate. The inner plate may comprise an inner tine and/or two opposed outer tines. The inner tine may be formed to define the head against which the blade is disposed. The outer tines may extend distally so as to define a space between the outer tines in which the blade is seated.
B23D 51/16 - Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of drives or feed mechanisms for straight tools, e.g. saw blades, or bows
B27B 19/00 - Other reciprocating saws with power drive; Fret-saws
B23D 61/00 - Tools for sawing machines or sawing devices; Clamping devices for these tools
84.
External fixator deformity correction systems and methods
In some embodiments, a synthetic (virtual) orthopedic treatment device (e.g. a virtual external fixator representing a physical fixator attachable to a patients anatomic structure) is displayed concurrently in two views (e.g. anterior-posterior and lateral) along corresponding digital medical images (e.g. X-rays), and rotation/translation user input received along one of the images is used to concurrently control both displays of the orthopedic treatment device to reflect the rotation/translation user input.
G06T 19/20 - Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G06F 3/04815 - Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
G06F 3/0483 - Interaction with page-structured environments, e.g. book metaphor
G06F 3/04842 - Selection of displayed objects or displayed text elements
In one embodiment, the present disclosure relates to a retractor apparatus that includes a retractor frame, five arms attached to the retractor frame and five rods each attached to one of the five arms. Each rod includes a convex surface facing a center of the retractor frame. At least two of the five rods are movable independently from one another. A first rod of the five rods includes a longitudinal axis and is translatable along the longitudinal axis. Further, the first rod is attached to a first arm of the five arms and is pivotable relative to the first arm. The axis of pivot is offset from the longitudinal axis through which the first rod translates.
A surgical sagittal saw for use with a complementary blade assembly that includes a static bar. The saw includes a head over which the blade assembly bar is seated. A coupling rod is able to be mounted to the head to move along the longitudinal axis of the rod. The coupling rod has a head that, as result of the longitudinal movement of the rod is moved towards and away from the head. A blade assembly may be disposed on the saw head adjacent the coupling rod. The coupling rod can be positioned in a run state so that the rod head abuts the bar of the blade assembly so as to hold the blade assembly to the saw head. Alternatively, the coupling rod can be repositioned in a load state the rod head is spaced from the saw head. This allows the blade assembly to be removed and replaced.
The present invention relates to systems and methods for accessing the spine to place implants. In one embodiment, a system includes an adjustable rod structure having four rods radially surrounding a probe, a ring and a retractor. The adjustable rod structure is configured to have a closed and open profile controlled by the retractor such that the open profile creates a space between rods of the structure. The ring is configured to be placed within retracted rods to maintain the open profile after retraction. In a method embodiment, the adjustable rod structure is inserted through a percutaneous incision in the closed position until it reaches a target site. The retractor is then attached to the rods and used to retract the rods. The probe is then removed from within an opening created and a ring is advanced into the opening to hold the rods in place.
A surgical saw system including a saw, a blade cartridge and an attachment. The saw including a housing and a reciprocating shaft. The blade cartridge that may be removably coupled to the saw includes a bar and a rack. The bar includes a first holding feature. The rack is moveably disposed within the bar, and is configured to removably couple to the reciprocating shaft of the saw. The attachment is disposed between and connecting the bar of the blade cartridge to the saw. The attachment may include a coupling feature in selective releasable engagement with the first holding feature of the bar to hold the bar static relative to the saw. The blade cartridge may also include a drive link that extends from reciprocating shaft of the saw and the rack for imparting the reciprocal motion of the reciprocating shaft to the rack.
Disclosed herein are external fixation frames for correcting bone deformities. The external fixation frames include a top fixation ring and a bottom fixation ring coupled to one another by at least two struts. A half ring is coupled to bottom fixation ring. The bottom fixation ring is u-shaped. One or more rocker members may be coupled to the bottom fixation ring. The half ring may be hingedly coupled to the bottom fixation ring such that it can rotate with respect to the bottom fixation ring from a first position to a second position.
A system for processing patient data associated with a joint of a patient. The system comprising a computing device executing instructions to generate a 3D patient bone model of the joint in a non-weighted pose. The instructions rearrange 3D first and second bone models in order to mimic a weighted pose of the joint of the patient from a 2D image of the joint of the patient in a weighted pose by performing the steps of: generating a plurality of 2D projections of poses of the 3D patient bone model; comparing the plurality of 2D projections to contour lines of the first bone and the second bone in the 2D image; identifying particular 2D projections that best-fit a shape and size of the contour lines; and arranging the 3D first and second bone models relative to each other according to orientations represented by the particular 2D projections that were identified.
G06T 15/00 - 3D [Three Dimensional] image rendering
A61B 34/10 - Computer-aided planning, simulation or modelling of surgical operations
G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
G06T 19/20 - Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
A61B 90/00 - Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups , e.g. for luxation treatment or for protecting wound edges
An ultrasonic tip for use with a surgical handpiece to produce both longitudinal and torsional motion. The ultrasonic tip comprises a shaft having a longitudinal axis extending between proximal and distal ends having respective first and second diameters with the first diameter greater than the second diameter. The ultrasonic tip also comprises a cutting feature coupled to the distal end of the shaft. The shaft defines an aspiration lumen that extends along the longitudinal axis of the shaft. A protrusion on the shaft is positioned between the distal end and the proximal end of the shaft. A portion of the protrusion having a third diameter, and the third diameter is less than the first diameter and the third diameter is greater than the second diameter. An aperture is defined by the protrusion and in fluid communication with the aspiration lumen, and the protrusion reinforces an area surrounding the aperture.
A pedicle screw assembly including a bone fastener having a lower end for engaging bone and an upper end remote from the lower end; a head having a rod-receiving channel attached to the upper end of said bone fastener; a spinal rod insertable into the rod-receiving channel of said head, said spinal rod having an outer surface extending between first and second ends thereof, wherein at least one of the first and second ends has a reduced diameter section. A spinal rod having an outer surface extending between a first end and a second end thereof; wherein the outer surface of said spinal rod has a reduced diameter section at at least one of the first and second ends.
An elongate embolectomy device having a radially constrained configuration and a radially expanded configuration, the embolectomy device being formed out of a plurality of elongate clot engaging structures, each clot engaging structure comprising a plurality of interconnected struts forming an open cell pattern, wherein, when the embolectomy device is in the radially expanded configuration, the clot engaging structures each have a semi-tubular arcuate profile, including a convex face and an concave face facing opposite the convex face, extending along a length of the embolectomy device, the clot engaging structures being longitudinally disposed relative to each other such that the concave faces are facing radially outward, and the convex surfaces are facing radially inward, respectively, relative to a longitudinal axis of the embolectomy device.
An implant delivery system comprises an elongate tubular member having a lumen, a tubular implant coaxially disposed within the lumen of the elongate tubular member, and a delivery assembly having a distal portion coaxially disposed within tubular implant. The delivery assembly comprises a delivery wire, an engaging bumper fixedly coupled to the delivery wire, a stopper bumper fixedly coupled to the delivery wire, and a floating element slidably coupled around the delivery wire and disposed between the bumpers, thereby limiting linear translation of the floating element therebetween. The floating element has an engaging portion configured to engage the engaging bumper when the delivery wire is axially translated relative to the elongate member in a first direction. The floating element is configured to radially expand outward to frictionally engage the implant when the engaging portion of the floating element engages the engaging bumper.
A61F 2/966 - Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
A prosthetic intervertebral spacer includes a body having a front end, a rear end, an anterior side, a posterior side, a top surface, and a bottom surface, and an arcuate interface extending away from the body and being connected to the rear end and the posterior side of the body. A method of inserting and positioning the spacer includes engaging a tool to the interface, inserting the spacer at least partially into the intervertebral disc space by moving the tool along an insertion direction, and allowing the spacer to rotate with respect to the insertion direction within the intervertebral disc space while continuing to move the tool along the insertion direction.
An external fixation system includes first and second fixation members having first and second pluralities of mounting holes, respectively. The first and second plurality of holes are configured to receive first and second ends of a plurality of struts, each strut having a default or initial mounting position. A simulation of the correction may be performed with the struts in the default positions, but it may be determined that the correction is not achievable. Additional simulations of the correction may be performed with the ends of the struts in different mounting positions to determine if other mounting positions of the struts allow the correction to be completed. During the correction, if one of the struts reaches a maximum length, it may be disconnected and reconnected to a different mounting hole so that, after being reconnected, the strut may be further increased in length to continue the correction.
Disclosed herein are systems and methods for manipulating the orientation of a plurality of bone fragments with respect to one another. A bone transport frame including first and second rings, a plurality of elongate struts, and a plurality of ring transport assemblies for orienting a first bone segment with respect to a second bone segment is disclosed. A third ring may be included in the bone transport frame for orienting a third bone segment with respect to the first and second bone segments. Manipulation of an adjustable member of the bone transport frame can transport a ring in either a proximal or distal direction with respect to other rings of the frame. Manipulation of another adjustable member of the bone transport frame can translate a central axis of one of the rings either toward or away from the central axes of the plurality of elongate struts.
A surgical system includes an implant having a first attachment mechanism and an insertion instrument having a proximal end, a distal end, and a second attachment mechanism disposed at the distal end for removable connection with the first attachment mechanism. The proximal end of the insertion instrument is pivotable with respect to the implant. The insertion instrument can include an inserter and a guide. A method of using the surgical system is provided.
An orthopedic locking screw arranged in a bore of an orthopedic implant enables easy removal of a broken locking screw out of the implant. The orthopedic locking screw for a cooperation with a thread in the orthopedic implant comprises a longitudinally extending shaft. The shaft comprises a thread pattern section extending at least partially along the shaft. The thread pattern section comprises a first thread with a first direction, which is a functional thread configured for the cooperation with the thread in the orthopedic implant. The thread pattern section further comprises a second thread with a second direction opposite to the first direction of the first thread. The second thread is superimposed on the first thread and intersects the first thread. An orthopedic locking system comprises the orthopedic locking screw and the orthopedic implant. The locking screw is manufactured by applying the thread pattern section to the longitudinally extending shaft.
An orthopedic locking screw is configured to be retained inside a bore of an orthopedic implant. The orthopedic locking screw includes a shaft extending axially, a casing secured around an outer surface of the shaft, a deformable thread disposed along an outer surface of the casing, and a forward external thread disposed on the shaft. The forward external thread has a pitch that is different from a pitch of the deformable thread of the casing. Further, an orthopedic locking screw is provided, wherein projections and the casing are alternately arranged on the outer surface of the shaft. Methods of securing an orthopedic screw in a bore of an orthopedic implant are also provided.