An exemplary data storage device includes an actuator arm assembly, a top guide rail, a bottom guide rail, and a first ball bearing. The actuator arm assembly includes a first post defining a pivot axis that is inclined between about 5 degrees and about 25 degrees from a horizontal plane defined by a data storage disk surface. The top guide rail includes a first rolling surface that is parallel to the pivot axis. The bottom guide rail is spaced from the top guide rail and includes a second rolling surface that is parallel to the first rolling surface. The first ball bearing includes a first inner race and a first outer race, the first inner race surrounding the first post, and the first outer race in contact with the first rolling surface or the second rolling surface. An exemplary method of assembling a data storage device is also described.
A hard disk drive includes an enclosure housing a first set of magnetic recording media coupled to a first spindle motor, a second set of magnetic recording media coupled to a second spindle motor, and a third set of magnetic recording media coupled to a third spindle motor. The first set of magnetic recording media at least partially overlaps with the second set of magnetic recording media and the third set of magnetic recording media.
G11B 5/012 - Recording on, or reproducing or erasing from, magnetic disks
G11B 25/04 - Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing using flat record carriers, e.g. disc, card
G11B 5/02 - Recording, reproducing or erasing methodsRead, write or erase circuits therefor
G11B 5/00 - Recording by magnetisation or demagnetisation of a record carrierReproducing by magnetic meansRecord carriers therefor
G11B 33/12 - Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
A method includes monitoring an amount of power of a power supply being used by a voice-coil motor (VMC) during a seek operation, detecting that the amount of power has crossed a threshold during the seek operation, and modifying a subsequent seek operation in response to detecting that the amount of power has crossed the threshold.
G11B 5/54 - Disposition or mounting of heads relative to record carriers with provision for moving the head into, or out of, its operative position or across tracks
G11B 5/55 - Track change, selection, or acquisition by displacement of the head
G11B 5/596 - Disposition or mounting of heads relative to record carriers with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
H03F 3/20 - Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
An apparatus and associated method that contemplate a data storage disc and a motor supporting the disc in rotation. Control circuitry operates to spin up the disc drive by accelerating the motor to a steady state speed by: beginning the spin up by energizing the motor with a primary power; comparing an amount of auxiliary power that is available from a battery to a predefined threshold; and before the motor is accelerated to the steady state speed and if the threshold comparison is favorable, then boosting the primary power by discharging the battery for a predetermined boost interval.
A method for performing a flaw scan test on a hard disk drive is disclosed. The hard disk drive includes a magnetic recording medium and spindle motor associated with a predetermined rated speed. The method includes writing a test pattern to the magnetic recording medium while operating the spindle motor at a speed greater than the predetermined rated speed. The method also includes reading the test pattern at the greater speed and detecting flaws in response to reading the test pattern.
G11B 5/596 - Disposition or mounting of heads relative to record carriers with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
G11B 19/04 - Arrangements for preventing, inhibiting, or warning against, double recording on the same blank, or against other recording or reproducing malfunctions
6.
Efficient energy recovery in disk drive during power loss
A back electromotive force of a rotating motor is converted into a voltage for a load by driving, in accordance with a duty cycle, at least one switching circuit that couples the back electromotive force to a load through a rectifying circuit. An error signal is generated that is a difference between the load voltage and a reference voltage. The duty cycle is controlled as a function of the error signal to cause the load voltage to approach the reference voltage.
H02K 7/14 - Structural association with mechanical loads, e.g. with hand-held machine tools or fans
H02P 3/18 - Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an AC motor
H02J 9/06 - Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over
G06F 1/26 - Power supply means, e.g. regulation thereof
Systems and methods may include a motor and an output shaft apparatus. The output shaft apparatus may be configured to position a manufacturing component using the motor. The output shaft apparatus may move linearly along a longitudinal axis and/or rotationally about the longitudinal axis. The system may also include an engagement apparatus coupling the motor to the output shaft apparatus. The engagement apparatus may be configured in a linear configuration for linearly moving the output shaft apparatus or a rotational configuration for rotationally moving the output shaft apparatus.
An apparatus is provided including a shaft, wherein the shaft is stationary. A rotatable component is configured to rotate with respect to the shaft. A fluid is operable to flow between the shaft and the rotatable component. A limiter is at a first axial end of the shaft, and a cup is at a second axial end of the shaft. An axially extending grooved region is between the limiter and the rotatable component.
H02K 5/16 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
An apparatus includes a circuit, a code modulator, and an actuator. The circuit is operable to detect displacements of a rotating object while in motion. The circuit is operable to detect a position of the displacements and to generate a signal associated therewith. The code modulator is operable to generate a modulated signal based on the position and the displacements. The actuator is operable to apply a force to the rotating object, wherein the force is based on the modulated signal.
G01D 5/12 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means
G01B 7/14 - Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
G11B 5/596 - Disposition or mounting of heads relative to record carriers with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
G01D 5/14 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
10.
Component configured to stiffen an electric motor assembly
An apparatus includes a first component and a second component. The second component is located at a first position. The second component includes a first connection to the first component. The first position and the first connection are configured to stiffen an electric motor assembly.
G11B 25/04 - Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing using flat record carriers, e.g. disc, card
H02K 5/24 - CasingsEnclosuresSupports specially adapted for suppression or reduction of noise or vibrations
An apparatus and associated method contemplating a goniometer stage having a base, and a roller bearing having a first annular race supported by the base and a concentric second annular race. A rotor plate is configured to support a workpiece, and defines a bearing surface contacting the second annular race throughout a selective movement of the rotor plate with respect to the base along an arc defining an axis of rotation that is spaced apart from the rotor plate.
B23Q 1/25 - Movable or adjustable work or tool supports
G01B 5/00 - Measuring arrangements characterised by the use of mechanical techniques
G01B 5/24 - Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapersMeasuring arrangements characterised by the use of mechanical techniques for testing the alignment of axes
A fluid seal for sealing a gap region for rolling elements rotationally connecting a shaft and an outer structure of a rotating assembly. In embodiments described, the fluid seal includes an inner capillary seal and an outer capillary seal radially and axially spaced from the inner capillary seal. The inner and outer capillary seals are formed along a passageway having an axial portion and a radial portion formed along capillary surfaces of a fluid seal structure and opposed transverse and upright surfaces. In embodiments disclosed, the fluid seal structure includes a seal ring and cap or a seal plate structure. In another embodiment, a flange portion of the shaft forms the fluid seal structure.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
In certain embodiments, a motor includes a shaft positioned adjacent a sleeve for relative rotation. The sleeve includes a first radial recirculation channel. The shaft and sleeve form first and second gaps. The first gap is configured to form a pump seal, is positioned above the first radial recirculation channel, and has a width measured between the shaft and sleeve. The second gap is configured to form a journal bearing, is positioned below the first radial recirculation channel, and has a width measured between the shaft and sleeve. The width of the first gap is greater than the width of the second gap.
In response to positioning a read/write head of a hard drive, a voice coil motor (VCM) input signal is applied to a voice coil motor and a microactuator (PZT) input signal is applied to a microactuator. A position signal is determined in response to positioning the read/write head. A PZT component is decoupled from the position signal to determine an estimated VCM response. The estimated VCM response used to determine an estimated VCM disturbance. A VCM component is decoupled from the position signal to determine an estimated PZT response. The estimated PZT response used to determine an estimated PZT disturbance. The VCM input signal and the PZT input signal are modified respectively to compensate for the estimated VCM disturbance and the estimated PZT disturbance.
G11B 5/58 - Disposition or mounting of heads relative to record carriers with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
G11B 5/596 - Disposition or mounting of heads relative to record carriers with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
G11B 5/48 - Disposition or mounting of heads relative to record carriers
G11B 19/04 - Arrangements for preventing, inhibiting, or warning against, double recording on the same blank, or against other recording or reproducing malfunctions
15.
Apparatus with repulsive force between stationary and rotatable components
Provided herein, is an apparatus that includes a fluid dynamic bearing, a hub, and an induction housing. The fluid dynamic bearing is defined by a stationary component and a rotatable component. The hub is configured to rotate relative to the stationary component. A current is induced within the induction housing resulting from the relative rotation. The induced current creates a repulsive force between the stationary component and the hub.
A back electromotive force of a rotating motor is converted into a voltage for a load by driving, in accordance with a duty cycle, at least one switching circuit that couples the back electromotive force to a load through a rectifying circuit. An error signal is generated that is a difference between the load voltage and a reference voltage. The duty cycle is controlled as a function of the error signal to cause the load voltage to approach the reference voltage.
H02P 3/18 - Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an AC motor
H02J 9/06 - Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over
G06F 1/26 - Power supply means, e.g. regulation thereof
Provided herein, in some embodiments, is an apparatus including a plastic component; a stationary component including a thrustplate; a rotatable component including the plastic component affixed to a sleeve; and at least a first fluid dynamic bearing formed between the thrustplate and an opposing surface of the rotatable component.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
F16C 17/10 - Sliding-contact bearings for exclusively rotary movement for both radial and axial load
Provided herein is an apparatus, including a spinstand configured to position a disk in a testing orientation and a motor coupled to the spinstand, configured to rotate the disk. The motor comprises a fluid dynamic bearing.
A circuit may be configured to adjust a correction signal for each phase of an electric motor based on a rotational position of a spindle of the electric motor, generate a distorted waveform based on the correction signal, and drive the electric motor in response to the distorted waveform. In some examples, back electromotive force (BEMF) may be determined in order to adjust a motor drive waveform, which may reduce or eliminate motor vibrations. A motor drive signal may be pre-warped (i.e. distorted) such that when the correctional signal and drive signals are combined, there is a reduction in acoustic emissions or motor vibrations. Other parameters, such as cogging torque, may be measured to reduce motor vibration and acoustic emissions.
H02P 6/06 - Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
H02P 6/10 - Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
H02P 23/04 - Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
A device includes a magnet and a magnetizer. The magnetizer is operable to rotate with respect to the magnet. The rotation generates an acoustic pure tone at a particular frequency. A combination of the magnet and the magnetizer has a magnetic profile. The combination is altered to superimpose a particular harmonic shape on the magnetic profile to reduce the acoustic pure tone at the particular frequency.
Provided herein is an apparatus, including a fluid dynamic bearing, wherein the fluid dynamic bearing includes a set of pressure-generating grooves, and wherein the set of pressure-generating grooves includes a plurality of chevron-shaped grooves, each chevron-shaped groove including at least two selected from a non-uniform depth, non-uniform angle, a non-uniform width, or a non-uniform length, selected to provide a predetermined spindle-motor stiffness to the journal bearing during steady-state operation and during a shock event.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
C12N 15/85 - Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
An apparatus includes a stationary shaft and a sleeve rotatable with respect to the shaft. A fluid dynamic bearing is defined by the stationary shaft and the sleeve. A fluid channel includes a first axially extending portion in the fluid dynamic bearing, and a radially extending portion extending radially outward from the first axially extending portion. In addition the fluid channel includes a second axially extending portion extending axially downward from the radially extending portion. The apparatus further includes a pump seal including grooves formed in the second axially extending portion.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
An apparatus and method are provided for a robust and shock resistant fluid dynamic bearing. A fluid sealing system with fluid pumping and capillary features provides increased reliability and performance for small form factor disc drive memory systems. Concerns of motor jog are addressed, jog being the rapid and repeated opening and closing of spaces between relatively rotatable components that can dispel oil from, or draw air into, these spaces. The fluid pumping capillary sealing system includes a fluid pumping groove with a rib portion and a slot portion for pumping fluid. The fluid pumping capillary sealing system also includes a capillary seal. In an aspect, a sweeping rib sweeps fluid toward the bearing. A truncated rib is situated adjacent to the sweeping rib, the truncated rib extending a shorter radial distance as compared to the sweeping rib and forming a plenum region.
H02K 5/16 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
Provided herein is an apparatus, including a stationary component; a rotatable component; a fluid dynamic bearing defined by the stationary component and the rotatable component; a first channel substantially parallel to the fluid dynamic bearing; a second channel substantially perpendicular to the first channel; and a fluid reservoir substantially parallel to the first channel, wherein the second channel fluidly connects the fluid reservoir to the first channel.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
A fluid dynamic bearing apparatus includes a first minute gap, a second minute gap, a third minute gap, a fourth minute gap, and a fifth minute gap. A flow of a lubricating oil from the fifth minute gap to the fourth minute gap is caused by a plurality of dynamic pressure generating grooves arranged within the fluid dynamic bearing apparatus. This flow causes air bubbles mixed in the lubricating oil within the fifth minute gap to flow toward the third minute gap and be discharged to an outside of the fluid dynamic bearing apparatus through the third minute gap. The fluid dynamic bearing apparatus further includes a plurality of dynamic pressure generating grooves and an annular groove.
Provided herein is a motor including a plastic component; a stationary component having a thrustplate; and a rotatable component having a sleeve and a counterplate, wherein the plastic component is positioned outside the sleeve, and wherein the thrustplate and the counterplate are positioned to form a fluid dynamic bearing (“FDB”) at a top portion of the sleeve. Also provided is a motor comprising a plastic component; a stationary component comprising a thrustplate; and a rotatable component comprising a sleeve; wherein the plastic component is affixed to the sleeve, and wherein the thrustplate and the plastic component are positioned to form a FDB. Also provided is a motor comprising a plastic component; a stationary component comprising an inner component; and a rotatable component comprising the plastic component and a supporting means for supporting the inner component, wherein the inner component and the supporting means are positioned to form a FDB.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
An apparatus and associated method characterized by an enclosure having a side member that defines a substantially orthogonally directed cavity penetrating the side member. A motor shaft in the enclosure has a distal end that is operably aligned with the cavity. A shear transfer member in the enclosure is operably affixed to the motor shaft. One of the shaft and the shear transfer member is sized for a close mating engagement with the side member in the cavity, and the shear transfer member is further sized for being simultaneously shear coupled to the side member.
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
28.
Fluid dynamic bearing apparatus, spindle motor, and disk drive apparatus
In a fluid dynamic bearing apparatus, an oil buffer is defined between a thrust gap and a pumping gap. The oil buffer has an axial dimension greater than that of the thrust gap, and/or has a radial dimension greater than that of the pumping gap. An air bubble generated in the thrust gap due to cavitation, for example, when a fluid dynamic bearing apparatus experiences a vibration can be dissolved in lubricating oil provided within the oil buffer. This prevents leakage of the lubricating oil due to the air bubble residing in the fluid dynamic bearing apparatus.
G11B 17/02 - Guiding record carriers not specifically of filamentary or web form, or of supports therefor Details
H02K 5/167 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
F16C 17/10 - Sliding-contact bearings for exclusively rotary movement for both radial and axial load
A fluid dynamic bearing motor and method are described, wherein motor components, including complex shaped motor components, are molded of plastic. The molding ensures form control and dimensional control thereby accomplishing design requirements, and eliminating or reducing component costs and component machining. The mold can be shaped to form various motor geometries, thereby eliminating the need for multiple component assembly and related assembly costs. In an aspect, a plastic integral motor hub is formed by injection molding. Alternatively, a plastic motor hub is affixed to a metal sleeve. In another aspect, fluid containment structures are molded into the motor component, reducing the number of components as compared with machined metal components. In a further aspect, bearing structures such as grooves are molded into the motor component, thereby eliminating processes such as electrochemical machining. In yet a further aspect, a plastic hub faces a thrustplate, reducing expensive sleeve machining.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
30.
Fluid dynamic bearing apparatus arranged to discharge air bubbles generated therein and a spindle motor and a disk drive apparatus including the same
A fluid dynamic bearing apparatus includes a first minute gap, a second minute gap, a third minute gap, a fourth minute gap, and a fifth minute gap. A flow of a lubricating oil from the fifth minute gap to the fourth minute gap is caused by a plurality of dynamic pressure generating grooves arranged within the fluid dynamic bearing apparatus. This flow causes air bubbles mixed in the lubricating oil within the fifth minute gap to flow toward the third minute gap and be discharged to an outside through the third minute gap. In addition, a flow of the lubricating oil into the third minute gap caused by a centrifugal force accompanying rotation is inhibited.
A voice coil motor (VCM) is controlled by applying a bipolar square wave actuator current to the VCM and calibrating a back electromotive force (back-EMF) measurement on the VCM in response to the square wave actuator current. Back-EMF on the VCM is measured while an actuator arm coupled to the VCM is in motion, and the VCM is controlled to move the actuator arm in response to the measured back-EMF voltage.
A base plate for magnetic disk drives is provided that includes a hooked protrusion integrated therein between adjacent spindle motor coils. The cross-over wires that span between adjacent coils are secured by the hooked protrusions, thereby optimizing coil height and reducing manufacturing steps. The hook-like protrusions of one embodiment of the present invention are preferably stamped into the base plate.
A motor includes a rotatable component rotatable relative to a stationary component, a fluid operable to flow between the rotatable and stationary component, and a capillary sealing component. The capillary sealing component provides a capillary seal and includes at least one tapered slot configured to pump the fluid between the rotatable and stationary components.
A hermetic seal is provided for sealing discrete openings in a disk drive, such as an opening made in a base plate of the drive for a spindle motor shaft and openings made in the base plate for spindle motor lead wires. The hermetic seal for the spindle motor shaft comprises an undercut made in the portion of the spindle shaft that is secured to the base plate, and an epoxy material fills the gap between the surface defining the opening and the undercut made in the spindle motor shaft. Epoxy is also used to seal the openings made for the motor lead wires. The invention also comprises the method by which the base plate casting may be sealed by a two-time resin impregnation process which fills exposed pores on the surfaces of the castings.
G11B 33/14 - Reducing influence of physical parameters, e.g. temperature change, moisture, dust
G11B 17/08 - Guiding record carriers not specifically of filamentary or web form, or of supports therefor from consecutive-access magazine of disc records
35.
Through-shaft fluid recirculation for a spindle motor
An apparatus and method are described for a fluid dynamic bearing motor as may be utilized in a disc drive memory system. A fluid seal is situated at a first axial end of a bearing, and a grooved pumping seal is situated at a second axial end of the bearing. In an aspect, a fluid recirculation passageway is defined through a shaft and a thrustplate, to recirculate fluid from axially above the grooved pumping seal at the second axial end of the bearing to the first axial end of the bearing. Any air ingested at the grooved pumping seal, or which came out of solution from the fluid, is purged into a fluid reservoir and out the fluid seal. In an aspect, fluid is recirculated from the center of the journal bearing and the bearing pressure grooves to the fluid recirculation passageway and toward an air purging fluid seal.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
A system and method are provided for sealing a fluid dynamic bearing motor. A first and a second folded fluid channel are shaped for maximizing bearing axial span and establishing angular stiffness, to resist gyroscopic rocking of the facing bearing surfaces. The first folded fluid channel is limited to occupying at least a portion of the same axial space as the bearing. A first and a second fluid sealing system are connected to opposite axial ends of the bearing. The first fluid sealing system forms an active pumping seal to pump fluid during motor rotation. In an aspect, a top cover attached shaft, and a single thrust surface are employed, allowing for a rigid motor structure and power reduction in applications including high rotational speed disc drives. Also, by employing a rigid shaft design, significantly lower amplitude radial vibration responses are exhibited at higher frequencies than prior art motor designs.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
An apparatus and method are provided for stiffening a base plate of a spindle motor to improve shock resistance and vibration response, and thereby increase reliability and performance of a disc drive memory system. A stiffener tab for stiffening a base plate is connected to the base plate, extends from the base plate, and is dimensioned to fit adjacent to a stator tooth. Stiffening of a base plate is especially useful in the case of stamped base plate designs that typically have uniform thickness, whereas cast base plate designs are formed with thicker sections. In an aspect, the present invention stiffens a motor cup portion of the base plate, and replaces stiffness lost by removal of material from the base plate to form holes for recessing a stator into the base plate. Axial and angular displacement of a spindle motor during shock events and vibration are decreased.
The present invention provides a motor assembly method for mounting to a base. The motor assembly includes a stator assembly having a plurality of stator teeth. Each stator tooth is configured to support a stator coil. The motor assembly also includes a flexible printed circuit having top and bottom surfaces and an end portion. The end portion is affixed to the stator assembly at the top surface. The bottom surface is affixed to the base.
A fluid dynamic bearing motor and method are described, wherein motor components, including complex shaped motor components, are molded of plastic. The molding ensures form control and dimensional control thereby accomplishing design requirements, and eliminating or reducing component costs and component machining. The mold can be shaped to form various motor geometries, thereby eliminating the need for multiple component assembly and related assembly costs. In an aspect, a plastic integral motor hub is formed by injection molding. Alternatively, a plastic motor hub is affixed to a metal sleeve. In another aspect, fluid containment structures are molded into the motor component, reducing the number of components as compared with machined metal components. In a further aspect, bearing structures such as grooves are molded into the motor component, thereby eliminating processes such as electrochemical machining. In yet a further aspect, a plastic hub faces a thrustplate, reducing expensive sleeve machining.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
A fluid dynamic bearing motor is provided having relatively rotatable facing surfaces that are reliably lubricated. A radial gap is defined between the relatively rotatable facing surfaces, wherein a first axial end of a fluid dynamic bearing has a larger radial gap as compared to a central region of the fluid dynamic bearing. In an aspect, a fluid recirculation passageway is established between the first axial end and the central region of the fluid dynamic bearing. In an aspect, a fluid reservoir is formed axially above the first axial end of the fluid dynamic bearing. Robustness of the FDB motor is increased, and sensitivity to external loads or mechanical shock events is reduced. Dry surface-to-surface contact of bearing surfaces and reduced performance or failure of the motor or disc drive components is averted. The use of diamond-like coating on relatively rotatable fluid bearing surfaces may also be reduced or eliminated.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
09 - Scientific and electric apparatus and instruments
38 - Telecommunications services
39 - Transport, packaging, storage and travel services
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Computer software for use in back-up of computer hard drive data, back-up of computer networks, data recovery, conversion of data or documents from physical to electronic media, conducting electronic discovery, data encryption, data warehousing, electronic storage of data; and archiving databases, images and other electronic data; computer software for use in back-up of computer hard drive data, back-up of computer networks, data recovery, conversion of data or documents from physical to electronic media, conducting electronic discovery, data encryption, data warehousing, electronic storage of data; and archiving databases, images and other electronic data, that may be downloaded from a global computer network; computer software for use in the safeguarding of digital files, including audio, video, text, binary, still images, graphics and multimedia files; computer software for the creation of firewalls; computer software to automate data warehousing; computer software for use in storing and managing the block-level changes within files and databases of clients. (1) Provision of access to data or documents stored electronically in central files for remote consultation; electronic storage of data; storage services for archiving databases, images and other electronic data; remote computer data backup services, namely, storage service for archiving databases, images, and other electronic data; back-up services for computer hard drive data; back-up services for computer networks; remote back-up services for computer hard drive data; remote back-up services for computer networks; computer services, namely, data recovery services; computer disaster recovery planning; conversion of data or documents from physical to electronic media; conducting electronic discovery services via global computer networks for lawyers and corporations; data encryption services; data warehousing; application service provider (ASP) featuring software for use in back-up of computer hard drive data, back-up of computer networks, data recovery, conversion of data or documents from physical to electronic media, conducting electronic discovery, data encryption, data warehousing, electronic storage of data; and archiving databases, images and other electronic data.
42.
Base dam in a data storage system to reduce or eliminate motor leakage
A base for a data storage system is provided having an inner facing surface and an outer facing surface. The base includes a motor well. Formed with inner surface of facing surface of the base includes a medium region, an actuator region and a dam. The medium region is defined by a medium region planar surface surrounding a portion of the motor well, a leading surface and a trailing surface. The actuator region is defined by an actuator region planar surface that is recessed from the medium region planar surface, the leading surface, the trailing surface and a remaining portion of the motor well. The dam has a dam planar surface that surrounds the remaining portion of the motor well and is positioned on the actuator region planar surface between the leading surface and the trailing surface.
A device includes a stator lamination of a stator for a motor with a first set of stator teeth and a second set of stator teeth, a first set of windings with wire having a first diameter on the first set of stator teeth and a second set of wire windings with wire having a second diameter. The second diameter is greater than the first diameter. The first and seconds sets of stator teeth are divided among at least two phases of the motor. Each phase includes an equal number of stator teeth from the first set of stator teeth and an equal number of stator teeth from the second set of stator teeth.
H02K 7/00 - Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
H02K 1/06 - Details of the magnetic circuit characterised by the shape, form or construction
A fluid dynamic bearing having a hub, a sleeve, and a sealing arrangement comprising a first capillary seal substantially retaining a first fluid and a second capillary seal comprising a second fluid. The second capillary seal is located between the first capillary seal and an opening between the hub and the sleeve.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
According to various embodiments of the invention, a motor with a rotatable hub having fluid dynamic journal and thrust bearings can be assembled from four major components: a spindle, a hub, a thrust washer, and a base. The spindle can integrate journal bearing, axial limiter, and ring seal functions. The hub can integrate journal bearing, thrust bearing, ring seal, axial limiter, capillary seal, and bumper functions. The thrust washer can integrate thrust bearing and lubricant circulation functions. The base can integrate capillary seal and lubricant storage and circulation functions. Each function can be integrated as structural feature in its corresponding component. The spindle, hub, and thrust bearing can be preassembled. The base can be loaded with lubricant prior to assembly with the spindle/hub/thrust bearing combination.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
H02K 5/16 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
09 - Scientific and electric apparatus and instruments
38 - Telecommunications services
39 - Transport, packaging, storage and travel services
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Computer software for use in back-up of computer hard drive data, back-up of computer networks, data recovery, conversion of data or documents from physical to electronic media, conducting electronic discovery, data encryption, data warehousing, electronic storage of data; and archiving databases, images and other electronic data; computer software for use in back-up of computer hard drive data, back-up of computer networks, data recovery, conversion of data or documents from physical to electronic media, conducting electronic discovery, data encryption, data warehousing, electronic storage of data; and archiving databases, images and other electronic data, that may be downloaded from a global computer network; computer software for use in the safeguarding of digital files, including audio, video, text, binary, still images, graphics and multimedia files; computer software for the creation of firewalls; computer software to automate data warehousing; computer software for use in storing and managing the block-level changes within files and databases of clients. (1) Provision of private access to client data or documents stored electronically in central files for remote consultation; electronic storage of data; storage services for archiving databases, images and other electronic data; remote computer data backup services, namely storage service for archiving databases, images, and other electronic data; back-up services for computer hard drive data; back-up services for computer networks; remote back-up services for computer hard drive data; remote back-up services for computer networks; computer services, namely, data recovery services, computer disaster recovery planning; conversion of data or documents from physical to electronic media; conducting electronic discovery services via global computer networks for lawyers and corporations; data encryption services; data warehousing; application service provider (ASP) featuring software for use in back-up of computer hard drive data, back-up of computer networks, data recovery, conversion of data or documents from physical to electronic media, conducting electronic discovery, data encryption, data warehousing, electronic storage of data; and archiving databases, images and other electronic data.
47.
METHODS AND APPARATUS FOR MODIFYING A BACKUP DATA STREAM INCLUDING A SET OF VALIDATION BYTES FOR EACH DATA BLOCK TO BE PROVIDED TO A FIXED POSITION DELTA REDUCTION BACKUP APPLICATION
Methods and apparatus for modifying a data stream of backup data to be provided to a fixed position delta reduction backup method are disclosed. When the data stream is received, at least a portion of the data stream is parsed into a plurality of data blocks and a plurality of sets of validation bytes, wherein each of the plurality of data blocks corresponds to one of the plurality of sets of validation bytes. One or more modified data streams are then generated such that the plurality of data blocks are separate from the plurality of sets of validation bytes.
G06F 11/14 - Error detection or correction of the data by redundancy in operation, e.g. by using different operation sequences leading to the same result
G06F 17/30 - Information retrieval; Database structures therefor
A rotary actuator motor is provided including a stationary coil section and a rotating magnet. The magnet is incorporated with the pivot bearing assembly, and the coil section is aligned with the magnet along an axis of rotation of the actuator. The magnet fully encircles the axis of rotation. The coil comprises one or more closed loops of electrically conductive material. The motor in this arrangement maintains a much smaller profile in comparison to a traditional voice coil motor that is mounted to a yoke extending away from the axis of rotation of the actuator.
Methods and apparatus for modifying a backup data stream to be provided to a fixed position delta reduction backup method are disclosed. When a data stream is received, the data stream may be parsed into a plurality of logical components, where each of the logical components includes one or more data blocks. Missing data blocks may also be detected in the data stream, and therefore may be detected in each of the plurality of logical components. For instance, each of the logical components may be separated into a separate data stream for which missing data blocks may be detected. A temporary data block is then inserted where each missing data block is detected (e.g., in each of the plurality of logical components). In this manner, inefficiencies introduced into a fixed position delta reduction backup process as a result of new or deleted data in a system implementing a plurality of data blocks which may be stored in the form of logical components are eliminated.
Methods and apparatus for performing adaptive compression are disclosed. A data stream is divided into a plurality of data segments. When one of the plurality of data segments is compressed, it is determined whether the compression has been successful. When the compression has been successful, the next data segment in the plurality of data segments is compressed. However, when the compression has been unsuccessful, one or more of the plurality of data segments are skipped (i.e., not compressed) before compression is attempted on another one of the plurality of data segments. When a data segment is compressed, the compression algorithm (and any associated parameter(s)) that is applied is selected based upon a variety of factors, such as the length of the data segment, CPU speed, CPU availability, and/or data throughput such as the network bandwidth (e.g., where data is to be transmitted via a network interface). The compression algorithm (and any associated parameter(s)) may also be selected, at least in part, based upon a set of user preferences that indicate a preference between the speed with which compression is performed and the amount that a data segment is compressed.
A fluid dynamic bearing motor is described. In one embodiment, the fluid dynamic bearing motor includes a base that has a bore hole and a liner secured within the bore hole. The fluid dynamic bearing motor also includes a rotor assembly that has a shaft, which is partially disposed within the liner and configured to rotate relative to the liner. A fluid dynamic bearing is disposed between the liner and the shaft to support this relative rotation.
F16C 32/06 - Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings