A field adjustable output control usable with a luminaire to adjust dimming employs a first resistance source, and at least a second resistance source, and a shunt voltage regulator having a reference node coupled between the first and the second resistance sources to form a voltage divider that provides a reference voltage to the shunt voltage regulator, wherein the shunt voltage regulator is electrically coupled between an LED driver dimming line and a ground via first and second nodes of the shunt voltage regulator to regulate a flow of current from the LED driver dimming line based on the reference voltage supplied via the voltage divider. The second resistance source can take the form of a plurality of discrete resistors, each having a respective value of resistance, or alternatively can take the form of a potentiometer having a continuously variable value of resistance associated therewith.
A field adjustable output control usable with a luminaire to adjust dimming includes a plurality of voltage reference integrated circuits, each of the voltage reference integrated circuits having a respective associated voltage drop thereacross; and at least one switch operable to selectively adjust a total number of the plurality of voltage reference integrated circuits electrically coupled in series with one another between an LED driver dimming line and a ground to regulate a flow of current from the LED driver dimming line to a summed voltage that is equal to a sum of voltages respective associated voltage drops across the voltage reference integrated circuits that are electrically coupled in series with one another between the LED driver dimming line and the ground by the at least one switch.
Aspects of the disclosure provide a light with reduced glare and light trespass. The light includes a light source that emits light, a primary optic that at least partially encloses the light source such that at least a portion of the light emitted from the light source passes through the primary optic, and a secondary optic including a portion shaped as a non-spherical frustum. The non-spherical frustum is bounded between first and second parallel planes. The secondary optic is securable relative to the primary optic such that at least a portion of the primary optic is at least partially enclosed by the secondary optic and positioned between the first and second parallel planes.
A system to control solid state light sources, including a photosensor responsive primarily to wavelengths of light outside the emitted light band of wavelengths that the solid state light sources emit when the solid state light sources are in the ON state, and which produces a light level signal representative of a level of sensed light primarily for wavelengths outside of the emitted light band of wavelengths. A set of circuitry receives the light level signal representative of the sensed level of light from the photosensor, determines a contribution by the solid state light sources to the sensed level of light, and uses a compensated light level or a compensated threshold in assessing a dusk condition or a dawn condition when the solid state light sources are in the ON state to compensate for the contribution by the solid state light sources to the sensed level of light.
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
H05B 47/19 - Controlling the light source by remote control via wireless transmission
F21V 23/06 - Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices
F21V 23/04 - Arrangement of electric circuit elements in or on lighting devices the elements being switches
F21V 15/01 - Housings, e.g. material or assembling of housing parts
F21W 131/103 - Outdoor lighting of streets or roads
11.
Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics
A light having a first set of electrically coupled solid state light sources having a first forward voltage drop and a second set of electrically coupled solid state light sources having a second forward voltage at least approximately matching the first forward voltage drop. The first set and second sets of solid state light sources are electrically coupled in parallel to a constant current source. A resistor is electrically coupled to at least one of the first and second sets of solid state light sources. Control circuitry is operably coupled to control a resistance electrically coupled in series with said at least one of the first set and the second set of solid state light sources to adjust a respective current therethrough and thereby dim said at least one of the first set and the second set of solid state light sources while maintaining the respective forward voltage drops.
H05B 45/10 - Controlling the intensity of the light
H05B 45/345 - Current stabilisationMaintaining constant current
H05B 45/48 - Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
F21S 8/08 - Lighting devices intended for fixed installation with a standard
F21V 29/503 - Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
F21V 29/70 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
A system to control solid state light sources, including a photosensor responsive primarily to wavelengths of light outside the emitted light band of wavelengths that the solid state light sources emit when the solid state light sources are in the ON state, and which produces a light level signal representative of a level of sensed light primarily for wavelengths outside of the emitted light band of wavelengths. A set of circuitry receives the light level signal representative of the sensed level of light from the photosensor, determines a contribution by the solid state light sources to the sensed level of light, and uses a compensated light level or a compensated threshold in assessing a dusk condition or a dawn condition when the solid state light sources are in the ON state to compensate for the contribution by the solid state light sources to the sensed level of light.
A photocontrol circuit includes a set of light level detection circuitry which is powered by a 0 to 10V dimming input. In response to a determination that light sensed in ambient environment is at or below the light level threshold, the light level detection circuitry switches a 0 to 10V dimming input line to approximately 10V, controlling a luminaire to emit maximum light. In response to a determination that light sensed in ambient environment is above the light level threshold, the light level detection circuitry switches the 0 to 10V dimming input line to less than approximately 1 Volt, thereby controlling the luminaire to emit minimum or no light. The photocontrols embodiments described herein advantageously employ the 0 to 10V dimming line as the luminaire control line, and photocontrol power source, unlike previous photocontrols which typically switch the power input to the luminaire. The photocontrol circuit may be housed in a photocontrol module comprising a base and a cover.
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
A protection system and operating method thereof promotes the longevity of components of a control subsystem. The protection apparatus may include a first connector for connecting to the control system and a second connector for connecting to a target system. The protection apparatus detects states of a component of the control subsystem over time and causes a state transition of a switching circuit of the protection apparatus based on the detected states of the control subsystem. The state transition of the switching circuit of the protection system may be initiated after a defined period of time has elapsed after detecting states of the control subsystem component. The state transition of the switching circuit may be a transition between an open state in which power is not provided to a node of the second connector and a closed state in which power is provided to the node of the second connector.
H05B 47/105 - Controlling the light source in response to determined parameters
H05B 47/11 - Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
H01H 9/54 - Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
G01J 1/02 - Photometry, e.g. photographic exposure meter Details
H02H 3/04 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
H02H 3/08 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to excess current
H05B 45/10 - Controlling the intensity of the light
H05B 45/50 - Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDsCircuit arrangements for operating light-emitting diodes [LED] responsive to LED lifeProtective circuits
A shorting cap apparatus is provided for enabling remote application of power, by an external system, to a load connected to the shorting cap apparatus while protecting components of the external system from potential damage due to high inrush current to the load. The shorting cap apparatus comprises a housing, a connector, and inrush current protection circuitry. The connector of the shorting cap apparatus may be connected to a corresponding connector associated with the load. Once the external system applies power, the protection circuitry provides a time delay to allow the load to sufficiently charge via a first set of resistors of the protection circuitry over a period of time before a set of switches of the protection circuitry are transitioned to a conducting state.
H05B 45/50 - Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDsCircuit arrangements for operating light-emitting diodes [LED] responsive to LED lifeProtective circuits
H02H 9/02 - Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
21.
Systems and methods for outdoor luminaire wireless control
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
A twist-lock connector that includes a printed circuit board component with one or more flexible portions is disclosed. The flexible portions may be formed within an interior portion of the printed circuit board by routing or otherwise removing a portion of the printed circuit board to create one or a plurality of side for each flexible portion. One or more electrical contacts may be positioned on each flexible portion and arranged to be electrically coupled with male electrical contacts that are part of a corresponding twist-lock plug, thereby deflecting the flexible portions. When deflected, the flexible portions exert an opposing, biasing force in the direction of the male electrical contacts to maintain contact there between. One or more of a mounting base and a support base may be clamped to either or both sides of the printed circuit board to provide further stability for the flexible portions.
H01R 43/26 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for engaging or disengaging the two parts of a coupling device
H01R 13/625 - Casing or ring with bayonet engagement
H01R 13/639 - Additional means for holding or locking coupling parts together after engagement
H01R 43/20 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve
H01R 13/66 - Structural association with built-in electrical component
24.
High reliability photocontrol controls with 0 to 10 volt dimming signal line and method
A photocontrol circuit includes a set of light level detection circuitry and a low power consumption power supply that powers the set of light level detection circuitry. In response to a determination that light sensed in ambient environment is at or below the light level threshold, the light level detection circuitry switches a 0 to 10V dimming input line to approximately 10V, controlling a luminaire to emit maximum light. In response to a determination that light sensed in ambient environment is above the light level threshold, the light level detection circuitry switches the 0 to 10V dimming input line to less than approximately 0.5 Volts, thereby controlling the luminaire to emit minimum or no light. The photocontrols embodiments described herein advantageously employ the 0 to 10V dimming line as the luminaire control line, unlike previous photocontrols which typically switch the power input to the luminaire. The photocontrol circuit may be housed in a photocontrol module comprising a base and a cover.
Systems and methods which leverage the wireless communication capability present in wireless-enabled luminaires where the lamps include a short-range wireless transceiver and can be controlled by a smart appliance. The wireless capability of a luminaire may be paired with a compatible wireless interface system (e.g., adapter system) that allows for control of the luminaire via plug-in or hard-wired photocontrols and wireless network lamp control nodes. An adapter system may be provided that replaces a standard wired receptacle of a luminaire. The adapter system may include a wired interface to the luminaire which provides power to the wireless adapter system. The wireless adapter system may include a receptacle interface that receives a plug of a control node, such as photocontrol or a networked control node. The wireless adapter system may also include a wireless interface circuit that communicates control, status or other data between the connected control device and the luminaire.
Systems and methods which utilize luminaires that include wireless communication capabilities that allow the luminaires to be controlled by a wireless-enabled mobile system disposed proximate the luminaires. Control of a network of wireless-enabled luminaires is provided via a single mobile system utilizing wireless communication through at least one gateway luminaire without requiring connection between the luminaires and a central management system (CMS). Information sent to or collected from the luminaires through the mobile system may be transferred via a mobile network interface from or to a CMS. The luminaires may use their wireless communication ability to obtain data from nearby wireless sensors, which data may be collected by the mobile system from luminaires in the network of luminaires when the mobile system is positioned proximate at least one of the luminaires. The sensor data and/or other data may be uploaded to the central management system in a non-real-time period.
H04W 4/80 - Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
Systems and methods for reducing low frequency (e.g., 100 Hz, 120 Hz) output ripple of a power converter which receives input power from an AC power source (e.g., AC mains). An output ripple reduction circuit is provided which is electrically coupled between an output of a power converter and a load (e.g., one or more LEDs). The output ripple reduction circuit comprises a transformer having a first winding and a second winding each wrapped around a core. The first winding has a first terminal electrically coupled to an output of the power converter and a second terminal coupled to a capacitor to form a first LC circuit. The second winding has a first terminal electrically coupled to a load and a second terminal coupled to the capacitor to form a second LC circuit.
H02M 1/14 - Arrangements for reducing ripples from DC input or output
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
H02M 3/335 - Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
H02M 7/06 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
H02M 1/12 - Arrangements for reducing harmonics from AC input or output
Systems and methods for reducing inrush current into a component, such as a power converter (e.g., LED driver), which receives alternating current (AC) power from an AC power source (e.g., AC mains). The method may include pre-charging the input capacitance of a component or circuit for a determined period of time after closing of a control switch (e.g., photocontrol, contactor) using a capacitive load pre-charge circuit (e.g., resistor), and then shorting the capacitive load pre-charge circuit using a bidirectional AC switch coupled in parallel with the capacitive load pre-charge circuit after the determined period of time to selectively bypass the capacitive load pre-charge circuit. The bidirectional AC switch may include two source-connected metal oxide semiconductor field-effect transistors (MOSFETs) which have a very low “on resistance,” such that during steady-state operation, the protection circuit wastes very little power compared to conventional inrush protection circuits.
Shades and/or reflectors for luminaires. The luminaires may be retrofitted with the shades and/or reflectors to selectively control the direction and/or spectrum of light emitted by the luminaires. In particular, the efficiency and/or color contrast of a luminaire may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. The shade may provide a transmissive filter which reflects desired wavelengths such as red and green, while passing less desired wavelengths (e.g., blue) toward the wavelength shifting material which emits such as light of more desirable wavelengths.
An article and circuit that controllably dims a luminaire, for example without controlling a line power of the luminaire. The luminaire includes a traditional three-contact socket to receive a photocontroller, such as that used for street lights. The article uses a desired dimming control signal to provide an output control signal that controls whether the light source in the luminaire is turned ON or turned OFF to thereby effect the desired amount of dimming. The output control signal may be a pulse width modulated (PWM) signal with a duty cycle that is related to the desired level of illumination or dimming. The system may use a dimming signal from a five or seven contact dimming photocontroller to provide such an output control signal to control the light-level for the luminaire.
Illumination systems with selectively adjustable illumination patterns which reduce the need for a utility or luminaire distributer to stock luminaires with different illumination patterns and reduce the need for pre-planning installations. Implementations may allow scheduled dimming of luminaires, dimming in defined physical directions and scheduled adjustment of light patterns. The efficiency and/or color contrast of a luminaire may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. A transmissive filter may reflect desired wavelengths such as red and green, while passing less desired wavelengths (e.g., blue) toward the wavelength shifting material which emits such as light of more desirable wavelengths.
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
F21K 9/64 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
F21S 8/08 - Lighting devices intended for fixed installation with a standard
F21V 29/76 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
F21V 9/10 - with provision for variation of the colour or intensity (F21V 9/12 takes precedence)
F21V 15/01 - Housings, e.g. material or assembling of housing parts
Photocontrol apparatus that controls a luminaire or other load such that the luminaire is switched on during nighttime hours and off during the daytime. The photocontrol consumes only microwatts of power in either the ON or the OFF state, unlike traditional relay- or triac-based photocontrols. The photocontrol does not require a voltage generating photo sensor to generate power for the photocontrol. A solar cell, semiconductor photo diode or photo diode string, cadmium sulfide cell, semiconductor ambient light sensor, etc., may be used as the sensor element. The photocontrol switches power to the load at the zero-crossing of an AC input voltage, which reduces inrush current and the switching currents caused by traditional photocontrols which may switch at any point on the AC input voltage waveform.
Systems, methods and articles for providing lighting or illumination systems having drive circuits that employ a magnetic amplifier (“mag-amp”) and one or more feedback circuits to form a power converter that powers solid-state light sources (e.g., LEDs). The magnetic amplifier includes one or more magnetic cores which provides a controllable reluctance for magnetic flux. The magnetic amplifier includes one or more power windings which receive energy from an alternating current (AC) supply (e.g., AC mains) and delivers rectified AC current as direct current (DC) to one or more solid-state light sources. The magnetic amplifier includes one or more control windings coupled to a DC control source. The drive circuit may have two or more rectifiers (e.g., solid-state rectifiers) to provide a direct current to drive the solid-state light sources and also to isolate the one or more control windings from interference from the magnetic flux of the one or more power windings.
H02M 1/42 - Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
H02M 7/06 - Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
Photocontrol apparatus that controls a luminaire or other load such that the luminaire is switched on during nighttime hours and off during the daytime. The photocontrol generates a micro-amp power supply using the voltage generated across a high value resistor in series with an alternating current (AC) power line. The photocontrol consumes only microwatts of power in either the ON or the OFF state, unlike traditional relay- or triac-based photocontrols. The photocontrol does not require a voltage generating photo sensor to generate power for the photocontrol. A solar cell, semiconductor photo diode or photo diode string, cadmium sulfide cell, semiconductor ambient light sensor, etc., may be used as the sensor element.
Systems, methods and articles for providing automatic collection of asset management data of outdoor illumination systems. A central asset management system organizes the collected data into electronic reports (e.g., spreadsheets, maps) presentable to a user. The asset management data may include, for example, identification information, location information, installation date, installation cost, installation details, type of luminaire, maintenance activities, specifications, purchase date, cost, expected lifetime, warranty information, service contracts, service history, spare parts, comments, or anything other information that may be useful to users (e.g., management, purchasers, installers, maintenance workers). A smart appliance with location determination capabilities, such as a global positioning system (GPS) receiver, provides location information to a luminaire when the smart appliance is positioned proximate a luminaire. The luminaires in the illumination system send location information and identification information to the central asset management system over a wired and/or wireless data communications channel.
Systems, methods and articles for providing centralized control of area lighting hours of illumination. An area illumination system includes a central control system operatively coupled to a plurality of luminaires through a data communications network. In some implementations, the data communications network may include a power-line power distribution system and/or a wired or wireless communications network. Each of the plurality of luminaires includes a local illumination control system, which may include a photosensor. The central control system identifies one or more luminaires as having a faulty local illumination control system and issues illumination commands to such luminaires through the data communications network so that the luminaires continue to operate normally without a working local illumination control system. The central control system may store data relating to luminaires having faulty illumination control systems, such as addresses, map data, routing data, or the like.
Systems, methods and articles for providing centralized control of area lighting hours of illumination. An area illumination system includes a central control system operatively coupled to a plurality of luminaires through a data communications network. In some implementations, the data communications network may include a power-line power distribution system and/or a wired or wireless communications network. Each of the plurality of luminaires includes a local illumination control system, which may include a photosensor. The central control system identifies one or more luminaires as having a faulty local illumination control system and issues illumination commands to such luminaires through the data communications network so that the luminaires continue to operate normally without a working local illumination control system. The central control system may store data relating to luminaires having faulty illumination control systems, such as addresses, map data, routing data, or the like.
Systems, methods and articles for providing centralized control of area lighting hours of illumination. An illumination system includes a central control system operatively coupled to a plurality of luminaires through a power-line power distribution system. The central control system issues illumination commands to the plurality of luminaires through the power-line power distribution system. The central control system may generate commands directed to all luminaires in an illumination system, or to one or more subsets of luminaires in the lamination system. The central control system may sequentially turn on luminaires in the illumination system to reduce power surges that would otherwise occur.
Systems, methods and articles for providing centralized control of area lighting hours of illumination. An illumination system includes a central control system operatively coupled to a plurality of luminaires through a power-line power distribution system. The central control system issues illumination commands to the plurality of luminaires through the power-line power distribution system. The central control system may generate commands directed to all luminaires in an illumination system, or to one or more subsets of luminaires in the lamination system. The central control system may sequentially turn on luminaires in the illumination system to reduce power surges that would otherwise occur.
A number of luminaires can be communicably coupled and networked. Some or all of the luminaires may be equipped with a number of sensors including motion sensors. Upon detecting motion of an object in the vicinity of a luminaire, the luminaire can increase the luminous output of the lighting subsystem in the luminaire and communicate a targeted or broadcast output signal to some or all of the remaining luminaires in the network. The output signal may variously contain data indicative of one or more parameters related to motion of the object (direction of travel, velocity, etc.) or one or more parameters related to the increased luminous output of the luminaire. Responsive to the receipt of an output signal generated by another luminaire, the luminaire may autonomously adjust the luminous output of the lighting subsystems responsive to an event detected by the other luminaire.
An illumination system verifies whether one or more aspects of an output signal provided by a photosensitive transducer fall within a threshold of an expected value for the aspect. The aspect may include a sunrise time, a sunset time, a dawn time, a dusk time, a solar noon time, a solar midnight time, or similar. Upon verification the illumination system uses a microcontroller to adjust one or more output parameters of a solid-state light source responsive to the output signal provided by the photosensitive transducer. Where verification is not possible, the illumination system uses the microcontroller to adjust one or more output parameters of the solid-state light source responsive to a schedule.
Apparatus and methods to regulate an input power applied to a plurality of light emitters are provided. A regulator device includes a plurality of switches and a control circuit that controls the plurality of switches. The plurality of switches selectively couple respective strings of the light emitters in series to the input power to emit light when deactivated. The control circuit may deactivate a number of the switches to couple the respective light emitters to the input power in response to a sensed operational parameter of the input power. The control circuit may adjust the number of the switches deactivated in response to a change in the sensed operational parameter of the input power. A number of the light emitters may be coupled to the input power regardless of the sensed operational parameter of the input power.
A luminaire comprising a solid-state light source and a photosensitive transducer each operatively coupled to a controller. The photosensitive transducer is oriented to be within an illumination path of the solid-state light source. When the solid-state light source is in an ON state in which at least some light is produced, the controller controls the solid-state light source to be in the OFF state in which no light is produced for a brief measurement period imperceptible to a human. During the measurement period the controller obtains an ambient light level measurement from the photosensitive transducer without interference from the solid-state light source, which is in the OFF state. The controller may record turn ON and turn OFF times of the solid-state light source for use in controlling the solid-state light source in various circumstances.
A luminaire comprising a solid-state light source and a photosensitive transducer each operatively coupled to a controller. The photosensitive transducer is oriented to be within an illumination path of the solid-state light source. When the solid-state light source is in an ON state in which at least some light is produced, the controller controls the solid-state light source to be in the OFF state in which no light is produced for a brief measurement period imperceptible to a human. During the measurement period the controller obtains an ambient light level measurement from the photosensitive transducer without interference from the solid-state light source, which is in the OFF state. The controller may record turn ON and turn OFF times of the solid-state light source for use in controlling the solid-state light source in various circumstances.
Systems, methods and articles for providing lighting or illumination systems having drive circuits that employ a magnetic amplifier (“mag-amp”) and one or more feedback circuits to form a power converter that powers solid-state light sources (e.g., LEDs). The magnetic amplifier includes one or more magnetic cores which provides a controllable reluctance for magnetic flux. The magnetic amplifier includes one or more power windings which receive energy from an alternating current (AC) supply (e.g., AC mains) and delivers rectified AC current as direct current (DC) to one or more solid-state light sources. The magnetic amplifier includes one or more control windings coupled to a DC control source. The drive circuit may have two or more rectifiers (e.g., solid-state rectifiers) to provide a direct current to drive the solid-state light sources and also to isolate the one or more control windings from interference from the magnetic flux of the one or more power windings.
H01F 21/04 - Variable inductances or transformers of the signal type continuously variable, e.g. variometers by relative movement of turns or parts of windings
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
46.
Apparatus and method of energy efficient illumination using received signals
Illumination sources are turned ON and turned OFF in response to detected levels of illumination in an ambient environment reaching respective thresholds, which may be user set. The detection of these turn ON and turn OFF events is verified, for instance against expected events or conditions for the particular location, date and/or time. An alert or log entry may be generated if a detected event or condition appears to be invalid. For instance, if an amount of illumination in the environment is different than predicted by a threshold amount or if a time that the event occurs or is detected is different than expected or predicted by more than a threshold amount. A level of illumination may be decreased to some non-zero level after a specified time after turn ON, and increased at some specified time before turn OFF. Use of information from external sources (e.g., satellites, cell towers) may allow times to be using local time, including daylight savings if applicable.
An illumination system verifies controls the operation of a luminaire without the use of any photometric data. The illumination system uses data indicative of a current time, date or latitude to determine one or more aspects of a solar event. Such aspects can include a scheduled, predicted or expected time of occurrence of the scheduled solar event. Responsive to the determination of a scheduled, predicted or expected time of occurrence of the scheduled solar event, a control subsystem can adjust the luminous output of a light source.
A solid-state lighting device for use in lieu of a gas discharge lamp, includes a housing; a lens coupled to the housing; a circuit board; and a plurality of solid-state light emitters carried by the circuit board and arranged to generate light to pass through the lens. An entirety of a form factor of the solid-state lighting device may be located within a cylindrical envelope having a length less than or about equal to an overall length of the gas discharge lamp and a diameter less than or about equal to the overall diameter of the gas discharge lamp. In addition, a light center length of the solid-state lighting device may be about equal to the light center length of the gas discharge lamp. Solid-state light emitters are arrayed with principal axes of emission radially spaced at least partially around and extending from a central axis of the lens.
A photocontrol includes a switch that consumes very low power when the switch is turned ON and when it is turned OFF. The photocontrol can provide low-power digital control signals to high-impedance inputs of control devices that control the delivery of power to load devices, such as LED drivers that control the delivery of power to arrays of LEDs. The photocontrol also can provide power signals to control devices that control the delivery of power to light sources, such as electronic transformers that control the delivery of power to fluorescent lamps. The photocontrol may include a comparator that causes the photocontrol to have switching hysteresis.
A photocontrol includes a switch that consumes very low power when the switch is turned ON and when it is turned OFF. The photocontrol can provide low-power digital control signals to high-impedance inputs of control devices that control the delivery of power to load devices, such as LED drivers that control the delivery of power to arrays of LEDs. The photocontrol also can provide power signals to control devices that control the delivery of power to light sources, such as electronic transformers that control the delivery of power to fluorescent lamps. The photocontrol may include a comparator that causes the photocontrol to have switching hysteresis.
An illumination system and methods to control a light source are provided. An illumination system includes a light source, a two-dimensional non-Passive Infrared (non-PIR) imager, and a controller. The light source provides at least two levels of illumination. The non-PIR imager images an area and to produce image data representative of images across at least part of a visible portion of an electromagnetic spectrum. The controller is communicatively coupled to receive the image data from the non-PIR imager and process the received image data to detect at least one ambient environmental characteristic of the area in the part of the visible portion of the electromagnetic spectrum, where the ambient environmental characteristic is indicative of a presence or imminent presence of a body in the area. The controller is also coupled to control operation of the light source based on, at least in part, detection of the ambient characteristic of the environment.
H04N 5/222 - Studio circuitryStudio devicesStudio equipment
G08B 13/196 - Actuation by interference with heat, light, or radiation of shorter wavelengthActuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
An illumination system correlates solar time to a clock and controls lighting or illumination based on time. The illumination system may turn ON light source(s) at a first level at a turn ON time, correlated to be around or at dusk, and turn OFF light source(s) at a turn OFF time, correlated to be around or at dawn. The illumination system may reduce a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. Turn ON, turn OFF, decrease and increase times may be determined based on recent levels of light or illumination in the environment, for example via average or median levels over a number of previous daily cycles. Filtering may eliminate aberrant events.
A line voltage signal at a first voltage and a first current supplied by a line voltage switching device responsive to a sensed or detected event can be provided to a first node of a regulator. A portion of the line voltage signal can be passed at the first voltage through a capacitive device in the regulator and provided at a second node for return to an electrical circuit containing a load device. The remaining portion of the line voltage signal can be passed to a voltage divider comprising at least a first resistive device and a second resistive device. A signal output at a second voltage and a second current that is suitable for introduction to a high-impedance controller input can be obtained at a third node electrically coupled to a point between the first resistive device and the second resistive device.
H02M 1/10 - Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from AC or DC
The power consumption of a switch-mode power converter can be determined based upon at least one of a converter drive signal pulse width or a converter drive signal frequency. Such power consumption can be determined using an algorithm providing a functional relationship between switch-mode power converter power consumption and at least converter drive signal pulse width or frequency. Such algorithms can be either calculated using known component values or empirically determined. Such power consumption may also be determined using store power consumption data in a data store that is indexed by at least one of the converter drive signal pulse width or frequency.
A number of luminaires can be communicably coupled and networked. Some or all of the luminaires may be equipped with a number of sensors including motion sensors. Upon detecting motion of an object in the vicinity of a luminaire, the luminaire can increase the luminous output of the lighting subsystem in the luminaire and communicate a targeted or broadcast output signal to some or all of the remaining luminaires in the network. The output signal may variously contain data indicative of one or more parameters related to motion of the object (direction of travel, velocity, etc.) or one or more parameters related to the increased luminous output of the luminaire. Responsive to the receipt of an output signal generated by another luminaire, the luminaire may autonomously adjust the luminous output of the lighting subsystems responsive to an event detected by the other luminaire.
A number of luminaires can be communicably coupled and networked. Some or all of the luminaires may be equipped with a number of sensors including motion sensors. Upon detecting motion of an object in the vicinity of a luminaire, the luminaire can increase the luminous output of the lighting subsystem in the luminaire and communicate a targeted or broadcast output signal to some or all of the remaining luminaires in the network. The output signal may variously contain data indicative of one or more parameters related to motion of the object (direction of travel, velocity, etc.) or one or more parameters related to the increased luminous output of the luminaire. Responsive to the receipt of an output signal generated by another luminaire, the luminaire may autonomously adjust the luminous output of the lighting subsystems responsive to an event detected by the other luminaire.
An illumination system verifies controls the operation of a luminaire without the use of any photometric data. The illumination system uses data indicative of a current time, date or latitude to determine one or more aspects of a solar event. Such aspects can include a scheduled, predicted or expected time of occurrence of the scheduled solar event. Responsive to the determination of a scheduled, predicted or expected time of occurrence of the scheduled solar event, a control subsystem can adjust the luminous output of a light source.
An illumination system can provide at least a first state and a second state of a luminaire equipped with at least one lighting subsystem. In the first state, the luminous intensity of the lighting subsystem is controlled based on the occurrence of a detected solar event or the occurrence of an expected solar event. In the second state, the luminous intensity of the lighting subsystem forms a visually distinct pattern based on the detection of atmospheric electrical activity exceeding a defined threshold by an electrical activity sensor disposed within the luminaire. The visually distinctive luminous output can alert persons within line of sight of the luminaire of the proximity of threatening atmospheric electrical activity.
An illumination system verifies controls the operation of a luminaire without the use of any photometric data. The illumination system uses data indicative of a current time, date or latitude to determine one or more aspects of a solar event. Such aspects can include a scheduled, predicted or expected time of occurrence of the scheduled solar event. Responsive to the determination of a scheduled, predicted or expected time of occurrence of the scheduled solar event, a control subsystem can adjust the luminous output of a light source.
An illumination system verifies whether one or more aspects of an output signal provided by a photosensitive transducer fall within a threshold of an expected value for the aspect. The aspect may include a sunrise time, a sunset time, a dawn time, a dusk time, a solar noon time, a solar midnight time, or similar. Upon verification the illumination system uses a microcontroller to adjust one or more output parameters of a solid-state light source responsive to the output signal provided by the photosensitive transducer. Where verification is not possible, the illumination system uses the microcontroller to adjust one or more output parameters of the solid-state light source responsive to a schedule.
An illumination system verifies whether one or more aspects of an output signal provided by a photosensitive transducer fall within a threshold of an expected value for the aspect. The aspect may include a sunrise time, a sunset time, a dawn time, a dusk time, a solar noon time, a solar midnight time, or similar. Upon verification the illumination system uses a microcontroller to adjust one or more output parameters of a solid-state light source responsive to the output signal provided by the photosensitive transducer. Where verification is not possible, the illumination system uses the microcontroller to adjust one or more output parameters of the solid-state light source responsive to a schedule.
A power converter output stage provides acceptable current matching between sets or strings of solid state light sources (e.g., LEDs) with different forward voltages, and protects the sets or strings from excessive over-current in the case of a light source failing as a short. The sets or strings are electrically coupled across respective inductors of a secondary of a transformer, the sets or strings not electrically in parallel with one another. The secondary of the transformer essentially self balances. The embodiments described employ an LLC resonator converter topology, but could be implemented as part of a Flyback, LLC resonator or other switch mode topology.
An illumination system correlates solar time to a clock and controls lighting or illumination based on time. The illumination system may turn ON light source(s) at a first level at a turn ON time, correlated to be around or at dusk, and turn OFF light source(s) at a turn OFF time, correlated to be around or at dawn. The illumination system may reduce a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. Turn ON, turn OFF, decrease and increase times may be determined based on recent levels of light or illumination in the environment, for example via average or median levels over a number of previous daily cycles. Filtering may eliminate aberrant events.
Disclosed herein is a remotely adjustable lighting system. The lighting system includes a luminaire including one or more solid-state light systems and a non-line-of-sight wireless transceiver. The output intensity of the solid-state light systems is adjustable. The non-line-of-sight transceiver in the luminaire can receive one or more non-line-of-sight wireless signals transmitted by a transceiver in a general purpose handheld computing device. Instructions and data including configuration and output intensity adjustments may be communicated between the general purpose handheld computing device and the luminaire via one or more non-line-of-sight wireless signals.
An illumination system and methods to control a light source are provided. An illumination system includes a light source, a two-dimensional non-Passive Infrared (non-PIR) imager, and a controller. The light source may provide at least two levels of illumination. The non-PIR imager images an area and to produce image data representative of images across at least part of a visible portion of an electromagnetic spectrum. The controller is communicatively coupled to receive the image data from the non-PIR imager and process the received image data to detect at least one object in the area of a defined type of object. The controller is also coupled to control operation of the light source based on, at least in part, detection of the ambient characteristic of the environment. Alternatively, one or more components of a system may be used to monitor traffic, with or without active illumination.
A solid-state lighting device has user-engageable actuator physically manipulable by a user and accessible from an exterior of the device to adjust an amount of light output. The user-engageable actuator may take the form of a knob, slider, lever, or other manipulable surface or structure. The user-engageable actuator may extend partially or fully from a housing, or alternatively be recessed or otherwise within the housing with access provided via an aperture, slot or opening. Access may be directly by the user (e.g., finger) or via a tool (e.g., screw driver, Allen wrench, socket) manipulated by the user. The actuator may form part of an adjustment component (e.g., potentiometer, rheostat) which supplies an adjustable output to a drive circuit or electronics. The adjustment component may be electrically coupled to either a primary or secondary side of a transformer, which forms part of a power converter (e.g., flyback).
Disclosed herein is a remotely adjustable lighting system with security features. The lighting system includes a lamp (e.g., luminaire) which carries solid-state light sources and a sensor. The solid-state light sources emit visible light at an adjustable output intensity. The sensor is responsive to line-of-sight wireless signals, and the lamp increases and decreases the output intensity of the light sources in response to output signals of the sensor. The lamp provides security features by selectively accepting and rejecting instructions carried by the line-of-sight wireless signals to vary the output intensity of the light sources.
Disclosed herein is a remotely adjustable lighting system with security features. The lighting system includes a lamp (e.g., luminaire) which carries solid-state light sources and a sensor. The solid-state light sources emit visible light at an adjustable output intensity. The sensor is responsive to line-of-sight wireless signals, and the lamp increases and decreases the output intensity of the light sources in response to output signals of the sensor. The lamp provides security features by selectively accepting and rejecting instructions carried by the line-of-sight wireless signals to vary the output intensity of the light sources.
The efficiency and color contrast of a lighting device may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. A double-notch reflective filter may pass desired wavelengths such as red and green, while returning or reflecting less desired wavelengths (blue and yellow) away from an optical exit back toward wavelength shifting material and re-emitted as light of more desirable wavelengths.
The efficiency and color contrast of a lighting device may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. A double-notch reflective filter may pass desired wavelengths such as red and green, while returning or reflecting less desired wavelengths (blue and yellow) away from an optical exit back toward wavelength shifting material and re-emitted as light of more desirable wavelengths.
H01J 61/40 - Devices for influencing the colour or wavelength of the light by light-filtersDevices for influencing the colour or wavelength of the light by coloured coatings in or on the envelope
H01L 33/44 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
An apparatus and method for reducing the perception of flicker of solid state light sources. An alternating current (AC) signal is passed through an AC conditioning circuit and a passive resonating circuit before being supplied to a string of solid state light sources, such as light emitting diodes.
An apparatus and method for reducing the perception of flicker of solid state light sources. An alternating current (AC) signal is passed through an AC conditioning circuit and a passive resonating circuit before being supplied to a string of solid state light sources, such as light emitting diodes.
An apparatus for protecting a solid state retrofit lighting or illumination system from electrostatic discharge damage caused by charge induced onto conductive surfaces of the lighting or illumination system.
Illumination sources are turned ON and turned OFF in response to detected levels of illumination in an ambient environment reaching respective thresholds, which may be user set. The detection of these turn ON and turn OFF events is verified, for instance against expected events or conditions for the particular location, date and/or time. An alert or log entry may be generated if a detected event or condition appears to be invalid. For instance, if an amount of illumination in the environment is different than predicted by a threshold amount or if a time that the event occurs or is detected is different than expected or predicted by more than a threshold amount. A level of illumination may be decreased to some non-zero level after a specified time after turn ON, and increased at some specified time before turnOFF. Use of information from external sources (e.g., satellites, cell towers) may allow times to be using local time, including daylight savings if applicable.
Illumination sources are turned ON and turned OFF in response to detected levels of illumination in an ambient environment reaching respective thresholds, which may be user set. The detection of these turn ON and turn OFF events is verified, for instance against expected events or conditions for the particular location, date and/or time. An alert or log entry may be generated if a detected event or condition appears to be invalid. For instance, if an amount of illumination in the environment is different than predicted by a threshold amount or if a time that the event occurs or is detected is different than expected or predicted by more than a threshold amount. A level of illumination may be decreased to some non-zero level after a specified time after turn ON, and increased at some specified time before turn OFF. Use of information from external sources (e.g., satellites, cell towers) may allow times to be using local time, including daylight savings if applicable.
An illumination device comprises a circuit board that carries solid-state light sources and a heat transfer structure to which the circuit board is intimately physically coupled such that the circuit board is curved along at least one of a longitudinal dimension or a lateral dimension thereof. Such may allow less fasteners to be used than would otherwise be possible, while maintaining close contact over a large portion of the surface area. Some embodiments may employ a clamp, for example a peripheral clamp such as a cover or bezel clamp.
An illumination device comprises a circuit board that carries solid-state light sources and a heat transfer structure to which the circuit board is intimately physically coupled such that the circuit board is curved along at least one of a longitudinal dimension or a lateral dimension thereof. Such may allow less fasteners to be used than would otherwise be possible, while maintaining close contact over a large portion of the surface area. Some embodiments may employ a clamp, for example a peripheral clamp such as a cover or bezel clamp.
B60Q 1/06 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
F21V 29/77 - Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
F21W 131/103 - Outdoor lighting of streets or roads
F21Y 101/02 - Miniature, e.g. light emitting diodes (LED)
The efficiency and color temperature of a lighting device may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. A reflective filter (e.g., dichroic or dielectric mirror material) may pass desired wavelengths while returning or reflecting less desired wavelengths away from an optical exit back toward wavelength shifting material which may either be disposed in the optical path or on the periphery of the light source.
The efficiency and color temperature of a lighting device may be improved by using wavelength shifting material, such as a phosphor, to absorb less desired wavelengths and transmit more desired wavelengths. A reflective filter (e.g., dichroic or dielectric mirror material) may pass desired wavelengths while returning or reflecting less desired wavelengths away from an optical exit back toward wavelength shifting material which may either be disposed in the optical path or on the periphery of the light source.
H01J 1/62 - Luminescent screensSelection of materials for luminescent coatings on vessels
H01J 61/40 - Devices for influencing the colour or wavelength of the light by light-filtersDevices for influencing the colour or wavelength of the light by coloured coatings in or on the envelope
H01J 9/24 - Manufacture or joining of vessels, leading-in conductors, or bases
83.
Long-range motion detection for illumination control
An illumination system and methods to control a light source are provided. An illumination system includes a light source, a two-dimensional non-Passive Infrared (non-PIR) imager, and a controller. The light source provides at least two levels of illumination. The non-PIR imager images an area and to produce image data representative of images across at least part of a visible portion of an electromagnetic spectrum. The controller is communicatively coupled to receive the image data from the non-PIR imager and process the received image data to detect at least one ambient environmental characteristic of the area in the part of the visible portion of the electromagnetic spectrum, where the ambient environmental characteristic is indicative of a presence or imminent presence of a body in the area. The controller is also coupled to control operation of the light source based on, at least in part, detection of the ambient characteristic of the environment.
An illumination system correlates solar time to a clock and controls lighting or illumination based on time. The illumination system may turn ON light source(s) at a first level at a turn ON time, correlated to be around or at dusk, and turn OFF light source(s) at a turn OFF time, correlated to be around or at dawn. The illumination system may reduce a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. Turn ON, turn OFF, decrease and increase times may be determined based on recent levels of light or illumination in the environment, for example via average or median levels over a number of previous daily cycles. Filtering may eliminate aberrant events.
An illumination system reduces a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. A control subsystem can determine when to increase the level of light based on a predicted time when the light source will be turned OFF. The control subsystem may determine an average or median length of time that the light source has been turned on for a number of recent daily cycles. A control subsystem may be an integral part of a luminaire or may be a retrofit.
An illumination system correlates solar time to a clock and controls lighting or illumination based on time. The illumination system may turn ON light source(s) at a first level at a turn ON time, correlated to be around or at dusk, and turn OFF light source(s) at a turn OFF time, correlated to be around or at dawn. The illumination system may reduce a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. Turn ON, turn OFF, decrease and increase times may be determined based on recent levels of light or illumination in the environment, for example via average or median levels over a number of previous daily cycles. Filtering may eliminate aberrant events.
An illumination system and methods to control a light source are provided. An illumination system includes a light source, a two-dimensional non-Passive Infrared (non-PIR) imager, and a controller. The light source provides at least two levels of illumination. The non-PIR imager images an area and to produce image data representative of images across at least part of a visible portion of an electromagnetic spectrum. The controller is communicatively coupled to receive the image data from the non-PIR imager and process the received image data to detect at least one ambient environmental characteristic of the area in the part of the visible portion of the electromagnetic spectrum, where the ambient environmental characteristic is indicative of a presence or imminent presence of a body in the area. The controller is also coupled to control operation of the light source based on, at least in part, detection of the ambient characteristic of the environment.
An illumination system reduces a level of light output, and hence power consumption, at a time after turning ON a light source, and increases the level of light output at a time prior to turning OFF the light source. A control subsystem can determine when to increase the level of light based on a predicted time when the light source will be turned OFF. The control subsystem may determine an average or median length of time that the light source has been turned on for a number of recent daily cycles. A control subsystem may be an integral part of a luminaire or may be a retrofit.
An illumination device comprises a solid-state lighting device and a heat sink. The heat sink is configured to be attachable to a fixture for a gas-discharge lamp to retrofit existing gas-discharge fixtures. The heat sink is conductively thermally coupled to the solid-state lighting device to dissipate heat generated by the solid-state lighting device.
An illumination device comprises a solid-state lighting device and a heat sink. The heat sink is configured to be attachable to a fixture for a gas-discharge lamp to retrofit existing gas-discharge fixtures. The heat sink is conductively thermally coupled to the solid-state lighting device to dissipate heat generated by the solid-state lighting device.
Apparatus and methods to regulate an input power applied to a plurality of light emitters are provided. A regulator device includes a plurality of switches and a control circuit that controls the plurality of switches. The plurality of switches selectively couple respective strings of the light emitters in series to the input power to emit light when deactivated. The control circuit may deactivate a number of the switches to couple the respective light emitters to the input power in response to a sensed operational parameter of the input power. The control circuit may adjust the number of the switches deactivated in response to a change in the sensed operational parameter of the input power. A number of the light emitters may be coupled to the input power regardless of the sensed operational parameter of the input power.
Apparatus and methods to regulate an input power applied to a plurality of light emitters are provided. A regulator device includes a plurality of switches and a control circuit that controls the plurality of switches. The plurality of switches selectively couple respective strings of the light emitters in series to the input power to emit light when deactivated. The control circuit may deactivate a number of the switches to couple the respective light emitters to the input power in response to a sensed operational parameter of the input power. The control circuit may adjust the number of the switches deactivated in response to a change in the sensed operational parameter of the input power. A number of the light emitters may be coupled to the input power regardless of the sensed operational parameter of the input power.
An apparatus for heat dissipation for a luminaire comprises an active heat transfer device and a thermally-conductive housing. The active heat transfer device causes turbulence in an ambient fluid. The thermally-conductive housing includes a cavity and a first end. The cavity is structured for an electronic ballast of the luminaire to be housed therein and thermally attached to an interior surface of the housing to allow the housing to absorb at least a portion of heat generated by the electronic ballast. The first end is structured for the active heat transfer device to be mountable to the first end of the housing. The housing further includes at least one thermally-conductive protrusion extending from an exterior surface of the housing and exposed to the turbulence in the ambient fluid to transfer at least a portion of the heat absorbed by the housing to the ambient fluid.
H01J 7/26 - Cooling arrangementsHeating arrangementsMeans for circulating gas or vapour within the discharge space by flow of fluid through passages associated with tube or lamp
F21V 29/00 - Protecting lighting devices from thermal damageCooling or heating arrangements specially adapted for lighting devices or systems
An illumination device comprising a housing fixture, a light source, and an active heat transfer device is provided. The housing fixture includes a base adapted to be receivable in a light fixture receptacle configured to receive a gas-discharge lamp. The light source emits light with a color rendering index higher than a respective color rendering index of at least a type of gas-discharge lamp. The active heat transfer device is physically coupled to the light source and mounted to the housing fixture. The active heat transfer device receives power from a power supply to remove thermal energy from the light source.
An illumination device comprising a housing fixture, a light source, and an active heat transfer device is provided. The housing fixture includes a base adapted to be receivable in a light fixture receptacle configured to receive a gas-discharge lamp. The light source emits light with a color rendering index higher than a respective color rendering index of at least a type of gas-discharge lamp. The active heat transfer device is physically coupled to the light source and mounted to the housing fixture. The active heat transfer device receives power from a power supply to remove thermal energy from the light source.
A pathway light to illuminate surfaces comprises a housing, a mounting fixture and a light source. The housing includes a base having a bottom surface positionable on a surface to be illuminated, an interior, and at least one window providing access between the interior and an exterior of the housing. The mounting fixture -extends at least approximately perpendicularly downward with respect to the bottom surface of the base to secure the housing into a peripheral portion of the surface to be illuminated. The light source has a principal axis of emission that is directed outwardly through the window of the housing at a downwardly oriented angle with respect to the bottom surface of the base such that, when in use with the luminaire mounted to the surface to be illuminated, the principal axis of emission of the light source is directed at a portion of the surface to be illuminated. The luminaire can be used for illumination of pathways, gardens or driveways.
F21V 33/00 - Structural combinations of lighting devices with other articles, not otherwise provided for
F21S 8/00 - Lighting devices intended for fixed installation
E01C 17/00 - Pavement lights, i.e. translucent constructions forming part of the surface
E01F 9/04 - Road surface markings; Kerbs or road edgings, specially adapted for informing road users, e.g. illuminated (for redirecting vehicles E01F 15/00)
F21V 21/02 - Wall, ceiling, or floor basesFixing pendants or arms to the bases
F21W 111/023 - Use or application of lighting devices or systems for signalling, marking or indicating, not provided for in groups for roads, paths or the like for pedestrian walkways