A perforating gun assembly includes a body having an axial length extending between a first axial end and a second axial end, an outer radial surface extending between the first axial end and the second axial end, and an inner bore and at least one explosive charge extending from the outer radial surface to the inner bore. The at least one explosive charge includes a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The at least one explosive charge further includes an explosive material retained within the charge cavity. The at least one explosive charge further includes a deactivation composition retained within the charge cavity.
A perforating gun assembly includes a body having an axial length extending between a first axial end and a second axial end, an outer radial surface extending between the first axial end and the second axial end, and an inner bore and at least one explosive charge extending from the outer radial surface to the inner bore. The at least one explosive charge includes a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The at least one explosive charge further includes an explosive material retained within the charge cavity. The at least one explosive charge further includes a deactivation composition retained within the charge cavity.
A perforating gun assembly includes a body having an axial length extending between a first axial end and a second axial end, an outer radial surface extending between the first axial end and the second axial end, and an inner bore and at least one explosive charge extending from the outer radial surface to the inner bore. The at least one explosive charge includes a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The at least one explosive charge further includes an explosive material retained within the charge cavity. The at least one explosive charge further includes a deactivation composition retained within the charge cavity.
A perforating gun (30), system and method is provided. The perforating gun includes a body (34), a plurality of shaped charges (42), at least one initial propellant (46) and may include an actuating mechanism (54). The plurality of shaped charges are mounted within the body, and each shaped charge has an amount of an explosive material. The actuating mechanism is in communication with each shaped charge and the at least one initial propellant. The actuating mechanism is configured to fire the at least one initial propellant before firing any of the plurality of shaped charges.
A perforating gun, system and method is provided. The perforating gun includes a body, a plurality of shaped charges, at least one initial propellant and may include an actuating mechanism. The plurality of shaped charges are mounted within the body, and each shaped charge has an amount of an explosive material. The actuating mechanism is in communication with each shaped charge and the at least one initial propellant. The actuating mechanism is configured to fire the at least one initial propellant before firing any of the plurality of shaped charges.
A perforating gun (30), system and method is provided. The perforating gun includes a body (34), a plurality of shaped charges (42), at least one initial propellant (46) and may include an actuating mechanism (54). The plurality of shaped charges are mounted within the body, and each shaped charge has an amount of an explosive material. The actuating mechanism is in communication with each shaped charge and the at least one initial propellant. The actuating mechanism is configured to fire the at least one initial propellant before firing any of the plurality of shaped charges.
A tool for use within a subterranean well extending from a wellhead to a subterranean location, wherein the wellhead resides at a first temperature and the subterranean well increases in temperature in a direction from the wellhead to the subterranean location, increasing from the first temperature to a higher second temperature, includes a component including a meltable material. The meltable material is configured to have a solid first state while the meltable material is at the first temperature. The meltable material in the first state has one or more mechanical properties sufficient to avoid mechanical failure of the component and is configured to have a second state when the meltable material is at the second temperature. The meltable material in the second state is lacking the one or more mechanical properties necessary to avoid mechanical failure.
A tool for use within a subterranean well extending from a wellhead to a subterranean location, wherein the wellhead resides at a first temperature and the subterranean well increases in temperature in a direction from the wellhead to the subterranean location, increasing from the first temperature to a higher second temperature, includes a component including a meltable material. The meltable material is configured to have a solid first state while the meltable material is at the first temperature. The meltable material in the first state has one or more mechanical properties sufficient to avoid mechanical failure of the component and is configured to have a second state when the meltable material is at the second temperature. The meltable material in the second state is lacking the one or more mechanical properties necessary to avoid mechanical failure.
E21B 23/04 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
E21B 17/046 - CouplingsJoints between rod and bit, or between rod and rod with ribs, pins, or jaws, and complementary grooves or the like, e.g. bayonet catches
A tool for use within a subterranean well extending from a wellhead to a subterranean location, wherein the wellhead resides at a first temperature and the subterranean well increases in temperature in a direction from the wellhead to the subterranean location, increasing from the first temperature to a higher second temperature, includes a component including a meltable material. The meltable material is configured to have a solid first state while the meltable material is at the first temperature. The meltable material in the first state has one or more mechanical properties sufficient to avoid mechanical failure of the component and is configured to have a second state when the meltable material is at the second temperature. The meltable material in the second state is lacking the one or more mechanical properties necessary to avoid mechanical failure.
A perforating gun system for use in a well casing disposed within a subterranean well includes a plurality of perforating gun sections each having at least one shaped charge. The plurality of perforating gun sections includes an initial perforating gun section and at least one secondary perforating gun section having an activator and a sensor configured to sense an actuation of another of the plurality of perforating gun sections. The sensor is further configured to cooperate with the activator to actuate the at least one secondary perforating gun section upon sensing the actuation of the another of the plurality of perforating gun sections.
A perforating gun system for use in a well casing disposed within a subterranean well includes a plurality of perforating gun sections each having at least one shaped charge. The plurality of perforating gun sections includes an initial perforating gun section and at least one secondary perforating gun section having an activator and a sensor configured to sense an actuation of another of the plurality of perforating gun sections. The sensor is further configured to cooperate with the activator to actuate the at least one secondary perforating gun section upon sensing the actuation of the another of the plurality of perforating gun sections.
A perforating gun system for use in a well casing disposed within a subterranean well includes a plurality of perforating gun sections each having at least one shaped charge. The plurality of perforating gun sections includes an initial perforating gun section and at least one secondary perforating gun section having an activator and a sensor configured to sense an actuation of another of the plurality of perforating gun sections. The sensor is further configured to cooperate with the activator to actuate the at least one secondary perforating gun section upon sensing the actuation of the another of the plurality of perforating gun sections.
A choke valve is provided having a body, a seat, and a gate. The body has an internal chamber, an inlet flow passage, and an outlet flow passage. The seat has a seat orifice with an area, the seat positioned at an end of the outlet flow passage contiguous with the internal chamber. The gate has a gate shaft and a gate body affixed to one end of the gate shaft. The gate is linearly translatable within the body between a fully open position and a fully closed position, wherein in the fully closed position the gate body is engaged with the seat orifice. In the fully open position a choke minimum passage area is defined between the gate body and the seat orifice, and the choke minimum passage area is at least 30% of the seat orifice area.
A choke valve is provided that includes a valve body, a plurality of seats, and a gate. The valve body has an inlet port and an outlet port. The plurality of seats is in communication with the valve body, where each seat has a fluid flow configuration, and the fluid flow configuration for each seat is different from the fluid flow configuration of each of the other seats within the plurality of seats. The gate is linearly translatable along a gate axis. The valve body is configured so that so that one of the plurality of seats at a time is selectively positionable in an engagement position aligned with the gate axis.
E21B 34/02 - Valve arrangements for boreholes or wells in well heads
F16K 3/02 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing facesPackings therefor
F16K 3/04 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing facesPackings therefor with pivoted closure members
F16K 3/08 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing facesPackings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular closure plates rotatable around their centres
F16K 3/24 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
33.
WELL ANNULAR BACK PRESSURE CONTROL SYSTEM HAVING ONE OR MORE ADJUSTABLE CHOKE VALVES AND METHOD THEREOF
A well drilling system is provided that includes a choke manifold and a controller. The choke manifold includes at least one choke valve. The choke valve is actuable between fully open and closed choke positions. The choke valve has a Cv value for each choke position. The controller is in communication with the choke valve and a non-transitory memory storing instructions. The instructions relate Cv values to choke positions for the choke valve. The instructions when executed cause the controller to: a) determine a difference in pressure (?P); b) input or determine a density value; c) input or determine a Q value; d) determine a first Cv value using the delta P, the density value, and the Q value; and e) actuate the choke valve to a first choke position associated with the first Cv value.
A hydraulic power unit (HPU) configured for use with a pressure relief valve (PRV) having an open port and a close port is provided. The HPU includes a pneumatic primary pump, a hydraulic fluid reservoir, an accumulator, and a two position solenoid directional valve (TPSDV). The hydraulic fluid reservoir is in fluid communication with the primary pump. The TPSDV is in communication with the primary pump, the reservoir, the accumulator. The TPSDV is configured for fluid communication with the PRV. The HPU is configurable in a PRV fail open configuration and a PRV fail close configuration.
F15B 13/02 - Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
F15B 13/04 - Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
F15B 20/00 - Safety arrangements for fluid actuator systemsApplications of safety devices in fluid actuator systemsEmergency measures for fluid actuator systems
35.
Tubing conveyed perforating system with safety feature
A tubing conveying perforating system with a firing head is provided, and a method for using the same is provided. The firing head includes a firing pin and a percussion initiator. The firing pin is configured to degrade over a predetermined period of time from an initial state to a degraded state, and in the degraded state the firing head is inoperable.
A tubing conveying perforating system with a firing head is provided, and a method for using the same is provided. The firing head (20) includes a firing pin (24) and a percussion initiator (26). The firing pin is configured to degrade over a predetermined period of time from an initial state to a degraded state, and in the degraded state the firing head is inoperable..
A tubing conveying perforating system with a firing head is provided, and a method for using the same is provided. The firing head (20) includes a firing pin (24) and a percussion initiator (26). The firing pin is configured to degrade over a predetermined period of time from an initial state to a degraded state, and in the degraded state the firing head is inoperable..
A proportional control valve system (10) and a method for operating the same is provided. The system includes a proportional control valve (PCV) (12), an electric motor (14), a worm gear drive (20), and a programmable drive (16). The proportional control valve has a sealing structure (22) that is positionable in a closed position, a fully open position, and a plurality of partially open positions there between. The worm gear drive is in driving communication with the sealing structure of the proportional control valve. The programmable drive is operable to control the positioning of the sealing structure within the proportional control valve.
F16K 31/05 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a motor specially adapted for operating hand-operated valves or for combined motor and hand operation
F16K 31/50 - Mechanical actuating means with screw-spindle
F16K 31/04 - Operating meansReleasing devices electricOperating meansReleasing devices magnetic using a motor
F16K 37/00 - Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
F16K 31/16 - Operating meansReleasing devices actuated by fluid with a mechanism, other than pulling- or pushing-rod, between fluid motor and closure member
39.
INTEGRATED CONTROL SYSTEM FOR A WELL DRILLING PLATFORM
An integrated control system (ICS) for a well drilling platform is provided, which well drilling platform has a plurality of control systems and devices. The ICS includes an ICS controller is in communication with a master control. The ICS controller includes a memory device coupled to a processor. Instructions executed by the processor cause the ICS controller to: communicate with each of the control systems to determine a status of each of the control systems; cause the master control display to display status information for at least one of the control systems; in response to an operator input perform a well drilling platform function, the function requiring a coordinated state between a first control system and at least a second control system, configure the first control system and the second control system into a coordinated state.
Oil well gas burners and oil well gas burner pilot system consisting of atomizing nozzles coupled with an electronic ignition system and a pilot gas flame for efficient burning of well effluent
Oilwell or gas well drilling and operating tools and equipment, namely, hydraulically actuated drilling and snubbing chokes and hydraulic valve actuators
09 - Scientific and electric apparatus and instruments
37 - Construction and mining; installation and repair services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Oil and gas well machine tools, namely, drill strings, valves, joint, firing devices, [ chokes, ] and replacement parts thereof; oil and gas separation equipment, namely, oil, gas, and water separators Industrial sensing, monitoring, instrumentation and measurement devices, namely, density meters, pressure sensors, temperature sensors, velocity meters, ultrasonic flow sensors, speed of sound sensors, and flowmeters Oil and gas well cased hole maintenance via tooling deployed by wireline into the well Industrial research, design, engineering and analysis services in the field of the oil, petroleum and gas industries; oil exploration services, oil exploration engineering services and oil exploration consultancy advisory services
The smokeless liquid two-phase burner system of the present invention relates to a method and apparatus for burning a wide variety of flammable liquids using an integrated burner system. The system has both a primary injection path and an alternate injection path for the liquid fuel to be burned, as well as a main air pump or blower. The present invention also provides a method and apparatus for selectably injecting a secondary stream of a gas or vapor or volatile liquid into a flare system for the purpose of enhancing combustion.
F23G 7/08 - Methods or apparatus, e.g. incinerators, specially adapted for combustion of specific waste or low grade fuels, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
46.
Trailer mounted smokeless dual-phase burner system
The smokeless liquid two-phase burner system of the present invention relates to a method and apparatus for burning a wide variety of flammable liquids using an integrated burner system. The system has both a primary injection path and an alternate injection path for the fuel to be burned, as well as a main air pump or blower. The present invention also provides a method and apparatus for selectably injecting a secondary stream of a gas or vapor or volatile liquid into a flare system for the purpose of enhancing combustion. The apparatus is self-contained and self erecting on a transportable trailer.
F23G 7/08 - Methods or apparatus, e.g. incinerators, specially adapted for combustion of specific waste or low grade fuels, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
F23D 14/00 - Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
47.
TRAILER MOUNTED SMOKELESS LIQUID DUAL-PHASE BURNER SYSTEM
The smokeless liquid two-phase burner system of the present invention relates to a method and apparatus for burning a wide variety of flammable liquids using an integrated burner system. The system has both a primary injection path and an alternate injection path for the fuel to be burned, as well as a main air pump or blower. The present invention also provides a method and apparatus for selectably injecting a secondary stream of a gas or vapor or volatile liquid into a flare system for the purpose of enhancing combustion. The apparatus is self contained and self erecting on a transportable trailer.
F23G 7/08 - Methods or apparatus, e.g. incinerators, specially adapted for combustion of specific waste or low grade fuels, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
F23C 1/08 - Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in air liquid and gaseous fuel
The smokeless liquid two-phase burner system of the present invention relates to a method and apparatus for burning a wide variety of flammable liquids using an integrated burner system. The system has both a primary injection path and an alternate injection path for the liquid fuel to be burned, as well as a main air pump or blower. The present invention also provides a method and apparatus for selectably injecting a secondary stream of a gas or vapor or volatile liquid into a flare system for the purpose of enhancing combustion.
F23G 7/08 - Methods or apparatus, e.g. incinerators, specially adapted for combustion of specific waste or low grade fuels, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
F23C 1/08 - Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in air liquid and gaseous fuel
37 - Construction and mining; installation and repair services
42 - Scientific, technological and industrial services, research and design
Goods & Services
Oil and gas well services, namely, providing cased hole maintenance via tooling deployed by wireline into the well Oil and gas well services, namely, providing cased hole monitoring via tooling deployed by wireline into the well