L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude (France)
Inventor
Miller, Gary D.
Light, Joshua
Abstract
A method for removing entrained liquid droplets from a gas is provided. This method includes introducing a gas with entrained liquid droplets into a cyclone separator, thereby producing a gaseous portion and a liquid portion, wherein the gaseous portion exits the cyclone separator, and wherein the liquid portion is restricted by a liquid control valve and collected in a reservoir volume in the cyclone separator. The method also includes opening the liquid control valve upon receiving a signal from a liquid level sensor located in the reservoir volume, the liquid portion exits the cyclone separator and is introduced into a lock hopper. The method also provides a pressurized vapor stream to the lock hopper, thereby pressurizing the lock hopper, and then withdrawing a pressurized liquid stream from the lock hopper.
L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude (France)
Inventor
Miller, Gary D.
Light, Joshua
Abstract
A method for removing entrained liquid droplets from a gas is provided. The method includes introducing a gas with entrained liquid droplets into a cyclone separator, thereby producing a gaseous portion and a liquid portion. Wherein the gaseous portion exits the cyclone separator, and wherein the liquid portion is restricted by a liquid control valve and collected in a reservoir volume in the cyclone separator. The method also includes opening the liquid control valve upon receiving a signal from a liquid level sensor located in the reservoir volume, the liquid portion thereby exiting the cyclone separator.
B01D 45/16 - Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
3.
METHOD FOR PRESSURIZING A LIQUID EXITING A PHASE SEPARATOR
A method for pressurizing a liquid exiting a phase separator includes opening an inlet control valve, thereby providing a two-phase fluid stream to a phase separator and producing a vapor stream and a liquid stream. Wherein a first liquid control valve prevents the liquid stream from leaving the phase separator. Then closing the inlet control valve and opening the first liquid control valve, thereby withdrawing the liquid stream from the phase separator and introducing the liquid stream into a lock hopper. Wherein, a second liquid control valve prevents the liquid stream from leaving the lock hopper. Then closing the first liquid control valve and then opening a pressurized vapor control valve, thereby providing a pressurized vapor stream to the lock hopper, thereby pressurizing the lock hopper. Then closing the pressurized vapor control valve, and opening the second liquid control valve, thereby withdrawing a pressurized liquid stream from the lock hopper.
F25J 3/06 - Processes or apparatus for separating the constituents of gaseous mixtures involving the use of liquefaction or solidification by partial condensation
4.
METHOD FOR SECURING NUTS IN A HIGH VIBRATING ENVIRONMENT
An apparatus for securing nuts in a vibrating environment, including a plurality of anti-vibration adaptors, designed to mate with a nut in a vibrating environment, and a plurality of anti-vibration rods. Wherein at least two adjacent anti-vibration adaptors are rigidly linked by an anti-vibration rod, thereby forming an anti-vibration web. A method for securing nuts in a vibrating environment, including attaching an anti-vibration adaptor to each of a plurality of nuts in a vibrating environment, and rigidly linking each anti-vibration adaptor to at least two adjacent anti-vibration adaptors, thereby forming an anti-vibration web. Thus, allowing each anti-vibration adaptor to be associated with a specific nut, and prohibiting any anti-vibration adaptor and the associated nut to turn.
F16B 39/10 - Locking of screws, bolts, or nuts in which the locking takes place after screwing down by a plate or ring immovable with regard to the bolt or object
5.
APPARATUS AND METHOD FOR CONTROLLING CATALYST TEMPERATURE WITHIN A REACTOR TUBE
A method and apparatus for adjusting the temperature inside a reformer tube is provided. This includes utilizing at least one heating element. The heating element is inserted inside the reformer tube and is located approximately at the axial center of the reformer tube. The reformer tube is then filled with catalyst, thereby maintaining the central location of the heating element. The heat input of the heating element may now be adjusted, thereby controlling the temperature of the catalyst.
B01J 8/06 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds in tube reactorsChemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the solid particles being arranged in tubes
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
6.
APPARATUS AND METHOD FOR CONTROLLING CATALYST TEMPERATURE WITHIN A REACTOR TUBE
Method and apparatus for adjusting the temperature inside a reformer tube. Including providing at least one axial quench lance, wherein the at least one axial quench lance configured to receive a temperature control gas, the at least one axial quench lance having multiple delivery holes, and the at least one axial quench lance configured to deliver the temperature control gas through the multiple delivery holes. Inserting the at least one axial quench lance inside the reformer tube, wherein the at least one axial quench lance is located approximately at the axial center of the reformer tube. Filling the reformer tube with catalyst, thereby maintaining the location of the at least one axial quench lance. Introducing the temperature control gas into the at least one axial quench lance, the temperature control gas thereby exiting the multiple delivery holes and entering the catalyst. Adjusting the flow rate of the temperature control gas thereby controlling the temperature of the catalyst.
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
7.
Method for controlling the velocity of a pipeline pig
A method for controlling the velocity of a pipeline pig, the method including, introducing a pressurized gas into a section of pipeline to be treated and maintaining the velocity of a smart pipeline pig at a predetermined velocity by regulating the pressurized gas to a predetermined volume. A method for controlling the velocity of a pipeline pig, the method including fluidically connecting a first skid to a first end of a section of pipeline to be treated, fluidically connecting a second skid to a second end of the section of pipeline to be treated, introducing a pressurized gas into the section of pipeline to be treated via the first skid, launching a smart pipeline pig into the section of pipeline to be treated, and maintaining the velocity of the smart pipeline pig at a predetermined velocity by regulating the pressurized gas to a predetermined volume.
G05D 13/62 - Control of linear speedControl of angular speedControl of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement
F16L 55/38 - Constructional aspects of the propulsion means, e.g. towed by cables driven by fluid pressure
A heat exchange apparatus for removing magnetic particulates from a gas stream, including a rotating element basket having a regenerative heat exchanger and at least one magnetic element. A method of removing magnetic particulates from a gas stream, including heating the regenerative heat exchanger during a first portion of a cycle as a segment of the rotating element basket passes through a first zone wherein contact is made with a flue gas thereby accumulating any magnetic particulates as they are attached to the magnetic element. Then cleaning a portion of the magnetic element during a second portion of the cycle. And cooling the regenerative heat exchanger and simultaneously heating an inlet air stream during a third portion of the cycle as the segment of the rotating element basket passes through a third zone wherein fluidic contact is made with the air inlet stream.
B03C 1/033 - Component partsAuxiliary operations characterised by the magnetic circuit
B03C 1/12 - Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operationMagnetic separation acting directly on the substance being separated with cylindrical material carriers with movable pole pieces
The invention generally relates to a method and system for storing hydrogen product in a salt cavern. The method is directed to substantially confining a high purity hydrogen stored within the salt cavern by maintaining the stored hydrogen at a pressure between a lower limit and an upper limit within the cavern, whereby the salt cavern forms a substantially impermeable barrier to the stored hydrogen therein between the lower limit and the upper limit and wherein the improvement over the predicate art enables the upper limit to exceed about 1 psi per liner foot of cavern depth.
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE ADVANCED TECHNOLOGIES U.S. LLC (USA)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Guerif, Pierre-Philippe
Guillard, Alain
Flavien, Gilles
Follaca, Vincent
Kong, Paul
Abstract
A method for increasing the reliability and availability of a cryogenic fluid reliquefaction system is provided. It may comprise at least N sub-coolers comprising a motor and a compressor and at least one variable speed. It may comprise N-1 variable speed systems to be shared between the motors and compressors if N equals 2, or N-2 variable speed systems to be shared between the motors and compressors if N is greater than 2. If may comprise two different liquid cryogenic fluid users are provided liquid cryogenic fluid, utilizing two different main cryogenic tanks, with a common sub-cooler and recirculation loop, wherein the pressure in the two different main cryogenic tanks are controlled with pressure controllers acting on two different subcooled liquid cryogenic fluid valves. And or, it may comprise at least one liquid cryogenic fluid user is provided refrigeration from two or more sub-cooling systems in a lead-lag arrangement.
A method for storing very high purity hydrogen in a salt cavern is provided. The method includes introducing a compressed very high purity hydrogen gas into a salt cavern, thereby producing a stored very high purity hydrogen gas; maintaining the stored very high purity hydrogen gas at a pressure greater than about 1.0 psi per linear foot of height within the cavern, and less than about 4.0 psi per linear foot of height within the cavern.
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Miller, Gary D.
Abstract
A method of installing a temperature measuring device inside a reactor tube while filling the tube with catalyst is provided. The method includes inserting a positioning system, including multiple inflatable bladders connected at a central location to a centering ring, into reactor tube, the reactor tube comprising a distal end and a proximal end. Then inserting a temperature measurement device into the centering ring. Locating the positioning system at a first predetermined distance from the distal end. Then inflating the multiple inflatable bladders, thereby centering the centering ring and the temperature measurement device within the SMR tube, and introducing catalyst into the SMR tube, thereby enclosing the temperature measurement device in catalyst.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
B01J 4/00 - Feed devicesFeed or outlet control devices
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
B01J 8/06 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds in tube reactorsChemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the solid particles being arranged in tubes
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
13.
APPARATUS FOR INSTALLING A THERMOCOUPLE INSIDE A REACTOR TUBE FILLED WITH CATALYST
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Miller, Gary D.
Abstract
A device for centering a temperature measurement device inside a reactor tube that will be filled with catalyst, including multiple inflatable bladders mechanically and fluidically attached to a centering ring.
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
14.
APPARATUS FOR INSTALLING A THERMOCOUPLE INSIDE A REACTOR TUBE FILLED WITH CATALYST
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U. S. LP (USA)
Inventor
Miller, Gary, D.
Abstract
A device for centering a temperature measurement device inside a tube reactor that will be filled with catalyst, including a single inflatable bladder mechanically and fluidically attached to a centering ring.
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
15.
METHOD FOR INSTALLING A THERMOCOUPLE INSIDE A REACTOR TUBE FILLED WITH CATALYST
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Miller, Gary D.
Abstract
A method of installing a temperature measuring device inside a reactor tube while filling the tube with catalyst is provided. The method includes inserting a positioning system, including a single inflatable bladder connected at a central location to a centering ring, into a reactor tube, the reactor tube comprising a distal end and a proximal end. Then inserting the centering ring around the temperature measurement device. Then locating the positioning system at a first predetermined distance from the distal end, and inflating the single inflatable bladder, thereby centering the centering ring and the temperature measurement device within the SMR tube. Then introducing catalyst into the SMR tube, thereby enclosing the temperature measurement device in catalyst.
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
G01K 7/04 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
16.
Method for installing a thermocouple inside a reactor tube filled with catalyst
A method of installing a temperature measuring device inside a reactor tube while filling the tube with catalyst is provided. The method includes inserting a positioning system, including multiple inflatable bladders connected at a central location to a centering ring, into reactor tube, the reactor tube comprising a distal end and a proximal end. Then inserting a temperature measurement device into the centering ring. Locating the positioning system at a first predetermined distance from the distal end. Then inflating the multiple inflatable bladders, thereby centering the centering ring and the temperature measurement device within the SMR tube, and introducing catalyst into the SMR tube, thereby enclosing the temperature measurement device in catalyst.
B01J 4/00 - Feed devicesFeed or outlet control devices
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
B01J 8/06 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds in tube reactorsChemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the solid particles being arranged in tubes
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
B01J 19/24 - Stationary reactors without moving elements inside
G01K 1/02 - Means for indicating or recording specially adapted for thermometers
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
A method of installing a temperature measuring device inside a reactor tube while filling the tube with catalyst is provided. The method includes inserting a positioning system, including a single inflatable bladder connected at a central location to a centering ring, into a reactor tube, the reactor tube comprising a distal end and a proximal end. Then inserting the centering ring around the temperature measurement device. Then locating the positioning system at a first predetermined distance from the distal end, and inflating the single inflatable bladder, thereby centering the centering ring and the temperature measurement device within the SMR tube. Then introducing catalyst into the SMR tube, thereby enclosing the temperature measurement device in catalyst.
B01J 4/00 - Feed devicesFeed or outlet control devices
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/06 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds in tube reactorsChemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the solid particles being arranged in tubes
B01J 19/00 - Chemical, physical or physico-chemical processes in generalTheir relevant apparatus
B01J 19/24 - Stationary reactors without moving elements inside
G01K 1/02 - Means for indicating or recording specially adapted for thermometers
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
18.
Apparatus for installing a thermocouple inside a reactor tube filled with catalyst
A device for centering a temperature measurement device inside a reactor tube that will be filled with catalyst, including multiple inflatable bladders mechanically and fluidically attached to a centering ring.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/06 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds in tube reactorsChemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the solid particles being arranged in tubes
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
G01K 1/02 - Means for indicating or recording specially adapted for thermometers
A device for centering a temperature measurement device inside a tube reactor that will be filled with catalyst, including a single inflatable bladder mechanically and fluidically attached to a centering ring.
B01J 8/00 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes
B01J 8/02 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds
B01J 4/00 - Feed devicesFeed or outlet control devices
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
G01K 1/02 - Means for indicating or recording specially adapted for thermometers
G01K 1/14 - SupportsFastening devicesArrangements for mounting thermometers in particular locations
B01J 8/06 - Chemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds in tube reactorsChemical or physical processes in general, conducted in the presence of fluids and solid particlesApparatus for such processes with stationary particles, e.g. in fixed beds the solid particles being arranged in tubes
G01K 7/02 - Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat using thermoelectric elements, e.g. thermocouples
A method for forming and maintaining a fundamentally impervious boundary to very high purity hydrogen stored in a salt cavern is provided. The cavern includes a salt cavern wall. The method includes introducing a compressed very high purity hydrogen gas into a salt cavern, thereby producing a stored very high purity hydrogen gas; forming a fundamentally impervious boundary to the very high purity hydrogen along at least a part of the perimeter of the salt cavern, and maintaining the fundamentally impervious boundary to the stored very high purity hydrogen gas at a pressure greater than 1.0 psi per linear foot of height within the cavern, and less than 4.0 psi per linear foot of height within the cavern and thereby retaining within the salt cavern over 95% of the stored very high purity hydrogen over a period of time of at least 72 hours.
A system for forming and/or maintaining a fundamentally impervious boundary within a salt cavern for storing very high purity hydrogen is provided. The system includes a salt cavern comprising a salt cavern wall; a conduit configured to introduce a compressed very high purity hydrogen gas into a salt cavern, thereby producing a stored very high purity hydrogen gas; the conduit also configured to remove the compressed very high purity hydrogen gas from the salt cavern, wherein the stored very high purity hydrogen gas is maintained at a pressure greater than about 1.0 psi per linear foot of height within the cavern, and less than about 4.0 psi per linear foot of height within the cavern.
A pressurization and evacuation system is provided, including a top 3-way valve including a first port, a second port and a third port, a bottom 3-way valve including an first port, a second outlet port and a third port, and an educator including a pressure inlet, a suction inlet, and a discharge outlet. Wherein: a first conduit fluidically connects the top 3-way valve third port with the educator pressure inlet; a second conduit fluidically connects the top 3-way valve second port with the bottom 3-way valve first port; a third conduit fluidically connects the bottom 3-way valve third port with the educator suction inlet; and a fourth conduit fluidically connects the bottom 3-way valve second port with a customer apparatus.
F16K 11/00 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid
F16K 11/10 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with two or more closure members not moving as a unit
F17C 1/00 - Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
F16K 11/087 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with all movable sealing faces moving as one unit comprising only taps or cocks with spherical plug
F16K 11/22 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
F16K 11/18 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle with separate operating movements for separate closure members
F16K 11/20 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with two or more closure members not moving as a unit operated by separate actuating members
23.
USE OF MULTIPLE STORAGE CAVERNS FOR PRODUCT INVENTORY CONTROL
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
An inventory management method is provided, which includes filling a first salt cavern with a product gas, removing all the working gas from a second salt cavern when the frequency requirement to empty the second salt cavern is reached, while concurrently, removing and replacing the gas product from the first salt cavern as supply and demand dictate, analyzing the frequency requirement for emptying the first salt cavern, calculating the time to fill the second salt cavern, filling the second salt cavern with a product gas, removing all the working gas from the first salt cavern when the frequency requirement to empty the first salt cavern is reached, while concurrently, removing and replacing the gas product from the second salt cavern as supply and demand dictate, analyzing the frequency requirement for emptying the second salt cavern, calculating the time to fill the first salt cavern, and repeating steps b) - j).
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
An inventory management method is also provided. This method includes removing and replacing the gas product from a first salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the first salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the first salt cavern, while concurrently, removing and replacing the gas product from a second salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the second salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the second salt cavern, while concurrently repeating steps a) - g).
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
An inventory management method is also provided. This method includes removing and replacing the gas product from a first salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the first salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the first salt cavern, while concurrently, removing and replacing the gas product from a second salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the second salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the second salt cavern, while concurrently repeating steps a) - g).
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
A cavern pressure control method includes storing compressible and possibly incompressible fluids in an underground storage volume, removing a portion or introducing additional incompressible fluid into the underground storage volume, possibly removing a portion or introducing additional compressible fluid into the underground storage volume, thereby producing a net pressure increase rate (Pinc) within the underground storage volume, wherein Pinc is maintained at less than a predetermined maximum increase value (PImax).
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
James, Phillip
Abstract
A gas detection and fire suppression system is proposed that includes at least one hydrogen gas detector located proximate to a hydrogen salt cavern wellhead, the at least one hydrogen gas detector configured to generate a signal upon detecting a concentration of hydrogen gas above a predetermined threshold. The system also includes at least one automatic self oscillating fire monitor located proximate to the hydrogen salt cavern wellhead, the at least one automatic self oscillating fire monitor configured to activate upon the receive a signal from the at least one hydrogen gas detector. And the system includes an alarm, wherein the alarm is configured to activate upon the receipt of the signal from the at least one hydrogen gas detector.
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
A cavern pressure control method includes storing compressible and possibly incompressible fluids in an underground storage volume, removing a portion or introducing additional incompressible fluid into the underground storage volume, possibly removing a portion or introducing additional compressible fluid into the underground storage volume, thereby producing a net pressure decrease rate (Pdec) within the underground storage volume, wherein Pdec is maintained at less than a predetermined maximum decrease value (PDmax).
An inventory management method is also provided. This method includes removing and replacing the gas product from a first salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the first salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the first salt cavern, while concurrently, removing and replacing the gas product from a second salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the second salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the second salt cavern, while concurrently repeating steps a)-g).
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
This method includes a solution mined underground salt cavern, wherein the salt cavern has a main body with a mean diameter of DN and an upper portion comprising an inert gas pad, a stream of leaching water which is injected below the inert gas pad with a velocity V, thereby leaching an Nth tier adjacent to the upper portion having a height H1 and a mean diameter DN+1 that is smaller than DN by a ratio R raising the inert gas pad by an amount A1, providing a stream of leaching water which is injected below the inert gas pad with a velocity V, thereby leaching an N+1th tier adjacent to the Nth tier having a height H2 and to a mean diameter DN+2 that is smaller than DN+1 by a ratio R, and repeating steps c and d a number of times T, thereby forming a stable roof.
An inventory management method is also provided. This method includes removing and replacing the gas product from a first salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the first salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the first salt cavern, while concurrently, removing and replacing the gas product from a second salt cavern as supply and demand dictate, analyzing the impurities in the gas product that is removed, predicting the duration until a maximum acceptable impurity limit is present, removing all the working gas from the second salt cavern when the maximum acceptable impurity limit is reached, then replacing the working gas in the second salt cavern, while concurrently repeating steps a)-g).
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
A hydrogen pipeline detonation arrestor is provided. The detonation arrestor includes a pipeline spool, having a segment length, an inner volume, an outer surface. The detonation arrester also includes a detonation barrier having a plurality of axially aligned quench pipes located within the inner volume. The detonation arrester is located within a hydrogen pipeline upstream or downstream of a hydrogen salt cavern storage facility.
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
A carbon steel for use in high pressure hydrogen service is provided. This steel may have no more than 0.16% carbon, no more than 1.10% manganese, no more than 0.010% phosphorus, no more than 0.05% sulfur, no more than 0.02% silicon, no more than 0.15% copper, no more than 0.10% nickel, no more than 0.1 % chromium, no more than 0.03% molybdnium, no more than 0.40% aluminum, no more than 0.02% vanadium, no more than 0.0005% boron, no more than 0.003% titanium, and no more than 0.02% niobium.
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
A hydrogen pipeline detonation arrestor is provided. The detonation arrestor includes a pipeline spool, having a segment length, an inner volume, an outer surface. The detonation arrester also includes a detonation barrier having a plurality of axially aligned quench pipes located within the inner volume. The detonation arrester is located within a hydrogen pipeline upstream or downstream of a hydrogen salt cavern storage facility.
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE (France)
AIR LIQUIDE LARGE INDUSTRIES U.S. LP (USA)
Inventor
Strybos, Ronald
Abstract
This method includes providing an cased borehole located within a salt bed, injecting an aqueous liquid into the cased borehole at a first pressure, in order to expose the salt bed to the aqueous liquid, thereby dissolving at least a portion of the salt bed and forming a brine solution within an underground storage volume, withdrawing at least a portion of the brine solution from the underground storage volume, and injecting an inert gas into the cased borehole at a second pressure, in order to provide an inert blanket within the underground storage volume, wherein the second pressure that is greater than the first pressure but less than the maximum allowable pressure of the cavern.
A carbon steel for use in high pressure hydrogen service is provided. This steel may have greater than 1.20% manganese and greater than 0.035% sulfur. This steel may have no more than 0.16% carbon, no more than 1.10% manganese, no more than 0.010% phosphorus, no more than 0.05% sulfur, no more than 0.02% silicon, no more than 0.15% copper, no more than 0.10% nickel, no more than 0.1% chromium, no more than 0.03% molybdnium, no more than 0.40% aluminum, no more than 0.02% vanadium, no more than 0.0005% boron, no more than 0.003% titanium, and no more than 0.02% niobium.
A method and apparatus is provided which will improve the integrity of a pipeline by removing moisture and solid particulates that have been entrapped within a gas originating from an underground storage cavern following pressure reduction before introducing the gas into the pipeline.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
E21B 37/00 - Methods or apparatus for cleaning boreholes or wells
B01D 46/00 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
Techniques are disclosed for presenting users with relevant data and statistics related to the operations of an industrial system. Data obtained by a SCADA system may be stored in a real-time status database (which reflects the current process data of the industrial system) and a historian database (which archives the process data from the industrial system as it changes over time). A user may request from the SCADA system process data obtained during a specified period of time. The request may be subdivided into a plurality of time intervals, and process data associated with each time interval may be analyzed to determine one or more salient values that are representative of the interval. The salient values associated with each time interval then may be transmitted to the user in response to the process data request.
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
An energy generation system including a primer mover producing a power output, and a combustion product outlet stream; and a steam generator wherein a water inlet stream and the combustion product outlet stream exchange heat to produce at least one steam outlet stream is provided. The steam generator further comprises at least one set of supplemental burners situated in the path of the combustion product outlet stream, and a hydrogen fuel inlet stream at least a portion of which is combusted in at least one of the supplemental burners or the prime mover.
F02C 6/18 - Plural gas-turbine plantsCombinations of gas-turbine plants with other apparatusAdaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
F22B 1/18 - Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
43.
Method to extract billing type peak data from an existing electric meter installation
Techniques are disclosed for monitoring the consumption of a plurality of metered resources. The techniques involve receiving a KYZ pulse from a first utility meter, where the first utility meter is coupled to a source of one of the metered resources, and where the first utility meter outputs the KYZ pulse based on a predefined amount of metered resource being passed through the utility meter. A first counter is incremented, where the first counter is associated with the utility meter and stored in a memory.
L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude (France)
Inventor
Terrien, Paul
Chaubey, Trapti
Shanbhag, Purushottam V.
Grover, Bhadra S.
Vauk, Dennis A.
Darde, Arthur
Abstract
The present invention provides a process for recovering hydrogen and carbon dioxide from a process stream of a process unit wherein the process stream contains at least carbon dioxide, hydrogen, and methane.
C01B 3/24 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
45.
Combined first and second generation biofuels process
A process to integrate a first biofuels process and a second generation cellulosic biofuels process is provided. The pyrolysis means which produces the char stream and a bioliquid stream. The low pressure hydrotreating component, a high pressure hydrotreating component, the low pressure hydrotreating component which produces the hydrocarbon stream, the high pressure hydrotreating component which produces the steam stream and bioliquid stream. A distillation means, which produces a green gasoline stream and a green diesel stream from the bioliquid stream. The second biofuels process may be a first generation bio-ethanol process, which produces a bio-ethanol stream. The hydrogen production unit, which produces the hydrogen stream and the steam stream. The hydrogen production unit may be a steam reformer or partial oxidation unit.
Techniques are disclosed for presenting users with dynamic views of process data related to the operations of an industrial system. Data obtained by a SCADA system may be stored in a real-time status database (which reflects the current process data of the industrial system) and a historian database (which archives the process data from the industrial system as it changes over time). A design canvas allows users to compose a dynamic view of the process data obtained by the SCADA system. For example, a user may compose a dynamic view of selected temperatures, pressures, and flow rates obtained by the SCADA system while monitoring the status of a pipeline.
G06F 19/00 - Digital computing or data processing equipment or methods, specially adapted for specific applications (specially adapted for specific functions G06F 17/00;data processing systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes G06Q;healthcare informatics G16H)
A flowmeter detects a differential pressure of steam as the steam passes through a conduit with a feature shaped to produce changes in velocity and pressure of the steam. Taps used to enable detection of the differential pressure extend from a wall of the conduit upward toward vertical (defined as parallel to the direction of gravitational force) in order to drain liquid water into the conduit from the tap. The differential pressure measured enables calculation of flow rate of the steam.
A programmable logic controller (PLC) protocol converter is disclosed that allows a supervisory control and data acquisition (SCADA) system to effectively communicate with a PLC device using a desired communications protocol, particularly in cases where the PLC device does not “speak” the desired communications protocol. A first thread may be configured to continually read PLC addresses, one at a time, using a communications protocol understood by the PLC device. The first thread may store the data values in the shared data array within program memory. Thus, the first thread exposes data from the PLC device, as specified in the configuration file. At the same time, a second thread may be configured to serve the data in the shared data array according to a second communications protocol, e.g., to the SCADA system.
H04J 3/22 - Time-division multiplex systems in which the sources have different rates or codes
G06F 15/16 - Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
49.
Synchronizing historical archive data between primary and secondary historian systems
Techniques for operating an archival database, referred to as a historian, are disclosed. Embodiments of the invention provide techniques for synchronizing historical archive files and/or archival data between a primary and a secondary historian used to archive data values from a real-time database. The real-time database may be used to monitor the current operational state of a large industrial system, such as a pipeline. In turn, the historian may be used to archive the data stored by the real-time database. In the event that either the primary or the secondary system (or both) goes down and then comes back online at a later time, embodiments of the invention may be used to synchronize data between the primary and secondary historian systems.
Techniques for operating an archival database, referred to as a historian, are disclosed. The historian may be used to archive values from a real-time database. Data values to be archived in the historian are first written to a short-term, high-availability repository, such as a memory-mapped database. As data values “fill” the short-term repository, an archival processor application may be configured to “drain” them from the short-term repository and store them in a high-capacity, long-term archive, such as a disk-based database. Thus, the short-term repository may be used to provide fast access to the recent operational history of a monitored system, (e.g., a complex pipeline network), where long-term archive may be used to provide access to a comprehensive operational history of the monitored system.
One embodiment of the invention provides a method for optimizing a variety of aspects of pipeline operations by using a genetic algorithm. Generally, the genetic algorithm is used to evolve a population of feasible solutions over successive generations until a termination condition is satisfied. Each solution specifies a feasible operational state of the pipeline system. Over successive generations existing solutions are modified, and an identified solution in the population is removed at each successive generation. Over repeated generations, the solutions in the population improve. Once an optimized production solution is generated, an optimized pressure solution may be generated using a direct pressure optimization process.