A bearing assembly (2) comprising a first component (10) and a second component (20), the first and second components being slidably disposed with respect to each other, wherein the first component slides relative to the second component in a first direction (4), wherein the first component comprises a plurality of first recesses (11) formed in a first surface (12) facing the second component, wherein the first recesses are distributed in a second direction perpendicular to the first direction with neighbouring first recesses being spaced apart in the second direction with a first spacing (13, wherein the second component comprises a plurality of second recesses (21) formed in a second surface (22) facing the first surface of the first component, wherein the second recesses are distributed in the second direction with neighbouring second recesses being spaced apart in the second direction with a second spacing (23), wherein the first recesses are sized to fit within the second spacings and the second recesses are sized to fit within the first spacings, and wherein the first and second components are urged into a relative position in the second direction in which the first and second recesses do not overlap one another.
A cover for a housing of a vehicle and a method of sealing a cover to the housing, where in at least one example, the cover comprises a cover body configured to cover an opening of the housing and to engage the housing at an interface around the opening. The cover may comprise a heating element embedded within the cover body and operable to at least partially melt a portion of the cover body as a part of a process for sealing the cover to the housing. The portion of the cover body may deform and conform to an interface feature at the mating surface of the housing due to the at least partial melting of the portion of the cover body, and, in some examples, the heating element may be configured to fail and be inoperable.
B29C 65/34 - Joining of preformed partsApparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
F16J 15/10 - Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
B29C 65/00 - Joining of preformed partsApparatus therefor
F16J 15/04 - Sealings between relatively-stationary surfaces without packing between the surfaces, e.g. with ground surfaces, with cutting edge
B29L 31/30 - Vehicles, e.g. ships or aircraft, or body parts thereof
B29C 65/36 - Joining of preformed partsApparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
B29C 65/76 - Making non-permanent or releasable joints
A cylinder for receiving a reciprocating piston, the cylinder defining a bore portion having first and second ends between which the piston travels in an axial direction, wherein the bore portion comprises a plurality of axially spaced apart recesses formed in a piston facing surface of the bore portion at a plurality of axial positions, with at least one recess being provided at each axial position; wherein the at least one recess at each axial position defines a total recess volume at each axial position, wherein a recess volume-to-spacing ratio is defined by a ratio of the total recess volume at a particular axial position to an axial spacing between the at least one recess at the particular axial position and a neighbouring at least one recess, and wherein the recess volume-to-spacing ratio varies progressively along the axial length of the bore portion.
A fastener assembly for a motor vehicle is provided. The fastener assembly comprises a fastener configured to couple a first component to a second component of the motor vehicle, the fastener comprising a shank configured to be received within a bore of the first component; and a retaining member, the retaining member being couplable to the fastener and the first component, the retaining member comprising an opening configured to receive the fastener shank and to provide a resistance against the removal of the fastener shank from the bore of the first component, wherein the retaining member comprises a deformable portion configured to deform from a first state to a second state by virtue of the operating environment of the first component such that the fastener may be removed from the bore when the deformable portion is in the second state following operation of the motor vehicle.
There is described herein a consortium of micro-organisms comprising, consisting or consisting essentially of Rhizobium spp., Bacillus spp., and Pseudomonas spp.