Herein discussed is a heat management system comprising a pipe and a static auger inside the pipe, wherein the pipe has an inner diameter of d, wherein the auger has an outer diameter D and a pitch P, wherein the ratio of D/P is no less than 1, and wherein the auger outer diameter D is no less than 90% of the pipe inner diameter d. In an embodiment, the ratio of D/P is in the range of 2-10, or 2-5, or 2-4, or 5-10. In an embodiment, the pipe is made from stainless steel, carbon steel, Monel, Inconel, Incoloy, Hastelloy, ceramics, silicon carbide, alumina, and combinations thereof. In an embodiment, the system comprises a fluid passing through the pipe, wherein the pipe heats or cools the fluid.
F28F 13/12 - Arrangements for modifying heat transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
Herein discussed is a hydrogen production system comprising a first reactor zone and a second reactor zone, wherein both reactor zones comprise an ionically conducting membrane, wherein the first zone is capable of reforming a hydrocarbon electrochemically and the second zone is capable of performing water gas shift reactions electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon and wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. In an embodiment, the membrane is mixed conducting. In an embodiment, the membrane comprises an electronically conducting phase and an ionically conducting phase.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a method of producing carbon monoxide or hydrogen or both simultaneously comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a hydrocarbon; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide or water or both, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically.
Herein discussed is a method of producing carbon monoxide or hydrogen or both simultaneously comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a hydrocarbon; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide or water or both, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically.
Herein discussed is a method of making a Cu-Co-containing electrode precursor, comprising (a) Providing a mixed-conducting membrane; (b) Depositing a dispersion on the membrane, wherein the dispersion comprises CuO particles and CoCGO particles; and (c) Sintering the CuO and CoCGO particles at a temperature of from 800°C to 1350°C to form the Cu-Co-containing electrode precursor. In an embodiment, the mole ratio of Cu to Co is from 3 : 1 to 70: 1. In an embodiment, the mole ratio of Cu to Co is from 10: 1 to 50: 1. In an embodiment, sintering takes place at a temperature of from 1100°C to 1250°C.
Herein discussed is a method of producing hydrogen or carbon monoxide or both comprising: (a) providing an electrochemical reactor comprising an anode, a cathode, and a mixed-conducting electrolyte between the anode and the cathode, (b) introducing a first fluid to the anode, wherein the first fluid provides a reducing atmosphere for the anode, and (c) introducing a second fluid to the cathode, wherein the second fluid provides a reducing atmosphere for the cathode, wherein the direction of the bulk flow of the first fluid is opposite that of the second fluid at every location along the length of the anode, and wherein the direction of the bulk flow of the first fluid changes in the reactor.
Herein discussed is a method of producing carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide, and wherein carbon monoxide is generated from carbon dioxide electrochemically; wherein the reactor comprises no interconnect and no current collector; wherein the reactor generates no electricity and receives no electricity; and wherein the reactor is operated at a temperature no higher than 750° C. In an embodiment, the reactor is operated at a temperature no higher than 700° C. or no higher than 650° C.
Herein discussed is a method of producing carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide, and wherein carbon monoxide is generated from carbon dioxide electrochemically; wherein the electrochemical reactor comprises no interconnect and no current collector; wherein the electrochemical reactor generates no electricity and receives no electricity; and wherein the electrochemical reactor is operated at a temperature no higher than 750°C. In an embodiment, the electrochemical reactor is operated at a temperature no higher than 700°C or no higher than 650°C.
A reactor assembly includes a multiplicity of electrochemical reactors, wherein each of the electrochemical reactors comprises an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein the surface area of the fluid passage in contact with the anode or cathode is at least 25 times of the combined cross-sectional area of the inlet and the outlet; wherein the minimum distance between the reactors is no greater than 2 cm; and wherein the reactors have no interconnects and no direct contact with one another.
C25B 11/091 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of at least one catalytic element and at least one catalytic compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of two or more catalytic elements or catalytic compounds
C25B 13/05 - DiaphragmsSpacing elements characterised by the material based on inorganic materials
An electrochemical reactor includes an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein the surface area of the fluid passage in contact with the anode or cathode is at least 25 times of the combined cross-sectional area of the inlet and the outlet. Further discussed herein is an electrochemical reactor comprising an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein a tortuosity of the fluid passage is no less than 10, wherein tortuosity is the ratio of fluid flow path length to the straight distance between the inlet and the outlet.
An electrochemical reactor includes an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein the surface area of the fluid passage in contact with the anode or cathode is at least 25 times of the combined cross-sectional area of the inlet and the outlet. Further discussed herein is an electrochemical reactor comprising an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein a tortuosity of the fluid passage is no less than 10, wherein tortuosity is the ratio of fluid flow path length to the straight distance between the inlet and the outlet.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 11/04 - ElectrodesManufacture thereof not otherwise provided for characterised by the material
C25B 13/05 - DiaphragmsSpacing elements characterised by the material based on inorganic materials
C25B 9/65 - Means for supplying currentElectrode connectionsElectric inter-cell connections
A reactor assembly includes a multiplicity of electrochemical reactors, wherein each of the electrochemical reactors comprises an anode, a cathode, and a membrane between and in contact with the anode and the cathode, wherein the anode or the cathode forms a fluid passage having an inlet and an outlet, wherein the surface area of the fluid passage in contact with the anode or cathode is at least 25 times of the combined cross-sectional area of the inlet and the outlet; wherein the minimum distance between the reactors is no greater than 2 cm; and wherein the reactors have no interconnects and no direct contact with one another.
Herein discussed is a device comprising a metal chamber having a first internal space; a plate and a connector in the first internal space; and a ceramic chamber having a second internal space, wherein the ceramic chamber is inside the metal chamber and the second internal space penetrates the plate; wherein the plate is configured to expand or contract and remain in contact with the connector such that the first and second internal spaces are not in fluid communication with one another. In an embodiment, the ceramic chamber wall is in contact with the plate but does not penetrate the plate. In an embodiment, the device produces no electricity and receives no electricity.
A device including a metal chamber having a first internal space defined by at least one metal chamber wall; a plate in the first internal space; and a ceramic chamber having a second internal space defined by at least one ceramic chamber wall, a closed bend, and two openings, wherein the ceramic chamber is inside the metal chamber and the second internal space penetrates the plate such that the two openings and the closed bend are on opposite sides of the plate; wherein the first and second internal spaces are not in fluid communication with one another.
A device including a metal chamber having a first internal space defined by at least one metal chamber wall; a plate in the first internal space; and a ceramic chamber having a second internal space defined by at least one ceramic chamber wall, a closed bend, and two openings, wherein the ceramic chamber is inside the metal chamber and the second internal space penetrates the plate such that the two openings and the closed bend are on opposite sides of the plate; wherein the first and second internal spaces are not in fluid communication with one another.
Herein discussed is a device comprising a metal chamber having a first internal space; a plate and a connector in the first internal space; and a ceramic chamber having a second internal space, wherein the ceramic chamber is inside the metal chamber and the second internal space penetrates the plate; wherein the plate is configured to expand or contract and remain in contact with the connector such that the first and second internal spaces are not in fluid communication with one another. In an embodiment, the ceramic chamber wall is in contact with the plate but does not penetrate the plate. In an embodiment, the device produces no electricity and receives no electricity.
Herein discussed is a method of producing hydrogen comprising: providing a tubular reactor having an open end and a closed end, wherein the reactor comprises an anode on the inside and a cathode on the outside separated by and in contact with a mixed conducting electrolyte, wherein the electrolyte comprises an electronically conducting phase and an ionically conducting phase, wherein the reactor comprises no current collector or interconnect; introducing a hydrocarbon and an oxidant into a feed tube, wherein the feed tube contains a catalyst that promotes catalytic partial oxidation (CPOX) reactions, wherein the feed tube extends into the open end of the reactor and toward the closed end of the reactor; introducing steam to the outside of the tubular reactor; and converting steam to hydrogen electrochemically without electricity input.
Herein discussed is a device comprising an anode, a cathode, an electrolyte in contact with the anode and the cathode, and an interconnect, wherein the anode and the cathode are short circuited via electronic communication through the interconnect. In an embodiment, the anode and the cathode are separated by the electrolyte and the interconnect.
C25B 11/093 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of at least one catalytic element and at least one catalytic compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
Herein discussed is a device comprising an anode, a cathode, an electrolyte in contact with the anode and the cathode, and an interconnect, wherein the anode and the cathode are short circuited via electronic communication through the interconnect. In an embodiment, the anode and the cathode are separated by the electrolyte and the interconnect.
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the membrane conducts both electrons and protons, wherein the anode and cathode are porous; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia or a cracked ammonia product; and (c) extracting a second stream from the cathode, wherein the second stream comprises hydrogen, wherein the first stream and the second stream are separated by the membrane.
C25B 11/077 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 15/021 - Process control or regulation of heating or cooling
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
24.
ELECTROCHEMICAL HYDROGEN PRODUCTION VIA AMMONIA CRACKING
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the membrane conducts both electrons and protons, wherein the anode and cathode are porous; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia or a cracked ammonia product; and (c) extracting a second stream from the cathode, wherein the second stream comprises hydrogen, wherein the first stream and the second stream are separated by the membrane.
Herein discussed is a method of co-producing carbon monoxide and hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide and water, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically. In an embodiment, the anode and the cathode are separated by the membrane and are both exposed to reducing environments during the entire time of operation.
Herein discussed is a method of co-producing carbon monoxide and hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide and water, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically. In an embodiment, the anode and the cathode are separated by the membrane and are both exposed to reducing environments during the entire time of operation.
C07C 1/04 - Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of carbon from carbon monoxide with hydrogen
C07C 29/151 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Gas production services; recycling of chemicals; manufacturing services for others in the field of ion-exchange membranes in the nature of chemical preparations; waste processing and material treatment services, namely, processing and transformation of waste in gas, solid and liquid forms generated by public or private communities and enterprises.
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
(1) Gas production services; recycling of chemicals; manufacturing services for others in the field of ion-exchange membranes in the nature of chemical preparations; waste processing and material treatment services, namely, processing and transformation of waste in gas, solid and liquid forms generated by public or private communities and enterprises
29.
MULTI-LAYER ELECTROCHEMICAL DEVICE AND METHOD OF MAKING
Herein discussed is a method of making an electrochemical device comprising (a) infiltrating an anode precursor, a cathode precursor, and an electrolyte precursor with a dispersion to produce an infiltrated anode precursor, an infiltrated cathode precursor, and an infiltrated electrolyte precursor, wherein the dispersion comprises metal ions and nanoparticles selected from the group consisting of metallic nanoparticles, metal-oxide nanoparticles, ceramic nanoparticles, and combinations thereof; wherein the metal ions percolate each precursor, wherein the anode precursor, the cathode precursor, and the electrolyte precursor are porous, the electrolyte precursor having an average pore size that is 50% or less of an average pore size of the anode precursor and that is 50% or less of an average pore size of the cathode precursor; and (b) co-sintering the infiltrated anode precursor, the infiltrated cathode precursor, and the infiltrated electrolyte precursor such that the infiltrated anode precursor becomes a porous anode, the infiltrated cathode precursor becomes a porous cathode, and a gas tight electrolyte is formed between the porous anode and the porous cathode.
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Gas production services; recycling of chemicals; manufacturing services for others in the field of ion-exchange membranes in the nature of chemical preparations; waste processing and material treatment services, namely, processing and transformation of waste in gas, solid and liquid forms generated by public or private communities and enterprises.
31.
ELECTROCHEMICAL HYDROGEN PRODUCTION UTILIZING AMMONIA WITH OXIDANT INJECTION
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the membrane is both electronically conducting and ionically conducting; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidant to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment for the cathode; wherein hydrogen is generated from water electrochemically; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Hydrogen generators; Industrial chemical reactors. Waste processing and material treatment services, namely, processing and transformation of waste in gas, solid and liquid forms generated by public or private communities and enterprises; Production and generation of energy; production and generation of fuel; production and generation of hydrogen; production and generation of hydrogen produced by renewable energy sources; production and generation of fuel and energy derived from ammonia or predominantly derived from ammonia, including ammonia produced by renewable energy sources; processing and conversion of energy, ammonia, hydrogen, gas and fuels; processing and conversion of fuels and energy; processing and conversion of energy generated from renewable sources; treatment of materials, namely, treatment of hydrogen gas and ammonia gas by means of heating, cooling, chemical treatment or electrolysis; recycling services, namely, processing and conversion of wasted energy, ammonia, gas and fuels into electricity and useful steam; energy generation by operation of hydrogen production and generation plants for others; custom manufacture of products, equipment, installations and systems associated with hydrogen production, storage, supply and conversion.
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Industrial chemical reactors; Electrolysis machines for generating hydrogen Hydrogen generators for laboratory use Adsorption apparatus for generating hydrogen Waste processing; material treatment services, namely, processing of waste in gas, solid and liquid forms that has
been generated by public and private communities and enterprises; Production and generation of energy; production of fuel;
production of hydrogen as a form of gas, energy and fuel; production of hydrogen as a form of gas, energy and fuel that has been
produced from renewable energy sources; production of fuel and generation of energy that has been derived either entirely or
predominantly from ammonia, as well as derived from ammonia produced from renewable energy sources; Energy recycling
services, namely, conversion of wasted energy into electricity and useful steam; processing of ammonia, hydrogen, gas and fuels
as a form of waste processing; treatment of materials, namely, treatment of hydrogen gas and ammonia gas by means of heating,
cooling, chemical treatment and electrolysis; recycling services, namely, processing and conversion of wasted energy, ammonia,
gas and fuels into electricity and useful steam; custom manufacture of products, equipment, installations and systems specific to
hydrogen production, storage, supply and conversion
34.
ELECTROCHEMICAL PRODUCER FOR HYDROGEN OR CARBON MONOXIDE
Herein discussed is an electrochemical reactor comprising a first electrode, wherein the first electrode is liquid when the reactor is in operation; a second electrode having a metallic phase and a ceramic phase, wherein the metallic phase is electronically conductive and wherein the ceramic phase is ionically conductive; and a membrane, wherein the membrane is positioned between the first and second electrodes and is in contact with the first and second electrodes, wherein the membrane is mixed conducting. Also discussed herein is a method of producing hydrogen or carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the anode is liquid when the reactor is in operation and wherein the membrane is mixed conducting; (b) introducing a feedstock to the anode; (c) introducing a stream to the cathode, wherein the stream comprises water or carbon dioxide.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is an electrochemical reactor comprising a first electrode, wherein the first electrode is liquid when the reactor is in operation; a second electrode having a metallic phase and a ceramic phase, wherein the metallic phase is electronically conductive and wherein the ceramic phase is ionically conductive; and a membrane, wherein the membrane is positioned between the first and second electrodes and is in contact with the first and second electrodes, wherein the membrane is mixed conducting. Also discussed herein is a method of producing hydrogen or carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the anode is liquid when the reactor is in operation and wherein the membrane is mixed conducting; (b) introducing a feedstock to the anode; (c) introducing a stream to the cathode, wherein the stream comprises water or carbon dioxide.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 9/30 - Cells comprising movable electrodes, e.g. rotary electrodesAssemblies of constructional parts thereof
C25B 11/067 - Inorganic compound e.g. ITO, silica or titania
C25B 11/077 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
C25B 13/04 - DiaphragmsSpacing elements characterised by the material
36.
ELECTROCHEMICAL PRODUCTION OF CARBON MONOXIDE AND VALUABLE PRODUCTS
Herein discussed is a method of producing carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide, wherein carbon monoxide is generated from carbon dioxide electrochemically; wherein the reactor generates no electricity and receives no electricity. In an embodiment, the anode and the cathode are separated by the membrane and are both exposed to reducing environments during the entire time of operation.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a method of producing carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide, wherein carbon monoxide is generated from carbon dioxide electrochemically; wherein the reactor generates no electricity and receives no electricity. In an embodiment, the anode and the cathode are separated by the membrane and are both exposed to reducing environments during the entire time of operation.
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia or a product from ammonia cracking; (c) introducing a second stream to the cathode, wherein the second stream comprises water; and wherein hydrogen is generated from water electrochemically without electricity input. Systems for producing hydrogen from ammonia are also discussed.
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C01B 3/04 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of inorganic compounds, e.g. ammonia
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
39.
Electrochemical hydrogen production utilizing ammonia
Herein discussed is a method of producing hydrogen comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia or a product from ammonia cracking; (c) introducing a second stream to the cathode, wherein the second stream comprises water; and wherein hydrogen is generated from water electrochemically without electricity input. Systems for producing hydrogen from ammonia are also discussed.
C25B 9/19 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C25B 9/65 - Means for supplying currentElectrode connectionsElectric inter-cell connections
B01D 53/32 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by electrical effects other than those provided for in group
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Gas production services; recycling of chemicals; manufacturing services for others in the field of ion-exchange membranes in the nature of chemical preparations; waste processing and material treatment services, namely, processing and transformation of waste in gas, solid and liquid forms generated by public or private communities and enterprises.
Herein discussed is a hydrogen production system comprising a first reactor zone and a second reactor zone, wherein both reactor zones comprise an ionically conducting membrane, wherein the first zone is capable of reforming a hydrocarbon electrochemically and the second zone is capable of performing water gas shift reactions electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon and wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. In an embodiment, the membrane is mixed conducting. In an embodiment, the membrane comprises an electronically conducting phase and an ionically conducting phase.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is an electrochemical reactor comprising a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase, wherein the reactor is capable of reforming a hydrocarbon electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon. Further discussed herein is a method of producing hydrogen comprising providing an electrochemical (EC) reactor having a mixed-conducting membrane, introducing a first stream comprising a hydrocarbon to the reactor, introducing a second stream comprising water to the reactor, and reducing the water in the second stream to produce hydrogen, wherein the first stream and the second stream do not come in contact with each other in the reactor, and wherein the hydrocarbon is reformed electrochemically in the EC reactor.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a hydrogen production system comprising a first reactor zone and a second reactor zone, wherein both reactor zones comprise an ionically conducting membrane, wherein the first zone is capable of reforming a hydrocarbon electrochemically and the second zone is capable of performing water gas shift reactions electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon and wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. In an embodiment, the membrane is mixed conducting. In an embodiment, the membrane comprises an electronically conducting phase and an ionically conducting phase.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a method of producing hydrogen comprising introducing a first stream comprising a fuel to an electrochemical (EC) reactor having a mixed-conducting membrane, introducing a second stream comprising water to the reactor, reducing the water in the second stream to produce hydrogen, and recycling at least portion of the produced hydrogen to the first stream, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase; and wherein the first stream and the second stream do not come in contact with each other in the reactor.
Herein discussed is a method of producing hydrogen comprising introducing a first stream comprising a fuel to an electrochemical (EC) reactor having a mixed-conducting membrane, introducing a second stream comprising water to the reactor, reducing the water in the second stream to produce hydrogen, and recycling at least portion of the produced hydrogen to the first stream, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase; and wherein the first stream and the second stream do not come in contact with each other in the reactor.
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 11/077 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
C25B 9/19 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 13/05 - DiaphragmsSpacing elements characterised by the material based on inorganic materials
46.
PRODUCTION OF HYDROGEN VIA ELECTROCHEMICAL REFORMING
Herein discussed is an electrochemical reactor comprising a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase, wherein the reactor is capable of reforming a hydrocarbon electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon. Further discussed herein is a method of producing hydrogen comprising providing an electrochemical (EC) reactor having a mixed-conducting membrane, introducing a first stream comprising a hydrocarbon to the reactor, introducing a second stream comprising water to the reactor, and reducing the water in the second stream to produce hydrogen, wherein the first stream and the second stream do not come in contact with each other in the reactor, and wherein the hydrocarbon is reformed electrochemically in the EC reactor.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
Herein discussed is a method of producing hydrogen or carbon monoxide comprising introducing a waste gas having a total combustible species (TCS) content of no greater than 60 vol% into an electrochemical (EC) reactor, wherein the EC reactor comprises a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase. Also disclosed herein is an integrated hydrogen production system comprising a waste gas source and an electrochemical (EC) reactor comprising a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase, wherein the waste gas source is configured to send its exhaust to the EC reactor, wherein the exhaust has a total combustible species (TCS) content of no greater than 60 vol%.
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
48.
Production of hydrogen or carbon monoxide from waste gases
Herein discussed is a method of producing hydrogen or carbon monoxide comprising introducing a waste gas having a total combustible species (TCS) content of no greater than 60 vol % into an electrochemical (EC) reactor, wherein the EC reactor comprises a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase. Also disclosed herein is an integrated hydrogen production system comprising a waste gas source and an electrochemical (EC) reactor comprising a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase, wherein the waste gas source is configured to send its exhaust to the EC reactor, wherein the exhaust has a total combustible species (TCS) content of no greater than 60 vol %.
C25B 11/091 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of at least one catalytic element and at least one catalytic compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of two or more catalytic elements or catalytic compounds
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 13/05 - DiaphragmsSpacing elements characterised by the material based on inorganic materials
Herein discussed is a tubular comprising: an open end; an opposite closed end; and a mixed conducting membrane in at least a portion of the circumferential surface of the tubular. In an embodiment, the tubular comprises a cathode in contact with one circumferential side of the mixed conducting membrane and an anode in contact with the opposite circumferential side of the mixed conducting membrane. Methods of making and using such a tubular are also discussed herein.
C01B 3/16 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
B01J 23/83 - Catalysts comprising metals or metal oxides or hydroxides, not provided for in group of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups with rare earths or actinides
Herein discussed is a method of producing hydrogen comprising introducing a metal smelter effluent gas or a basic oxygen furnace (BOF) effluent gas or a mixture thereof into an electrochemical (EC) reactor, wherein the EC reactor comprises a mixed-conducting membrane. In an embodiment, the method comprises introducing steam into the EC reactor on one side of the membrane, wherein the effluent gas is on the opposite side of the membrane, wherein the effluent gas and the steam are separated by the membrane and do not come in contact with each other.
C25B 9/19 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C25B 1/042 - Hydrogen or oxygen by electrolysis of water by electrolysis of steam
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is an electrochemical reactor comprising an ionically conducting membrane, wherein the reactor performs the water gas shift reactions electrochemically without electricity input, wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. Also discussed herein is a reactor comprising: a bi-functional layer and a mixed conducting membrane; wherein the bi-functional layer and the mixed conducting membrane are in contact with each other, and wherein the bi-functional layer catalyzes reverse-water-gas-shift (RWGS) reaction and functions as an anode in an electrochemical reaction.
C25B 11/091 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of at least one catalytic element and at least one catalytic compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of two or more catalytic elements or catalytic compounds
Herein discussed is a method of producing hydrogen comprising introducing a metal smelter effluent gas or a basic oxygen furnace (BOF) effluent gas or a mixture thereof into an electrochemical (EC) reactor, wherein the EC reactor comprises a mixed-conducting membrane. In an embodiment, the method comprises introducing steam into the EC reactor on one side of the membrane, wherein the effluent gas is on the opposite side of the membrane, wherein the effluent gas and the steam are separated by the membrane and do not come in contact with each other.
C25B 1/042 - Hydrogen or oxygen by electrolysis of water by electrolysis of steam
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 15/08 - Supplying or removing reactants or electrolytesRegeneration of electrolytes
C25B 11/077 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
Herein discussed is an electrochemical reactor comprising an ionically conducting membrane, wherein the reactor performs the water gas shift reactions electrochemically without electricity input, wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. Also discussed herein is a reactor comprising: a bi-functional layer and a mixed conducting membrane; wherein the bi-functional layer and the mixed conducting membrane are in contact with each other, and wherein the bi-functional layer catalyzes reverse-water-gas-shift (RWGS) reaction and functions as an anode in an electrochemical reaction.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 11/051 - Electrodes formed of electrocatalysts on a substrate or carrier
C25B 1/44 - Decomposition of amalgams with the aid of catalysts
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
H01M 8/2432 - Grouping of unit cells of planar configuration
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
H01M 8/2475 - Enclosures, casings or containers of fuel cell stacks
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
C01B 3/12 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
C01B 3/50 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
40 - Treatment of materials; recycling, air and water treatment,
Goods & Services
Gas production services; recycling of chemicals; manufacturing services for others in the field of ion-exchange membranes in the nature of chemical preparations; waste processing and material treatment services, namely, processing and transformation of waste in gas, solid and liquid forms generated by public or private communities and enterprises
Herein discussed is an electrode comprising a copper or copper oxide phase and a ceramic phase, wherein the copper or copper oxide phase and the ceramic phase are sintered and are inter-dispersed with one another. Further discussed herein is a method of making a copper- containing electrode comprising: (a) forming a dispersion comprising ceramic particles and copper or copper oxide particles; (b) depositing the dispersion onto a substrate to form a slice; and (c) sintering the slice using electromagnetic radiation.
Herein discussed is a method of using an oxide ion conducting membrane comprising exposing the oxide ion conducting membrane to a reducing environment on both sides of the membrane. In an embodiment, the oxide ion conducting membrane also conducts electrons. In various embodiments, the membrane is impermeable to fluid flow (e.g., having a permeability of less than 1 micro darcy). In an embodiment, the oxide ion conducting membrane comprises lanthanum chromite and a material selected from the group consisting of doped ceria, yttria-stabilized zirconia (YSZ), lanthanum strontium gallate magnesite (LSGM), scandia-stabilized zirconia (SSZ), Sc and Ce doped zirconia, and combinations thereof. In an embodiment, the lanthanum chromite comprises undoped lanthanum chromite, strontium doped lanthanum chromite, iron doped lanthanum chromite, strontium and iron doped lanthanum chromite, lanthanum calcium chromite, or combinations thereof. In an embodiment, the membrane is mixed conducting.
C25B 13/07 - DiaphragmsSpacing elements characterised by the material based on inorganic materials based on ceramics
C25B 13/02 - DiaphragmsSpacing elements characterised by shape or form
C25B 1/042 - Hydrogen or oxygen by electrolysis of water by electrolysis of steam
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 11/091 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of at least one catalytic element and at least one catalytic compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalysts material consisting of two or more catalytic elements or catalytic compounds
C25B 11/069 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of two or more compounds
59.
Methods of making and using an oxide ion conducting membrane
Herein discussed is a method of using an oxide ion conducting membrane comprising exposing the oxide ion conducting membrane to a reducing environment on both sides of the membrane. In an embodiment, the oxide ion conducting membrane also conducts electrons. In various embodiments, the membrane is impermeable to fluid flow (e.g., having a permeability of less than 1 micro darcy). In an embodiment, the oxide ion conducting membrane comprises lanthanum chromite and a material selected from the group consisting of doped ceria, yttria-stabilized zirconia (YSZ), lanthanum strontium gallate magnesite (LSGM), scandia-stabilized zirconia (SSZ), Sc and Ce doped zirconia, and combinations thereof. In an embodiment, the lanthanum chromite comprises undoped lanthanum chromite, strontium doped lanthanum chromite, iron doped lanthanum chromite, strontium and iron doped lanthanum chromite, lanthanum calcium chromite, or combinations thereof. In an embodiment, the membrane is mixed conducting.
H01M 8/1253 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
H01M 8/1246 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
H01M 8/126 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
H01M 8/12 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
Herein discussed is a method of heating a material having a surface comprising exposing the surface to an electromagnetic radiation source emitting a first wavelength spectrum; receiving a second wavelength spectrum from the surface using a detector at a sampling frequency; wherein the first wavelength spectrum and the second wavelength spectrum have no greater than 10% of overlap, wherein the overlap is the integral of intensity with respect to wavelength. In an embodiment, the first wavelength spectrum and the second wavelength spectrum have no greater than 5% of overlap or no greater than 3% of overlap or no greater than 1% of overlap or no greater than 0.5% of overlap. In an embodiment, exposing the surface to the radiation source causes the material to sinter at least partially.
B23K 26/03 - Observing, e.g. monitoring, the workpiece
B23K 26/062 - Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
B22F 1/052 - Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
Herein discussed is a method of heating a material having a surface comprising exposing the surface to an electromagnetic radiation source emitting a first wavelength spectrum; receiving a second wavelength spectrum from the surface using a detector at a sampling frequency; wherein the first wavelength spectrum and the second wavelength spectrum have no greater than 10% of overlap, wherein the overlap is the integral of intensity with respect to wavelength. In an embodiment, the first wavelength spectrum and the second wavelength spectrum have no greater than 5% of overlap or no greater than 3% of overlap or no greater than 1% of overlap or no greater than 0.5% of overlap. In an embodiment, exposing the surface to the radiation source causes the material to sinter at least partially.
H01M 8/124 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
Herein discussed is a method of sintering a ceramic comprising (a) providing an electromagnetic radiation (EMR) source; (b) (i) providing a layer of intermixed ceramic particles and absorber particles, wherein the absorber particles have a volume fraction in the intermixed particles in the range of no less than 3%; or (ii) providing a first layer comprising ceramic particles and a second layer comprising absorber particles in contact with at least a portion of the first layer, wherein the second layer is farther from the EMR source than the first layer; (c) heating (i) the layer of intermixed particles or (ii) the first layer using EMR; and (d) controlling the EMR such that at least a portion of the ceramic particles are sintered wherein (i) the layer of intermixed particles becomes impermeable or (ii) the first layer becomes impermeable, wherein the absorber particles have greater EMR absorption than the ceramic particles.
C04B 35/50 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare earth compounds
C04B 37/00 - Joining burned ceramic articles with other burned ceramic articles or other articles by heating
2. In an embodiment, the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam. In an embodiment, said object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
B22F 10/00 - Additive manufacturing of workpieces or articles from metallic powder
H01M 8/1246 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/273 - Arrangements for irradiation using laser beamsArrangements for irradiation using electron beams [EB] pulsedArrangements for irradiation using laser beamsArrangements for irradiation using electron beams [EB] frequency modulated
Herein discussed is a method of sintering a ceramic comprising (a) providing an electromagnetic radiation (EMR) source; (b) (i) providing a layer of intermixed ceramic particles and absorber particles, wherein the absorber particles have a volume fraction in the intermixed particles in the range of no less than 3%; or (ii) providing a first layer comprising ceramic particles and a second layer comprising absorber particles in contact with at least a portion of the first layer, wherein the second layer is farther from the EMR source than the first layer; (c) heating (i) the layer of intermixed particles or (ii) the first layer using EMR; and (d) controlling the EMR such that at least a portion of the ceramic particles are sintered wherein (i) the layer of intermixed particles becomes impermeable or (ii) the first layer becomes impermeable, wherein the absorber particles have greater EMR absorption than the ceramic particles.
B28B 19/00 - Machines or methods for applying the material to surfaces to form a permanent layer thereon
B28B 1/00 - Producing shaped articles from the material
C04B 35/63 - Preparing or treating the powders individually or as batches using additives specially adapted for forming the products
B05D 3/06 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
B05D 3/00 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
B05D 1/02 - Processes for applying liquids or other fluent materials performed by spraying
B28B 11/24 - Apparatus or processes for treating or working the shaped articles for curing, setting or hardening
B05D 7/00 - Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
B05D 3/14 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
Herein discussed is an electrode comprising a copper or copper oxide phase and a ceramic phase, wherein the copper or copper oxide phase and the ceramic phase are sintered and are inter-dispersed with one another. Further discussed herein is a method of making a copper-containing electrode comprising: (a) forming a dispersion comprising ceramic particles and copper or copper oxide particles; (b) depositing the dispersion onto a substrate to form a slice; and (c) sintering the slice using electromagnetic radiation.
A device includes a first electrode, a second electrode, and an electrolyte between the electrodes. The first electrode and the second electrode may comprise a metallic phase that does not contain a platinum group metal when the device is in use, and where the electrolyte is solid state and is oxide ion conducting.
C25B 9/19 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms
C25B 11/069 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of two or more compounds
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 9/73 - Assemblies comprising two or more cells of the filter-press type
A method of producing hydrogen includes providing a device, introducing a first stream including a fuel to the device, introducing a second stream comprising water to the device, reducing the water in the second stream to hydrogen, and extracting hydrogen from the device. The first stream and the second stream do not come in contact with each other in the device.
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 13/04 - DiaphragmsSpacing elements characterised by the material
C25B 9/73 - Assemblies comprising two or more cells of the filter-press type
C25B 11/069 - Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compoundElectrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of two or more compounds
A hydrogen production system comprising: a fuel source; a water source; and a hydrogen producer; where the fuel source and the water source are in fluid communication with the hydrogen producer; and where fuel enters the hydrogen producer from the fuel source and water enters the hydrogen producer from the water source and the fuel and the water do not come in contact with each other in the hydrogen producer.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 9/73 - Assemblies comprising two or more cells of the filter-press type
A system comprising an electrochemical reactor chamber, an integrated chiller, and optionally a reformer chamber, wherein the reactor chamber, integrated chiller, and optional reformer chamber are of unitary construction.
H01M 8/04007 - Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
H01M 8/124 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
A method of making a gas producer includes providing a first tubular electrode; coating the inner or outer surface of the first tubular electrode with an electrolyte material; coating the electrolyte material with a second electrode material; and sintering the second electrode material using electromagnetic radiation to form a second tubular electrode.
A hydrogen production system comprising: a fuel source; a water source; and a hydrogen producer; where the fuel source and the water source are in fluid communication with the hydrogen producer; and where fuel enters the hydrogen producer from the fuel source and water enters the hydrogen producer from the water source and the fuel and the water do not come in contact with each other in the hydrogen producer.
C01B 3/00 - HydrogenGaseous mixtures containing hydrogenSeparation of hydrogen from mixtures containing itPurification of hydrogen
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
A device includes a first electrode, a second electrode, and an electrolyte between the electrodes. The first electrode and the second electrode may comprise a metallic phase that does not contain a platinum group metal when the device is in use, and where the electrolyte is solid state and is oxide ion conducting.
H01M 8/0606 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
H01M 8/0612 - Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
H01M 8/12 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
H01M 8/126 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
H01M 8/1246 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
H01M 8/1253 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
A method of producing hydrogen includes providing a device, introducing a first stream including a fuel to the device, introducing a second stream comprising water to the device, reducing the water in the second stream to hydrogen, and extracting hydrogen from the device. The first stream and the second stream do not come in contact with each other in the device.
Methods are disclosed to provide balance of plant for an electrochemical reactor. The methods include forming a vessel, wherein the vessel has at least a wall and an internal space configured to contain the reactor; forming fluid channels in or attached to at least a portion of the wall of the vessel, and where the fluid channels are configured to be in fluid communication with the reactor.
H01M 8/0258 - CollectorsSeparators, e.g. bipolar separatorsInterconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
H01M 8/2475 - Enclosures, casings or containers of fuel cell stacks
75.
HEAT EXCHANGER FOR AN ELECTROCHEMICAL REACTOR AND METHOD OF MAKING
An electrochemical reactor includes a first electrode, a second electrode, an electrolyte between the first and second electrodes, and a first heat exchanger. The first heat exchanger may be in fluid communication with the first electrode and where the minimum distance between the first electrode and the first heat exchanger is no greater than 10 cm.
A multi-fluid heat exchanger includes at least three fluid inlets and at least three fluid channels. Each of the at least three fluid channels have a minimum dimension of no greater than 30 mm.
B33Y 80/00 - Products made by additive manufacturing
F28D 7/16 - Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
F28D 15/00 - Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls
F28F 13/08 - Arrangements for modifying heat transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
77.
SYSTEM AND METHOD FOR INTEGRATED DEPOSITION AND HEATING
Herein disclosed is a method of manufacturing comprises depositing a composition on a substrate slice by slice to form an object; heating in situ the object using electromagnetic radiation (EMR); wherein said composition comprises a first material and a second material, wherein the second material has a higher absorption of the radiation than the first material. In an embodiment, the EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2. In an embodiment, the EMR comprises UV light, near ultraviolet light, near infrared light, infrared light, visible light, laser, electron beam. In an embodiment, said object comprises a catalyst, a catalyst support, a catalyst composite, an anode, a cathode, an electrolyte, an electrode, an interconnect, a seal, a fuel cell, an electrochemical gas producer, an electrolyser, an electrochemical compressor, a reactor, a heat exchanger, a vessel, or combinations thereof.
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
The present invention is an interconnect for an electrochemical reactor that includes at least one microchannel. The at least one microchannel has a cross-sectional area orthogonal to a flow path and where the cross-sectional area is no greater than 1 mm2. Preferably, the microchannel has a planar projection area PPAc and the interconnect has a planar projection area PPAi, wherein the ratio of PPAc/PPAi is in the range of 0.2 - 0.8, or 0.3 - 0.7, or 0.4 - 0.6, or 0.45 - 0.55.
H01M 8/0202 - CollectorsSeparators, e.g. bipolar separatorsInterconnectors
H01M 8/0256 - Vias, i.e. connectors passing through the separator material
H01M 8/026 - CollectorsSeparators, e.g. bipolar separatorsInterconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
H01M 8/0267 - CollectorsSeparators, e.g. bipolar separatorsInterconnectors having heating or cooling means, e.g. heaters or coolant flow channels
The present invention is a method of making an interconnect containing at least one microchannel for an electrochemical reactor. The method includes providing a template then depositing an interconnect material where the interconnect material is in contact with the template. The template is in a form that produces at least one microchannel in the interconnect material when at least a portion of the template is removed.
The present invention is an electrochemical reactor and a method of making it. The reactor includes an impermeable interconnect formed without a fluid dispersing element. The reactor also preferably includes an electrolyte and a fluid dispersing component disposed between the interconnect and the electrolyte. Preferably, the fluid dispersing component is formed with a plurality of shaped segments. Also, the fluid dispersing component is incorporated into either one or both of the anode or cathode.
H01M 8/026 - CollectorsSeparators, e.g. bipolar separatorsInterconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
H01M 8/0267 - CollectorsSeparators, e.g. bipolar separatorsInterconnectors having heating or cooling means, e.g. heaters or coolant flow channels
There is disclosed a method of making an electrode for an electrochemical reactor including the steps of providing a template and depositing electrode material such that the electrode material is in contact with the template. This template is provided in a form that produces channels in the electrode material. There is also disclosed an electrode for an electrochemical reactor which includes electrode material and a template, with the template occupying channels in the electrode material.
The invention is an electrode for use in an electrochemical reactor and a method of making it. The electrode has an electrode porosity and includes an electrode material with channels formed therein. The porosity of the electrode material is less than the porosity of the electrode. In the method, an electrode is made by depositing a first composition including a first electrode material and a first pore former, wherein the first pore former is a first volume fraction VFp1 of the first composition. A second composition is deposited with includes a second electrode material and a second pore former. In this aspect, the second pore former is a second volume fraction VFp2. The first composition and second composition form a first layer of the electrode. This first layer is heated such that at least a portion of the first pore former and at least a portion of the second pore former become empty spaces in the electrode.
There is disclosed a method of making an electrode for an electrochemical reactor. The method includes the steps of (a) depositing an electrode material in segments on a substrate; (b) sintering the electrode material to form electrode segments; and (c) depositing a filler material between the electrode segments. Preferably, the method also includes the steps of (d) depositing additional material to cover the filler; and (e) sintering the additional material. Preferably, the additional material comprises electrode material, electrolyte material, or interconnect material.
C25B 9/00 - Cells or assemblies of cellsConstructional parts of cellsAssemblies of constructional parts, e.g. electrode-diaphragm assembliesProcess-related cell features
C25B 9/06 - Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
C25B 9/08 - Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
Herein discussed is a method of making an object comprising mixing particles with a liquid to form a dispersion; depositing the dispersion on a substrate to form a layer; and treating the layer to cause at least a portion of the particles to sinter, wherein the particles have a size distribution that has at least one of the following characteristics: (a) said size distribution comprises D10 and D90, wherein 10% of the particles have a diameter no greater than D10 and 90% of the particles have a diameter no greater than D90, wherein D90/D10 is in the range of from 1.5 to 100; or (b) said size distribution is bimodal such that the average particle size in the first mode is at least 5 times the average particle size in the second mode; or (c) said size distribution comprises D50, wherein 50% of the particles have a diameter no greater than D50, wherein D50 is no greater than 100 nm.
Herein disclosed is a method of making an electrochemical reactor comprising a) depositing a composition on a substrate to form a slice; b) drying the slice using a noncontact dryer; c) sintering the slice using electromagnetic radiation (EMR), wherein the electrochemical reactor comprises an anode, a cathode, and an electrolyte between the anode and the cathode. In an embodiment, the electrochemical reactor comprises at least one unit, wherein the unit comprises the anode, the cathode, the electrolyte and an interconnect and wherein the unit has a thickness of no greater than 1 mm. In an embodiment, the anode is no greater than 50 microns in thickness, the cathode is no greater than 50 microns in thickness, and the electrolyte is no greater than 10 microns in thickness.
Herein discussed is a method of making a fuel cell comprising (a) producing an anode using an additive manufacturing machine (AMM); (b) creating an electrolyte using the additive manufacturing machine; and (c) making a cathode using the additive manufacturing machine. In an embodiment, the anode, the electrolyte, and the cathode are assembled into a fuel cell utilizing the additive manufacturing machine. In an embodiment, the fuel cell is formed using only the additive manufacturing machine.
B33Y 80/00 - Products made by additive manufacturing
H01M 8/124 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
87.
METHOD OF MAKING A FUSL CELL AND TREATING A COMPONENT THEREOF
Herein disclosed is a method of treating a component of a fuel cell, which includes the step of exposing the component of the fuel cell to a source of electromagnetic radiation (EMR). The component comprises a first material. The EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2. Preferably, the treatment process has one or more of the following effects: heating, drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming. In an embodiment, the substrate is a component in a fuel cell. Such component comprises an anode, a cathode, an electrolyte, a catalyst, a barrier layer, a interconnect, a reformer, or reformer catalyst. In an embodiment, the substrate is a layer in a fuel cell or a portion of a layer in a fuel cell or a combination of layers in a fuel cell or a combination of partial layers in a fuel cell.
Herein disclosed is a method of making a fuel cell including forming an anode, a cathode, and an electrolyte using an additive manufacturing machine. The electrolyte is between the anode and the cathode. Preferably, electrical current flow is perpendicular to the electrolyte in the lateral direction when the fuel cell is in use. Preferably, the method comprises making an interconnect, a barrier layer, and a catalyst layer using the additive manufacturing machine.
B33Y 80/00 - Products made by additive manufacturing
H01M 8/124 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
Herein disclosed is a method of making a fuel cell including forming an anode, a cathode, and an electrolyte using an additive manufacturing machine. The electrolyte is between the anode and the cathode. Preferably, electrical current flow is perpendicular to the electrolyte in the lateral direction when the fuel cell is in use. Preferably, the method comprises making an interconnect, a barrier layer, and a catalyst layer using the additive manufacturing machine.
H01M 8/1246 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/273 - Arrangements for irradiation using laser beamsArrangements for irradiation using electron beams [EB] pulsedArrangements for irradiation using laser beamsArrangements for irradiation using electron beams [EB] frequency modulated
Herein disclosed is a method of making an electrochemical reactor comprising a) depositing a composition on a substrate to form a slice; b) drying the slice using a non-contact dryer; c) sintering the slice using electromagnetic radiation (EMR), wherein the electrochemical reactor comprises an anode, a cathode, and an electrolyte between the anode and the cathode. In an embodiment, the electrochemical reactor comprises at least one unit, wherein the unit comprises the anode, the cathode, the electrolyte and an interconnect and wherein the unit has a thickness of no greater than 1 mm. In an embodiment, the anode is no greater than 50 microns in thickness, the cathode is no greater than 50 microns in thickness, and the electrolyte is no greater than 10 microns in thickness.
H01M 8/124 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
H01M 8/1246 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
H01M 8/1286 - Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
H01M 8/12 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
91.
Method of making a fuel cell and treating a component thereof
Herein disclosed is a method of treating a component of a fuel cell, which includes the step of exposing the component of the fuel cell to a source of electromagnetic radiation (EMR). The component comprises a first material. The EMR has a wavelength ranging from 10 to 1500 nm and the EMR has a minimum energy density of 0.1 Joule/cm2. Preferably, the treatment process has one or more of the following effects: heating, drying, curing, sintering, annealing, sealing, alloying, evaporating, restructuring, foaming. In an embodiment, the substrate is a component in a fuel cell. Such component comprises an anode, a cathode, an electrolyte, a catalyst, a barrier layer, a interconnect, a reformer, or reformer catalyst. In an embodiment, the substrate is a layer in a fuel cell or a portion of a layer in a fuel cell or a combination of layers in a fuel cell or a combination of partial layers in a fuel cell.
H01M 8/1246 - Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
B29C 64/273 - Arrangements for irradiation using laser beamsArrangements for irradiation using electron beams [EB] pulsedArrangements for irradiation using laser beamsArrangements for irradiation using electron beams [EB] frequency modulated
There is disclosed a method of making an electrode for an electrochemical reactor including the steps of providing a template and depositing electrode material such that the electrode material is in contact with the template. This template is provided in a form that produces channels in the electrode material. There is also disclosed an electrode for an electrochemical reactor which includes electrode material and a template, with the template occupying channels in the electrode material.
A method of producing hydrogen includes providing a device, introducing a first stream including a fuel to the device, introducing a second stream comprising water to the device, reducing the water in the second stream to hydrogen, and extracting hydrogen from the device. The first stream and the second stream do not come in contact with each other in the device.
Herein discussed is an electrochemical reactor comprising a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase, wherein the reactor is capable of reforming a hydrocarbon electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon. Further discussed herein is a method of producing hydrogen comprising providing an electrochemical (EC) reactor having a mixed-conducting membrane, introducing a first stream comprising a hydrocarbon to the reactor, introducing a second stream comprising water to the reactor, and reducing the water in the second stream to produce hydrogen, wherein the first stream and the second stream do not come in contact with each other in the reactor, and wherein the hydrocarbon is reformed electrochemically in the EC reactor.
C25B 9/19 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a method of producing hydrogen or carbon monoxide comprising introducing a waste gas having a total combustible species (TCS) content of no greater than 60 vol% into an electrochemical (EC) reactor, wherein the EC reactor comprises a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase. Also disclosed herein is an integrated hydrogen production system comprising a waste gas source and an electrochemical (EC) reactor comprising a mixed-conducting membrane, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase, wherein the waste gas source is configured to send its exhaust to the EC reactor, wherein the exhaust has a total combustible species (TCS) content of no greater than 60 vol%.
C01B 3/38 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
Herein discussed is a hydrogen production system comprising a first reactor zone and a second reactor zone, wherein both reactor zones comprise an ionically conducting membrane, wherein the first zone is capable of reforming a hydrocarbon electrochemically and the second zone is capable of performing water gas shift reactions electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon and wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. In an embodiment, the membrane is mixed conducting. In an embodiment, the membrane comprises an electronically conducting phase and an ionically conducting phase.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a method of producing hydrogen comprising introducing a first stream comprising a fuel to an electrochemical (EC) reactor having a mixed-conducting membrane, introducing a second stream comprising water to the reactor, reducing the water in the second stream to produce hydrogen, and recycling at least portion of the produced hydrogen to the first stream, wherein the membrane comprises an electronically conducting phase and an ionically conducting phase; and wherein the first stream and the second stream do not come in contact with each other in the reactor.
Herein discussed is an electrochemical reactor comprising a first electrode, wherein the first electrode is liquid when the reactor is in operation; a second electrode having a metallic phase and a ceramic phase, wherein the metallic phase is electronically conductive and wherein the ceramic phase is ionically conductive; and a membrane, wherein the membrane is positioned between the first and second electrodes and is in contact with the first and second electrodes, wherein the membrane is mixed conducting. Also discussed herein is a method of producing hydrogen or carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, wherein the anode is liquid when the reactor is in operation and wherein the membrane is mixed conducting; (b) introducing a feedstock to the anode; (c) introducing a stream to the cathode, wherein the stream comprises water or carbon dioxide.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
Herein discussed is a method of producing carbon monoxide comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a fuel; (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide, wherein carbon monoxide is generated from carbon dioxide electrochemically; wherein the reactor generates no electricity and receives no electricity. In an embodiment, the anode and the cathode are separated by the membrane and are both exposed to reducing environments during the entire time of operation.
C25B 9/23 - Cells comprising dimensionally-stable non-movable electrodesAssemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded