A treatment method includes the steps of: Providing an initial supply of an ammonium octamolybdate precursor powder having a bi-modal particle size distribution; applying a quantity of solvent to the initial supply of ammonium octamolybdate precursor powder to form a moistened intermediate powder; and allowing the moistened intermediate powder to adsorb the applied solvent over a time period, the quantity of solvent applied and the time period being sufficient to form a treated ammonium octamolybdate powder composition having a substantially uni-modal particle size distribution.
A friction material composition may include an abrasive, a filler, a binder, and a spherical molybdenum disulfide powder. The spherical molybdenum disulfide powder is made up of molybdenum disulfide sub-particles that are agglomerated together to form individual, substantially spherically-shaped agglomerated particles of at least about 90% by weight molybdenum disulfide.
A method of producing a compacted article according to one embodiment may involve the steps of: Providing a copper/molybdenum disulfide composite powder including a substantially homogeneous dispersion of copper and molybdenum disulfide sub-particles that are fused together to form individual particles of the copper/molybdenum disulfide composite powder; and compressing the copper/molybdenum disulfide composite powder under sufficient pressure to cause the copper/molybdenum disulfide composite powder to behave as a nearly solid mass.
The present invention provides a method and system for separating phases of a liquid mixture or dispersion from each other. The system includes a settler system, which includes a coalescing-enhancing plate comprising a front face and rear face and a plurality of openings. The openings are configured to selectively manipulate the flux of portions of the mixture to thereby increase phase separation of the mixture.
A cathode assembly, a system including the cathode assembly, and method of using the assembly and system are disclosed. The cathode assembly includes high surface area material to allow efficient recovery of metal at reduced current densities at the cathode, which allows increased rates of metal recovery to be obtained, while maintaining desired properties of the electrowon metal
The present disclosure relates to a metal recovery process comprising a solvent extraction process. In an exemplary embodiment, the solution extraction system comprises a plant with a first and second circuit. A high-grade pregnant leach solution ("HGPLS") is provided to the first and second circuit, and a low-grade pregnant leach solution ("LGPLS") is provided to the second circuit. The first circuit produces a rich electrolyte, which can be forwarded to a primary metal recovery, and a low-grade raffinate, which can be forwarded to a secondary metal recovery process. The second circuit produces a rich electrolyte, which can also be forwarded to the primary metal recovery process. The first and second circuits are in fluid communication with each other.
The present invention provides a mixer-settler extraction circuit for separating liquids from each other. The mixer-settler extraction circuit includes a flow distributor. The flow distributor comprises a slat assembly which directs the incoming liquid into the settling portion of the mixer-settler extraction circuit. The slats of the slat assembly may be spaced apart from each other at varying distances.
A cathode assembly for electrowinning metal in powder form, a system including the cathode assembly, and a method of using the assembly and system are disclosed. The cathode assembly includes a suspension element, a conductive element and a barrier element proximate the conductive element. The barrier element has a plurality of holes thereby reducing the effective active surface area of the cathode by shielding a portion of the cathode from participating in the electrowinning process. Metal is therefore deposited on or near the unshielded active surface in the form of metal powder. The assembly, system and method provide for improved metal powder formation. The system may be stationary or portable.
Various embodiments provide a process roasting a metal bearing material under oxidizing conditions to produce an oxidized metal bearing material, roasting the oxidized metal bearing material under reducing conditions to produce a roasted metal bearing material, leaching the roasted metal bearing material in a basic medium to yield a pregnant leach solution, conditioning the pregnant leach solution to form a preprocessed metal bearing material; and leaching the preprocessed metal bearing material in acid medium.
C22B 3/06 - Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions
C22B 3/14 - Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions containing ammonia or ammonium salts
The present disclosure relates to a process and system for recovery of one or more metal values using solution extraction techniques and to a system for metal value recovery. In an exemplary embodiment, the solution extraction system comprises a first solution extraction circuit and a second solution extraction circuit. A first metal-bearing solution is provided to the first and second circuit, and a second metal-bearing solution is provided to the first circuit. The first circuit produces a first rich electrolyte solution, which can be forwarded to primary metal value recovery, and a low-grade raffinate, which is forwarded to secondary metal value recovery. The second circuit produces a second rich electrolyte solution, which is also forwarded to primary metal value recovery. The first and second solution extraction circuits have independent organic phases and each circuit can operate independently of the other circuit.
Molybdenum disulfide powders include substantially spherically-shaped particles of molybdenum disulfide that are formed from agglomerations of generally flake-like sub-particles. The molybdenum disulfide powders are flowable and exhibit uniform densities. Methods for producing a molybdenum disulfide powder may include the steps of: Providing a supply of molybdenum disulfide precursor material; providing a supply of a liquid; providing a supply of a binder; combining the molybdenum disulfide precursor material with the liquid and the binder to form a slurry; feeding the slurry into a stream of hot gas; and recovering the molybdenum disulfide powder, the molybdenum disulfide powder including substantially spherically-shaped particles of molybdenum disulfide formed from agglomerations of generally flake-like sub-particles.
The present invention relates to an anode assembly for use in an electrolytic cell for recovery of metal. The assembly includes a hanger bar, a first perimeter bar, a second perimeter bar, optionally one or more center conductor bars, a base bar, a first tab coupled to the first perimeter bar and/or the base bar, and a second tab coupled to the second perimeter bar and/or the base bar. The assembly may also include insulating separators coupled to the tabs and/or insulators coupled to an active area of the anode assembly. A system includes the anode assembly, a cathode assembly, and a tank.
The present invention relates to a contact bar assembly for use in a multi-cell electrolytic system for recovery of metal, to a system including the contact bar assembly, and to a method of using the assembly and system. The contact bar assembly includes a base cap board, a primary bar having a plurality of primary bar structures formed thereon, an auxiliary bar having a plurality of auxiliary bar structures formed thereon, and a top cap board, wherein the base cap board includes slots to receive the primary bar and the auxiliary bar, and wherein the top cap board includes a plurality of openings to receive the plurality of primary bar structures and the plurality of auxiliary bar structures. A system includes the contact bar assembly, an anode assembly, a cathode assembly, and a tank.
The present disclosure provides systems and methods useful in suppressing the formation of metal oxides on an anode during electrowinning of a metal value. For example, a method is disclosed comprising electrowinning a metal value from a metal value-bearing electrolyte solution using an electrowinning system, the electrowinning system comprising an anode, and adding at least one of an acrylamide and a hydrocarbon with an acrylamide functional group to the metal value-bearing electrolyte solution for the suppression of metal oxide deposition on the surface of the anode.
The present invention relates to a method and article for manipulating an amount of organic material entrained in an aqueous phase of a solvent extraction process. The method includes estimating an interfacial shear stress between an aqueous phase and an organic phase of a solvent extraction apparatus, estimating an amount of organic material entrained in the aqueous phase based on the estimated interfacial shear stress, and manipulating one or more solvent extraction process parameters to manipulate the amount of organic material entrained in the aqueous phase. The method and apparatus can be used to improve performance of and reduce operating costs associated with the solvent extraction apparatus.
G05B 17/00 - Systems involving the use of models or simulators of said systems
G05B 13/00 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
16.
LOW-FRICTION SURFACE COATINGS AND METHODS FOR PRODUCING SAME
A coated article system includes a substrate and a surface coating on the substrate. The surface coating is formed by depositing individual particles of a composite metal powder with sufficient energy to cause the composite metal powder to bond with the substrate and form the surface coating. The composite metal powder includes a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form the individual particles of the composite metal powder.
B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
B23B 5/16 - Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for bevelling, chamfering, or deburring the ends of bars or tubes
17.
MOLYBDENUM / MOLYBDENUM DISULFIDE METAL ARTICLES AND METHODS FOR PRODUCING SAME
A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
A method for producing a composite metal powder according to one embodiment of the invention may comprise: Providing a supply of molybdenum metal powder; providing a supply of a potassium compound; combining the molybdenum metal powder and the potassium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder.
An electrode for use in producing copper in either a conventional electrowinning cell or the direct electrowinning cell is provided. The electrode includes a hanger bar (602) and an electrode body coupled with the hanger bar. The electrode body includes at least one conductor rod (612) having a core and an outer layer surrounding the core and a substrate (614) coupled with the conductor rod.
Various embodiments provide new methods of rhenium recovery. The methods can include subjecting a metal-bearing solution to an activated carbon bed, and adsorbing rhenium onto the activated carbon. The methods can also include heating a basic aqueous elution solution and eluting the rhenium from the activated carbon with the heated elution solution.
C22B 61/00 - Obtaining metals not elsewhere provided for in this subclass
C22B 3/24 - Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means by adsorption on solid substances, e.g. by extraction with solid resins
A method for producing a metal article according to one embodiment may include: Providing a supply of a sodium/molybdenum composite metal powder; compacting the sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the article to at least about 90% of theoretical density.
B22F 3/00 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor
22.
METHODS AND SYSTEMS FOR LEACHING A METAL-BEARING ORE FOR THE RECOVERY OF A METAL VALUE
A system and method for recovering a metal value from a metal-bearing ore material are provided. A metal-bearing ore can be mixed with certain substances and to form an agglomerated ore. In an intermediate state, between agglomeration and heap formation, bacteria can be added to the metal-bearing ore material to produce an augmented ore. The augmented ore can then be formed into a heap.
Various embodiments provide an electrode comprising a conductive substrate, a first layer of a mixture comprising iridium oxide in a crystalline phase and tantalum oxide in an amorphous phase on a portion of an outer surface of the conductive substrate, and a second layer of the mixture comprising iridium oxide in an amorphous phase and tantalum oxide in an amorphous phase on an outer surface of the first layer.
Methods for making electrochemically active materials include making an electrochemically active material by reacting a platinum group metal salt in a organic solvent to yield a mixture, then heating the mixture to create a metal-organic solvent complex and an acid, followed by removing at least a portion of the acid, and yielding an electrochemically active material comprising the metal-organic solvent complex. The resulting electrochemically active material may be used for coating an electrode.
C23C 18/12 - Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
C25C 1/12 - Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
25.
METHOD AND APPARATUS FOR ELECTROWINNING COPPER USING AN ATMOSPHERIC LEACH WITH FERROUS/FERRIC ANODE REACTION ELECTROWINNING
The present invention relates, generally, to a method and apparatus for recovering metal values from a metal-bearing materials, and more specifically, a process for recovering copper and other metals through leaching, electrowinning using the ferrous/ferric anode reaction, and the synergistic addition of ferrous iron to the leach step.
A method for producing a composite metal powder according to one embodiment of the invention may comprise: Providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder.
In various embodiments, the present invention provides an electrolytic cell contact bar having a first pole and a pair of second poles. The second poles are opposite in charge to the first pole and each of the pair of second poles are adjacent to and parallel to the first pole. In various embodiments, the contact bar may include an electrode holder capable of holding at least one electrode.
The present invention relates generally to a process for controlled leaching and sequential recovery of two or more metals from metal-bearing materials. In one exemplary embodiment, recovery of metals from a leached metal-bearing material is controlled and improved by providing a high grade pregnant leach solution ('HGPLS') and a low grade pregnant leach solution ('LGPLS') to a single solution extraction plant comprising at least two solution extractor units, at least two stripping units, and, optionally, at least one wash stage.
The present invention relates generally to a process for removing dissolved or colloidal silica from a pregnant leach solution ('PLS'). More particularly, an exemplary embodiment of the present invention relates to a process which mixes PLS with an acid source, preferably lean electrolyte, to induce precipitation of colloidal silica that can then be collected and removed. Additionally, in an exemplary embodiment of the present invention, at least one silica seeding agent is added to induce precipitation of colloidal silica, at least one flocculent is added to induce aggregation of the precipitated colloidal silica, and a solid-liquid separation process is utilized to remove advantageous amounts or substantially all of the colloidal silica, thereby providing relief from supersaturation of dissolved silica in the metal recovery processes.
Densified molybdenum metal powder and method for producing same. Densified molybdenum powder has substantially generally spherical particles, surface area to mass ratio of no more than about 0.5 m2/g as determined by BET analysis, and a flowability greater than about 32 s/50g as determined by a Hall Flowmeter. A method for producing densified molybdenum metal powder includes providing a supply of precursor material of molybdenum metal powder particles reduced from ammonium molybdate; providing a supply of reducing gas; densifying the precursor material in the presence of the reducing gas; and producing the densified molybdenum metal powder.
B22F 3/00 - Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor
B22F 1/00 - Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
B22F 9/12 - Making metallic powder or suspensions thereof; Apparatus or devices specially adapted therefor using physical processes starting from gaseous material
A method for producing a metal powder product involves: Providing a supply of a precursor metal powder; combining the precursor metal powder with a liquid to form a slurry; feeding the slurry into a pulsating stream of hot gas; and recovering the metal powder product.
B22F 9/08 - Making metallic powder or suspensions thereof; Apparatus or devices specially adapted therefor using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
B22F 7/00 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting