NOVONIX BATTERY TECHNOLOGY SOLUTIONS INC. (Canada)
BURNS, John (Canada)
Inventor
Obrovac, Mark
Wei, Congxiao
Young, Scott
Abstract
Inorganic binders comprising silicon or phosphorus have been discovered that offer advantages for use in rechargeable alkali metal ion battery anodes. These improved anodes are less hydrophilic and not subject to the deformation that can occur in conventional anodes from water absorption even at dry room levels. However, the performance characteristics in batteries is comparable to or even better than that obtained from conventional anodes. Also advantageously, these anodes can be prepared from aqueous slurries.
Improved methods for preparing lithium transition metal oxide particulate such as lithium nickel metal cobalt oxide ("NMC") for use in lithium batteries and other applications are disclosed. The lithium transition metal oxide particulate is prepared from appropriate transition metal oxide and Li compound precursors mainly using dry, solid state processes including dry impact milling and heating. Further, novel precursor particulates and novel methods for preparing precursor particles for this and other applications are disclosed.
Simple, material-efficient microgranulation methods are disclosed for aggregating precursor particles into larger product particles with improved properties and, in some instances, novel structures. The product particles are useful in applications requiring uniform, smooth, spherical, or rounded particles such as for electrode materials in lithium batteries and other applications.
Improved methods for preparing lithium transition metal oxide particulate such as lithium nickel metal cobalt oxide ("NMC") for use in lithium batteries and other applications are disclosed. The lithium transition metal oxide particulate is prepared from appropriate transition metal oxide and Li compound precursors mainly using dry, solid state processes including dry impact milling and heating. Further, novel precursor particulates and novel methods for preparing precursor particles for this and other applications are disclosed.
Particulate dispersions and composites are disclosed which comprise graphite and alloy particles comprising both active (e.g. Si) and inactive phases with regards to electrochemical activity with alkali or alkaline earth metals (e.g. lithium). The alloy particles are highly dispersed as primary particles with graphite particles and/or within the graphite particles' matrix in a novel manner and can be prepared using simple mechanofusion dry processing methods. In the composites prepared, the alloy particles are essentially embedded between layers in the graphite matrix. Improved performance can be obtained when these dispersions or composites are used in lithium insertion anodes for rechargeable lithium batteries, including high capacity, good cycling performance, and rate capability.