A solidification substrate assembly for making a three-dimensional object from a solidifiable material includes a solidification substrate assembly. In certain examples, the solidifiable material solidifies in contact with the solidification substrate, and the tilting of the substrate and/or or the use of a peeling member facilitates separation of the substrate from the solidified material. In other examples, the solidification substrate assembly includes a film that is adjacent to a rigid or semi-rigid layer. The solidifiable material solidifies in contact with the film, and a peeling member peels the film away from the solidified material. Intelligent solidification substrate assemblies are also described in which a force sensor determines when to expose the solidifiable material to solidification energy and/or whether to use a peeling member to separate the solidification substrate from a solidified objection section.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
B29C 33/44 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
B33Y 70/00 - Materials specially adapted for additive manufacturing
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
2.
METHOD OF STABILIZING A PHOTOHARDENING INHIBITOR-PERMEABLE FILM IN THE MANUFACTURE OF THREE-DIMENSIONAL OBJECTS
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Abstract
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a "non-solidification zone" where little or no solidification occurs. The non-solidification zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor tends to cause the film to deform along the build axis, thereby creating a non-planar interface between the photohardenable material and the film, which distorts the resulting three- dimensional object. An apparatus is provided to stabilize the flexible film and eliminate or minimize such deformation.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/255 - Enclosures for the building material, e.g. powder containers
3.
Method of making three-dimensional objects using both continuous and discontinuous solidification
A method and apparatus for making a three-dimensional object by solidifying a solidifiable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material to create a “dead zone” where little or no solidification occurs. The dead zone prevents the exposed surface of the photohardenable material from solidifying in contact with a container bottom or film. As the solidified object areas get larger and the build platform speed increases, the dead zone increases which can cause the formation of channels in the resulting objects and delamination. A number of techniques including continuous/discontinuous mode switching, multiple illuminations of portions of the same layer, and the use of gray scaling are disclosed for regulating the size of the dead zone.
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
4.
Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a “non-solidification zone” where little or no solidification occurs. The non-solidification zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor tends to cause the film to deform along the build axis, thereby creating a non-planar interface between the photohardenable material and the film, which distorts the resulting three-dimensional object. An apparatus is provided to stabilize the flexible film and eliminate or minimize such deformation.
B29C 64/291 - Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29K 105/00 - Condition, form or state of moulded material
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
5.
Method for concurrently making multiple three-dimensional objects from multiple solidifiable materials
Methods and apparatuses for making multiple three-dimensional objects from multiple solidifiable materials are shown and described. In accordance with the method, the objects are designed with variable removable support heights along the build axis so that each object has an interface between first and second materials that is the same height from the build platform. The technique simplifies the process of producing multiple three-dimensional objects from multiple solidifiable materials which may have different build axis heights of first and second finished object sections so that the sources of solidifiable materials need only be switched once during the building of multiple objects.
B29C 33/44 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
B29C 33/52 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
B29C 41/22 - Making multilayered or multicoloured articles
B29C 41/42 - Removing articles from moulds, cores or other substrates
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/182 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Raulinaitis, Andrius
Abstract
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a "non-solidification zone" where little or no solidification occurs. The non-solidifi cation zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor tends to cause the film to deform along the build axis, thereby creating a non-planar interface between the photohardenable material and the film, which distorts the resulting three- dimensional object. An apparatus is provided to stabilize the flexible film and eliminate or minimize such deformation.
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a “non-solidification zone” where little or no solidification occurs. The non-solidification zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor tends to cause the film to deform along the build axis, thereby creating a non-planar interface between the photohardenable material and the film, which distorts the resulting three-dimensional object. An apparatus is provided to stabilize the flexible film and eliminate or minimize such deformation.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/291 - Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29K 105/00 - Condition, form or state of moulded material
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
8.
Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a “non-solidification zone” where little or no solidification occurs. The non-solidification zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor tends to cause the film to deform along the build axis, thereby creating a non-planar interface between the photohardenable material and the film, which distorts the resulting three-dimensional object. An apparatus is provided to stabilize the flexible film and eliminate or minimize such deformation.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/291 - Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/255 - Enclosures for the building material, e.g. powder containers
B29K 105/00 - Condition, form or state of moulded material
B29C 64/165 - Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
9.
Method of compensating for inhibitor permeable film deformation in the manufacture of three-dimensional objects
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a “dead zone” where little or no solidification occurs. The dead zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor causes the film to deform along the build axis, thereby creating a non-planar interface between the photohardednable material and the film. A method is provided to compensate the three-dimensional object data based on the deformation of the film.
G03F 7/00 - Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printed surfacesMaterials therefor, e.g. comprising photoresistsApparatus specially adapted therefor
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Janbain, Mohamad
Nam, Alexander
Abstract
A method and apparatus for making a three-dimensional object by solidifying a photohardenable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material through a flexible film to create a "dead zone" where little or no solidification occurs. The dead zone prevents the exposed surface of the photohardenable material from solidifying in contact with the film. The inhibitor causes the film to deform along the build axis, thereby creating a non-planar interface between the photohardednable material and the film. A method is provided to compensate the three-dimensional object data based on the deformation of the film.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus includes a solidification substrate assembly that is tiltable about a tilting axis to peel a solidification substrate from a recently formed object surface and to level the solidification substrate assembly and squeeze out accumulated solidifiable material between the solidification substrate and the recently formed object surface. Intelligent peeling and leveling may also be provided by providing a tilting parameter database that is used to adjust tilting parameters based on object geometry and/or solidifiable material properties.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/153 - Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
B29C 64/106 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
12.
METHOD OF MAKING THREE-DIMENSIONAL OBJECTS USING BOTH CONTINUOUS AND DISCONTINUOUS SOLIDIFICATION
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
Ei-Siblani, Ali
Janbain, Mohamad
Abstract
A method and apparatus for making a three-dimensional object by solidifying a solidifiable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material to create a "dead zone" where little or no solidification occurs. The dead zone prevents the exposed surface of the photohardenable material from solidifying in contact with a container bottom or film. As the solidified object areas get larger and the build platform speed increases, the dead zone increases which can cause the formation of channels in the resulting objects and delamination. A number of techniques including continuous/discontinuous mode switching, multiple illuminations of portions of the same layer, and the use of gray scaling are disclosed for regulating the size of the dead zone.
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
13.
Method of making three-dimensional objects using both continuous and discontinuous solidification
A method and apparatus for making a three-dimensional object by solidifying a solidifiable material are shown and described. A photohardening inhibitor is admitted into a surface of a photohardenable material to create a “dead zone” where little or no solidification occurs. The dead zone prevents the exposed surface of the photohardenable material from solidifying in contact with a container bottom or film. As the solidified object areas get larger and the build platform speed increases, the dead zone increases which can cause the formation of channels in the resulting objects and delamination. A number of techniques including continuous/discontinuous mode switching, multiple illuminations of portions of the same layer, and the use of gray scaling are disclosed for regulating the size of the dead zone.
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 64/393 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
14.
APPARATUS AND METHOD FOR FORMING THREE-DIMENSIONAL OBJECTS USING A TILTING SOLIDIFICATION SUBSTRATE
GLOBAL FILTRATION SYSTEMS, a dba of GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus includes a solidification substrate that is tiltable relative to a film about a tilting axis. Layers of the solidifiable material solidify in contact with a film located between the most recently solidified object layer and a solidification substrate that comprises the solidification substrate assembly. The tilting of the solidification substrate relative to the film allows the substrate to be used to squeeze excess solidifiable material from between the film and the most recently solidified object surface while minimizing or eliminating the formation of bubbles in the solidifiable material which can prolong object build times. In addition, tilting the solidification substrate before separating an adhered object surface from the film breaks any vacuum formed between the substrate and the film which reduces the forces involved in separating the object form the film.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. Either a build platform or a solidification substrate has a curved surface, and each point on the curved surface traverses a trochoidal path during an object solidification operation. The curved surface allows the separation forces between the solidification substrate and the most recently solidified layer of material to be concentrated along a line instead of along a planar section which reduces the overall separation force and the likelihood of damaging a part.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
Shkolnik, Alexandr
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using two photon absorption is described. The use of two photon absorption allows for the creation of a non-solidification zone beneath the exposed surface of a solidifiable material so that no separation is required between the most recently solidified layer of the object and a substrate such as a glass, a film, or a glass/film combination. In addition, when used with a linear scanning device, two photon absorption causes solidification to occur within a small spot area, which provides a means for creating larger, higher resolution objects than DLP systems or laser systems that use single photon absorption.
C09D 11/101 - Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
17.
Method and apparatus for concurrently making multiple three-dimensional objects from multiple solidifiable materials
Methods and apparatuses for making multiple three-dimensional objects from multiple solidifiable materials are shown and described. In accordance with the method, the objects are designed with variable removable support heights along the build axis so that each object has an interface between first and second materials that is the same height from the build platform. The technique simplifies the process of producing multiple three-dimensional objects from multiple solidifiable materials which may have different build axis heights of first and second finished object sections so that the sources of solidifiable materials need only be switched once during the building of multiple objects.
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/182 - Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Abstract
Methods and apparatuses for making multiple three-dimensional objects from multiple solidifiable materials are shown and described. In accordance with the method, the objects are designed with variable removable support heights along the build axis so that each object has an interface between first and second materials that is the same height from the build platform. The technique simplifies the process of producing multiple three-dimensional objects from multiple solidifiable materials which may have different build axis heights of first and second finished object sections so that the sources of solidifiable materials need only be switched once during the building of multiple objects.
B29C 39/12 - Making multilayered or multicoloured articles
B29C 35/04 - Heating or curing, e.g. crosslinking or vulcanising using liquids, gas or steam
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
B29C 39/02 - Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressureApparatus therefor for making articles of definite length, i.e. discrete articles
B29C 39/10 - Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressureApparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
B29C 39/16 - Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressureApparatus therefor for making articles of indefinite length between endless belts
19.
Apparatus and method for forming three-dimensional objects using linear solidification with contourless object data
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device and contourless object data is shown and described. A voxel matrix is superimposed over an object model defined by three-dimensional object data to determine active voxels that intersect at least a portion of the object model. The active voxels are related to a path generation reference frame of an apparatus for making a three-dimensional object to generate solidification energy source event data that defines scanning (y) axis locations and/or solidification times at which a linear solidification device supplies solidification energy to a solidifiable material.
B33Y 50/02 - Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/386 - Data acquisition or data processing for additive manufacturing
20.
Method and apparatus for making three-dimensional objects from multiple solidifiable materials
Methods and apparatuses for making three-dimensional objects from multiple solidifiable materials is shown and described. Multiple solidifiable material container assemblies are provided for holding different solidifiable materials. Relative movement between the solidifiable material container assemblies and a build platform allows the solidifiable materials to be switched as an object is built. Several exemplary cleaning stations are provided for removing residual solidifiable materials from the surface of the three-dimensional object as it is built to better ensure smooth transitions between materials on the finished object.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus includes a solidification substrate that is tiltable relative to a film about a tilting axis. Layers of the solidifiable material solidify in contact with a film located between the most recently solidified object layer and a solidification substrate that comprises the solidification substrate assembly. The tilting of the solidification substrate relative to the film allows the substrate to be used to squeeze excess solidifiable material from between the film and the most recently solidified object surface while minimizing or eliminating the formation of bubbles in the solidifiable material which can prolong object build times. In addition, tilting the solidification substrate before separating an adhered object surface from the film breaks any vacuum formed between the substrate and the film which reduces the forces involved in separating the object form the film.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
Methods and apparatuses for making three-dimensional objects from multiple solidifiable materials is shown and described. Multiple solidifiable material container assemblies are provided for holding different solidifiable materials. Relative movement between the solidifiable material container assemblies and a build platform allows the solidifiable materials to be switched as an object is built. Several exemplary cleaning stations are provided for removing residual solidifiable materials from the surface of the three-dimensional object as it is built to better ensure smooth transitions between materials on the finished object.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
A solidification substrate assembly for making a three-dimensional object from a solidifiable material includes a solidification substrate assembly. In certain examples, the solidifiable material solidifies in contact with the solidification substrate, and the tilting of the substrate and/or or the use of a peeling member facilitates separation of the substrate from the solidified material. In other examples, the solidification substrate assembly includes a film that is adjacent to a rigid or semi-rigid layer. The solidifiable material solidifies in contact with the film, and a peeling member peels the film away from the solidified material. Intelligent solidification substrate assemblies are also described in which a force sensor determines when to expose the solidifiable material to solidification energy and/or whether to use a peeling member to separate the solidification substrate from a solidified objection section.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/129 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
B29C 33/44 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
B33Y 70/00 - Materials specially adapted for additive manufacturing
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
24.
Apparatus and method for forming three-dimensional objects from solidifiable paste
An apparatus and method for making a three-dimensional object from a solidifiable paste is shown and described. The apparatus includes a pastes spreader, at least a portion of which extends into the solidifiable paste. The container holding the solidifiable paste and the spreader are movable relative to one another. In one system, the spreader vibrates as the container and the spreader move relative to one another. In another system, the spreader is part of a spreader assembly in which a first spreader and second spreader are angled with respect to one another, and the assembly is rotatable and lockable into multiple rotational positions. A paste dispenser is also described which is configured to dispense paste while moving along a travel axis. The apparatus and method allow three-dimensional objects to be progressively built upside down by ensuring that the previously solidified object section has a substantially homogeneous layer of solidifiable material available for forming a new layer of the solidified object prior to exposure to solidification energy.
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 64/40 - Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
Nam, Alexander
Janbain, Mohamad
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device and contourless object data is shown and described. A voxel matrix is superimposed over an object model defined by three-dimensional object data to determine active voxels that intersect at least a portion of the object model. The active voxels are related to a path generation reference frame of an apparatus for making a three-dimensional object to generate solidification energy source event data that defines scanning (y) axis locations and/or solidification times at which a linear solidification device supplies solidification energy to a solidifiable material.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device with a vacuum blade is shown and described. In certain examples, the vacuum blade travels at a fixed distance relative to the linear solidification device as the linear solidification device travels along a travel axis. In other examples, the linear solidification device and the vacuum blade travel along the travel axis independently of one another.
B29C 67/00 - Shaping techniques not covered by groups , or
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B33Y 70/00 - Materials specially adapted for additive manufacturing
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
27.
APPARATUS AND METHOD FOR FORMING THREE-DIMENSIONAL OBJECTS USING LINEAR SOLIDIFICATION AND A VACUUM BLADE
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device with a vacuum blade is shown and described. In certain examples, the vacuum blade travels at a fixed distance relative to the linear solidification device as the linear solidification device travels along a travel axis. In other examples, the linear solidification device and the vacuum blade travel along the travel axis independently of one another.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a laser scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 67/00 - Shaping techniques not covered by groups , or
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus includes a solidification substrate assembly that is tiltable about a tilting axis to peel a solidification substrate from a recently formed object surface and to level the solidification substrate assembly and squeeze out accumulated solidifiable material between the solidification substrate and the recently formed object surface. Intelligent peeling and leveling may also be provided by providing a tilting parameter database that is used to adjust tilting parameters based on object geometry and/or solidifiable material properties.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device. The apparatus includes a solidification substrate that is tiltable relative to a film about a tilting axis. Layers of the solidifiable material solidify in contact with a film located between the most recently solidified object layer and a solidification substrate that comprises the solidification substrate assembly. The tilting of the solidification substrate relative to the film allows the substrate to be used to squeeze excess solidifiable material from between the film and the most recently solidified object surface while minimizing or eliminating the formation of bubbles in the solidifiable material which can prolong object build times. Additionally, tilting the solidification substrate before separating an adhered object surface from the film breaks any vacuum formed between the substrate and the film which reduce the forces involved in separating the object from the film.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus includes a solidification substrate that is tiltable relative to a film about a tilting axis. Layers of the solidifiable material solidify in contact with a film located between the most recently solidified object layer and a solidification substrate that comprises the solidification substrate assembly. The tilting of the solidification substrate relative to the film allows the substrate to be used to squeeze excess solidifiable material from between the film and the most recently solidified object surface while minimizing or eliminating the formation of bubbles in the solidifiable material which can prolong object build times. In addition, tilting the solidification substrate before separating an adhered object surface from the film breaks any vacuum formed between the substrate and the film which reduces the forces involved in separating the object form the film.
B33Y 30/00 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 64/20 - Apparatus for additive manufacturingDetails thereof or accessories therefor
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus includes a solidification substrate assembly that is tiltable about a tilting axis to peel a solidification substrate from a recently formed object surface and to level the solidification substrate assembly and squeeze out accumulated solidifiable material between the solidification substrate and the recently formed object surface. Intelligent peeling and leveling may also be provided by providing a tilting parameter database that is used to adjust tilting parameters based on object geometry and/or solidifiable material properties.
B29C 64/124 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
B29C 67/00 - Shaping techniques not covered by groups , or
An apparatus and method for making a three-dimensional object from a solidifiable paste is shown and described. The apparatus includes a pastes spreader, at least a portion of which extends into the solidifiable paste. The container holding the solidifiable paste and the spreader are movable relative to one another. In one system, the spreader vibrates as the container and the spreader move relative to one another. In another system, the spreader is part of a spreader assembly in which a first spreader and second spreader are angled with respect to one another, and the assembly is rotatable and lockable into multiple rotational positions. The apparatus and method allow three-dimensional objects to be progressively built upside down by ensuring that the previously solidified object section has a substantially homogeneous layer of solidifiable material available for forming a new layer of the solidified object prior to exposure to solidification energy.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable paste is shown and described. The apparatus includes a pastes spreader, at least a portion of which extends into the solidifiable paste. The container holding the solidifiable paste and the spreader are movable relative to one another. In one system, the spreader vibrates as the container and the spreader move relative to one another. In another system, the spreader is part of a spreader assembly in which a first spreader and second spreader are angled with respect to one another, and the assembly is rotatable and lockable into multiple rotational positions. The apparatus and method allow three-dimensional objects to be progressively built upside down by ensuring that the previously solidified object section has a substantially homogeneous layer of solidifiable material available for forming a new layer of the solidified object prior to exposure to solidification onergy.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Nam, Alexander
Janbain, Mohamad
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device and contourless object data is shown and described. A voxel matrix is superimposed over an object model defined by three-dimensional object data to determine active voxels that intersect at least a portion of the object model. The active voxels are related to a path generation reference frame of an apparatus for making a three-dimensional object to generate solidification energy source event data that defines scanning (y) axis location and/or solidification times at which a linear solidification device supplies solidification energy to a solidifiable material.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device and contourless object data is shown and described. A voxel matrix is superimposed over an object model defined by three-dimensional object data to determine active voxels that intersect at least a portion of the object model. The active voxels are related to a path generation reference frame of an apparatus for making a three-dimensional object to generate solidification energy source event data that defines scanning (y) axis locations and/or solidification times at which a linear solidification device supplies solidification energy to a solidifiable material.
GLOBAL FILTRATION SYSTEMS, a dba of GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Zhou, Chi
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. Either a build platform or a solidification substrate has a curved surface, and each point on the curved surface traverses a trochoidal path during an object solidification operation. The curved surface allows the separation forces between the solidification substrate and the most recently solidified layer of material to be concentrated along a line instead of along a planar section which reduces the overall separation force and the likelihood of damaging a part.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a linear scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
Methods and apparatuses for making three-dimensional objects from multiple solidifiable materials is shown and described. Multiple solidifiable material container assemblies are provided for holding different solidifiable materials. Relative movement between the solidifiable material container assemblies and a build platform allows the solidifiable materials to be switched as an object is built. Several exemplary cleaning stations are provided for removing residual solidifiable materials from the surface of the three-dimensional object as it is built to better ensure smooth transitions between materials on the finished object.
Methods and apparatuses for making three-dimensional objects from multiple solidifiable materials is shown and described. Multiple solidifiable material container assemblies are provided for holding different solidifiable materials. Relative movement between the solidifiable material container assemblies and a build platform allows the solidifiable materials to be switched as an object is built. Several exemplary cleaning stations are provided for removing residual solidifiable materials from the surface of the three-dimensional object as it is built to better ensure smooth transitions between materials on the finished object.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus and method compensate for a non-orthogonal angle between the travel axis and scanning axis of a linear scanning device and also provide a substantially constant solidification depth along the scanning axis. In certain examples, a solidification energy control system is also provided to regulate the solidification power supplied to the solidifiable material by modulating the power supplied to the linear solidification device's solidification energy source, examples of which include laser diodes.
B29C 64/135 - Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
B29C 67/00 - Shaping techniques not covered by groups , or
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Zhou, Chi
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. The apparatus and method compensate for a non-orthogonal angle between the travel axis and scanning axis of a linear scanning device and also provide a substantially constant solidification depth along the scanning axis. In certain examples, a solidification energy control system is also provided to regulate the solidification power supplied to the solidifiable material by modulating the power supplied to the linear solidification device's solidification energy source, examples of which include laser diodes.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
B82Y 30/00 - Nanotechnology for materials or surface science, e.g. nanocomposites
G01N 25/38 - Investigating or analysing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using the melting or combustion of a solid
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Abstract
A dental arch model and method for making the same is shown and described. The dental arch model includes a connector having opposite ends that connect to a respective one of the arch legs. The connector has a three-dimensional shape but does not include a surface that is both planar and parallel to the base of the arch connector along more than two thirds of the arch connector's length. In certain examples, the connector is in the shape of a prism or a trapezoid. In other examples, the connector has an upper surface that is sloped relative to the base of the arch connector. The arch connector may also include a plurality of fluid passageways for allowing fluid flow from an interior area between the inner walls of the arch connector to a location outside of the connector.
A61C 11/00 - Dental articulators, i.e. for simulating movement of the temporo-mandibular jointsArticulation forms or mouldings
A61C 11/02 - Dental articulators, i.e. for simulating movement of the temporo-mandibular jointsArticulation forms or mouldings characterised by the arrangement, location or type of the hinge means
A61C 11/08 - Dental articulators, i.e. for simulating movement of the temporo-mandibular jointsArticulation forms or mouldings with means to secure dental casts to articulator
A61C 13/34 - Making or working of models, e.g. preliminary castings, trial denturesDowel pins
G05B 13/04 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
A dental arch model and method for making the same is shown and described. The dental arch model includes a connector having opposite ends that connect to a respective one of the arch legs. The connector has a three-dimensional shape but does not include a surface that is both planar and parallel to the base of the arch connector along more than two thirds of the arch connector's length. In certain examples, the connector is in the shape of a prism or a trapezoid. In other examples, the connector has an upper surface that is sloped relative to the base of the arch connector. The arch connector may also include a plurality of fluid passageways for allowing fluid flow from an interior area between the inner walls of the arch connector to a location outside of the connector.
B29C 33/44 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
B29C 35/08 - Heating or curing, e.g. crosslinking or vulcanising by wave energy or particle radiation
B29C 41/02 - Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped articleApparatus therefor for making articles of definite length, i.e. discrete articles
A61C 13/34 - Making or working of models, e.g. preliminary castings, trial denturesDowel pins
B29C 67/00 - Shaping techniques not covered by groups , or
B29C 33/38 - Moulds or coresDetails thereof or accessories therefor characterised by the material or the manufacturing process
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
A solidification substrate assembly for making a three-dimensional object from a solidifiable material includes a solidification substrate assembly. In certain examples, the solidifiable material solidifies in contact with the solidification substrate, and the tilting of the substrate and/or or the use of a peeling member facilitates separation of the substrate from the solidified material. In other examples, the solidification substrate assembly includes a film that is adjacent to a rigid or semi-rigid layer. The solidifiable material solidifies in contact with the film, and a peeling member peels the film away from the solidified material. Intelligent solidification substrate assemblies are also described in which a force sensor determines when to expose the solidifiable material to solidification energy and/or whether to use a peeling member to separate the solidification substrate from a solidified objection section.
B29C 33/44 - Moulds or coresDetails thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
B29C 67/00 - Shaping techniques not covered by groups , or
51.
Apparatus and method for forming three-dimensional objects using linear solidification
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Abstract
An apparatus and method for making a three-dimensional object from a solidifiable material using a linear solidification device is shown and described. In certain examples, the linear solidification device includes a laser diode that projects light onto a scanning device, such as a rotating polygonal mirror or a linear scanning micromirror, which then deflects the light onto a photohardenable resin. As a result, the linear solidification device scans a line of solidification energy in a direction that is substantially orthogonal to the direction of travel of the laser diode. In other examples, the linear solidification device is a laser device array or light emitting diode array that extends in a direction substantially orthogonal to the direction of travel of the array.
GLOBAL FILTRATION SYSTEMS, A DBA OF GULF FILTRATION SYSTEMS INC. (USA)
Inventor
El-Siblani, Ali
Shkolnik, Alexandr
Abstract
Methods and apparatuses for making three-dimensional objects from multiple solidifiable materials is shown and described. Multiple solidifiable material container assemblies are provided for holding different solidifiable materials. Relative movement between the solidifiable material container assemblies and a build platform allows the solidifiable materials to be switched as an object is built. Several exemplary cleaning stations are provided for removing residual solidifiable materials from the surface of the three-dimensional object as it is built to better ensure smooth transitions between materials on the finished object.
Methods and apparatuses for making three-dimensional objects from multiple solidifiable materials is shown and described. Multiple solidifiable material container assemblies are provided for holding different solidifiable materials. Relative movement between the solidifiable material container assemblies and a build platform allows the solidifiable materials to be switched as an object is built. Several exemplary cleaning stations are provided for removing residual solidifiable materials from the surface of the three-dimensional object as it is built to better ensure smooth transitions between materials on the finished object.
A solidification substrate assembly for making a three-dimensional object from a solidifiable material includes a solidification substrate assembly. In certain examples, the solidifiable material solidifies in contact with the solidification substrate, and the tilting of the substrate and/or or the use of a peeling member facilitates separation of the substrate from the solidified material. In other examples, the solidification substrate assembly includes a film that is adjacent to a rigid or semi-rigid layer. The solidifiable material solidifies in contact with the film, and a peeling member peels the film away from the solidified material. Intelligent solidification substrate assemblies are also described in which a force sensor determines when to expose the solidifiable material to solidification energy and/or whether to use a peeling member to separate the solidification substrate from a solidified objection section.
A method and apparatus for making a three-dimensional object from a solidifiable material such as a photopolymer is shown and described. In accordance with the method, positions relative to a build axis are subdivided into first and second exposure data subsets, and the first and second exposure data subsets are solidified in alternating sequences to reduce the surface area of solidified material in contact with a solidification substrate.
A method and apparatus for making a three-dimensional object from a solidifiable material such as a photopolymer is shown and described. In accordance with the method, positions relative to a build axis are subdivided into first and second exposure data subsets, and the first and second exposure data subsets are solidified in alternating sequences to reduce the surface area of solidified material in contact with a solidification substrate.
A method includes receiving a predetermined object pattern representing a portion of a three-dimensional object, modifying the predetermined object pattern to correct for geometric distortion of a pattern generator, and generating the modified pattern using the pattern generator. The generated pattern interacts with a reactive material to form the portion of the three-dimensional object defined by the predetermined object pattern.