A prosthesis for implantation into a human body is made by a method that includes the steps of providing a natural animal ligament or tendon that has a substrate, crosslinking and fixing the substrate, minimizing the antigens from the substrate, tanning the substrate to improve its mechanical properties, and coupling an active layer to the substrate.
A biological jawbone prosthesis is made according to a method that includes the steps of collecting animal material from a bovine or porcine source, the animal material being a jawbone, shaping the animal material to provide a desired shape for the jawbone implant, removing cells from the animal material, crosslinking the animal material, removing antigens from the animal material, subjecting the animal material to an alkaline treatment, coupling into the animal material active substances which are capable of adhering growth factor and stem cell, and packing the animal material in a container that contains a sterilization solution.
An integrative urethra sling is comprised of a sling (1) and two punctured fixing heads (2) respectively fixed to two ends of the sling. The sling (1) is a porous membrane belt or a braided belt with the width of 5-20 mm and the length of 40-120 mm. The punctured fixed head (2) is a warhead body with barbs, which only can move forward and can not back up. A method for making the integrative urethra sling includes the following steps: animal tissues are taken as raw material, treated by epoxy cross-linking fixation, antigen on multi-aspect, mechanics modification, and inducement activity modifying and the like, and then the sling (1) or the punctured fixing heads (2) are made.
A nasal bridge implant is made according to a method that includes the steps of collecting animal material from a bovine or porcine source, the animal material being either a tendon or a ligament, removing cells from the animal material, shaping the animal material to provide a desired shape for the nasal bridge implant, crosslinking the animal material, removing antigens from the animal material, subjecting the animal material to an alkaline treatment, coupling into the animal material active substances which are capable of adhering growth factor and stem cell, and packing the animal material in a container that contains a sterilization solution.
A cartilage prosthesis is made according to a method that includes the steps of collecting animal material from a bovine, ovine or porcine source, the animal material being a cartilage, shaping the animal material to provide a desired shape for the cartilage implant, removing cells from the animal material, crosslinking the animal material, removing antigens from the animal material, subjecting the animal material to an alkaline treatment, coupling into the animal material active substances which are capable of adhering growth factor and stem cell, and packing the animal material in a container that contains a sterilization solution.
A biological wound dressing is made by a method that includes the steps of providing a natural animal tissue that has a substrate, crosslinking and fixing the substrate, minimizing the antigens from the substrate, and incorporating an active layer in the substrate.
A61B 19/00 - Instruments, implements or accessories for surgery or diagnosis not covered by any of the groups A61B 1/00-A61B 18/00, e.g. for stereotaxis, sterile operation, luxation treatment, wound edge protectors(protective face masks A41D 13/11; surgeons' or patients' gowns or dresses A41D 13/12; devices for carrying-off, for treatment of, or for carrying-over, body liquids A61M 1/00)
A biological surgical patch made by a method that includes the steps of providing a natural animal tissue that has a substrate, crosslinking and fixing the substrate, minimizing the antigens from the substrate, tanning the substrate, and incorporating an active layer in the substrate.
An aneurysm clip has a biological membrane and a metal clip. The membrane is harvested from an animal, crosslinked, and then has its antigens minimized. The membrane also has an active layer coupled thereto. The metal clip has a first clip bar and a second clip bar that are attached to each in a biased manner, a first clip arm that extends perpendicularly from the second clip bar, and a second clip arm that extends perpendicularly from the first clip bar. A first end of the biological membrane is coupled to the first clip arm, and a second end of the biological membrane is coupled to the second clip arm in a manner that defines a receiving portion.
A prosthetic device for implantation into a human body is made by a method that includes the steps of providing a natural animal tissue that has a substrate, crosslinking and fixing the substrate, minimizing the antigens from the substrate, tanning the substrate to improve its mechanical properties, and coupling an anticoagulant to an inner surface of the substrate to form an anticoagulant surface layer.
A prosthesis for implantation into a human body is made by a method that includes the steps of providing a natural animal ligament or tendon that has a substrate, crosslinking and fixing the substrate, minimizing the antigens from the substrate, tanning the substrate to improve its mechanical properties, and coupling an active layer to the substrate.