Several embodiments of the present technology are directed to the removal of one or more air pollutants using cooling and/or calcium-containing particles. In some embodiments, a method for removing air pollutants comprises flowing a gas stream having calcium-containing particles and one or more of mercury or hydrochloric acid molecules, and cooling the gas stream, thereby causing at least a portion of the calcium-containing particles to adsorb to the mercury and/or hydrochloric acid molecules in the gas stream. The method can further comprise, after cooling the gas stream, filtering the gas stream to remove at least a portion of the calcium-containing particles having adsorbed mercury and hydrochloric acid.
B01D 53/10 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents with dispersed adsorbents
B01D 46/02 - Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
B01D 53/30 - Controlling by gas-analysis apparatus
B01D 53/64 - Heavy metals or compounds thereof, e.g. mercury
Methods and systems for producing calcium carbonate from calcium hydroxide and carbon dioxide are disclosed herein. In some embodiments, a method for producing calcium carbonate comprises (i) providing a first plurality of particles comprising solid-state calcium hydroxide, and (ii) introducing a gas stream comprising carbon dioxide to the first plurality of particles to produce a second plurality of particles comprising calcium carbonate. Individual ones of the first plurality of particles can include a specific surface area of at least 20 m2/g and a free moisture content of from 2% to 20%. The second plurality of particles comprising calcium carbonate are not produced via precipitation.
Several embodiments of the present technology are directed to the removal of one or more air pollutants using cooling and/or calcium-containing particles. In some embodiments, a method for removing air pollutants comprises flowing a gas stream having calcium-containing particles and one or more of mercury or hydrochloric acid molecules, and cooling the gas stream, thereby causing at least a portion of the calcium-containing particles to adsorb to the mercury and/or hydrochloric acid molecules in the gas stream. The method can further comprise, after cooling the gas stream, filtering the gas stream to remove at least a portion of the calcium-containing particles having adsorbed mercury and hydrochloric acid.
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
B01D 53/10 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents with dispersed adsorbents
B01D 46/02 - Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
F23J 15/02 - Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
F23J 15/04 - Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
F23J 15/06 - Arrangements of devices for treating smoke or fumes of coolers
F23J 15/00 - Arrangements of devices for treating smoke or fumes
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/30 - Processes for preparing, regenerating or reactivating
Methods and systems for producing calcium carbonate from calcium hydroxide and carbon dioxide are disclosed herein. In some embodiments, a method for producing calcium carbonate comprises (i) providing a first plurality of particles comprising solid-state calcium hydroxide, and (ii) introducing a gas stream comprising carbon dioxide to the first plurality of particles to produce a second plurality of particles comprising calcium carbonate. Individual ones of the first plurality of particles can include a specific surface area of at least 20 m2/g and a free moisture content of from 2% to 20%. The second plurality of particles comprising calcium carbonate are not produced via precipitation.
Methods and systems for producing calcium carbonate from calcium hydroxide and carbon dioxide are disclosed herein. In some embodiments, a method for producing calcium carbonate comprises (i) providing a first plurality of particles comprising solid-state calcium hydroxide, and (ii) introducing a gas stream comprising carbon dioxide to the first plurality of particles to produce a second plurality of particles comprising calcium carbonate. Individual ones of the first plurality of particles can include a specific surface area of at least 20 m2/g and a free moisture content of from 2% to 20%. The second plurality of particles comprising calcium carbonate are not produced via precipitation.
Methods and systems for treating tailings at an elevated pH using lime are disclosed herein. In some embodiments, the method comprises (i) providing a tailings stream comprising bicarbonates and a pH less than 9.0, (ii) adding a coagulant comprising calcium hydroxide to the tailings stream to form a mixture having a pH of at least 11.5 and a soluble calcium level no more than 800 mg/L, and (iii) dewatering the mixture to produce a product having a solids content of at least 40% by weight. In some embodiments, the pH and soluble calcium level of the mixture cause chemical modification of clay materials of the mixture via pozzolanic reactions. In some embodiments, the undrained shear strength of the product increases over a period of time of at least two days.
C02F 1/52 - Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
F26B 5/00 - Drying solid materials or objects by processes not involving the application of heat
C02F 11/145 - Treatment of sludgeDevices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
C10G 1/04 - Production of liquid hydrocarbon mixtures from oil shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
B01J 20/28 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof characterised by their form or physical properties
B01J 20/04 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
B01J 20/30 - Processes for preparing, regenerating or reactivating
Several embodiments of the present technology are directed to the removal of one or more air pollutants using cooling and/or calcium-containing particles. In some embodiments, a method for removing air pollutants comprises flowing a gas stream having calcium-containing particles and one or more of mercury or hydrochloric acid molecules, and cooling the gas stream, thereby causing at least a portion of the calcium-containing particles to adsorb to the mercury and/or hydrochloric acid molecules in the gas stream. The method can further comprise, after cooling the gas stream, filtering the gas stream to remove at least a portion of the calcium-containing particles having adsorbed mercury and hydrochloric acid.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
12.
SYSTEMS AND METHODS FOR REMOVAL OF MERCURY AND/OR HYDROCHLORIC ACID FROM GAS STREAMS USING CALCIUM-CONTAINING PARTICLES
Several embodiments of the present technology are directed to the removal of one or more air pollutants using cooling and/or calcium-containing particles. In some embodiments, a method for removing air pollutants comprises flowing a gas stream having calcium-containing particles and one or more of mercury or hydrochloric acid molecules, and cooling the gas stream, thereby causing at least a portion of the calcium-containing particles to adsorb to the mercury and/or hydrochloric acid molecules in the gas stream. The method can further comprise, after cooling the gas stream, filtering the gas stream to remove at least a portion of the calcium-containing particles having adsorbed mercury and hydrochloric acid.
B01D 53/04 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
B01D 46/00 - Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
13.
Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
Several embodiments of the present technology are directed to the removal of one or more air pollutants using cooling and/or calcium-containing particles. In some embodiments, a method for removing air pollutants comprises flowing a gas stream having calcium-containing particles and one or more of mercury or hydrochloric acid molecules, and cooling the gas stream, thereby causing at least a portion of the calcium-containing particles to adsorb to the mercury and/or hydrochloric acid molecules in the gas stream. The method can further comprise, after cooling the gas stream, filtering the gas stream to remove at least a portion of the calcium-containing particles having adsorbed mercury and hydrochloric acid.
B01D 53/02 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography
B01D 53/10 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents with dispersed adsorbents
B01D 46/02 - Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
F23J 15/02 - Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
F23J 15/04 - Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
F23J 15/06 - Arrangements of devices for treating smoke or fumes of coolers
F23J 15/00 - Arrangements of devices for treating smoke or fumes
Calcium hydroxide-containing compositions can be manufactured by slaking quicklime, and subsequently drying and milling the slaked product. The resulting calcium hydroxide- containing composition can have a size, steepness, pore volume, and/or other features that render the compositions suitable for treatment of exhaust gases and/or removal of contaminants. In some embodiments, the calcium hydroxide-containing compositions can include a D10 from about 0.5 microns to about 4 microns, a D90 less than about 30 microns, and a ratio of D90 to D10 from about 8 to about 20, wherein individual particles include a surface area greater than or equal to about 25 m2/g.
B01J 20/06 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group
15.
CALCIUM HYDROXIDE-CONTAINING COMPOSITIONS AND ASSOCIATED SYSTEMS AND METHODS
Calcium hydroxide-containing compositions can be manufactured by slaking quicklime, and subsequently drying and milling the slaked product. The resulting calcium hydroxide- containing composition can have a size, steepness, pore volume, and/or other features that render the compositions suitable for treatment of exhaust gases and/or removal of contaminants. In some embodiments, the calcium hydroxide-containing compositions can include a D10 from about 0.5 microns to about 4 microns, a D90 less than about 30 microns, and a ratio of D90 to D10 from about 8 to about 20, wherein individual particles include a surface area greater than or equal to about 25 m2/g.
B01J 20/06 - Solid sorbent compositions or filter aid compositionsSorbents for chromatographyProcesses for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group
16.
Calcium hydroxide-containing compositions and associated systems and methods
A process and system for recovering waste heat from a kiln used for lime or cement production. The system unifies the kiln, a waste heat recovery and power generation circuit and a dry scrubber for scrubbing the pollutants from the kiln offgas. Essentially, the system employs the boiler component of the waste heat recovery and power generation circuit as a heat exchanger to recover the waste heat from the kiln, which is used to drive the steam turbines. The heat absorption from the latter stage lowers the temperature of the kiln offgas sufficiently for optimum performance from the scrubber. The presence of lime particles in the offgas effectively protects the boiler tube surfaces from corrosion which would occur at optimum scrubber temperatures, and subsequently provides the lime required as a scrubbing medium for the dry scrubber. Further, the efficient scrubbing allows for the use of any fuel for firing the kiln inclusive of high sulphur content compounds. A process for effecting the technology is also provided.