A system for technician support includes at least one processor, at least one stored artificial intelligence (AI) model stored therein, and a computer program for execution by the processor. The computer program includes instructions for determining an engineering process to be performed on a workpiece, and having one or more elements associated with an assembly process or a maintenance process for the workpiece, receiving sensor data from one or more sensors, the sensor data reflecting at least a physical state of the workpiece, providing the sensor data to the at least one AI model, causing the at least one AI model to process the sensor data to generate at least one classification result that indicates whether the sensor data indicates whether each element was correctly performed, and validating execution of the engineering process in response to each element being correctly performed, and providing a visual notification to a user.
G05B 19/418 - Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
2.
Thermally Disconnecting High Power Busbars For Battery System Propagation Control
A battery system is described with methods and systems for thermally isolating a battery module experiencing thermal runaway. In one embodiment, a thermal actuator can cut a busbar coupling neighboring battery modules together, thereby preventing or slowing the spread of thermal runaway. In other embodiments, a fusible material can joint portions of a busbar. High temperatures can cause the fusible material to melt off of the busbar portions and thereby break the thermal or electrical conductivity between busbar portions and neighboring modules.
H01M 50/581 - Devices or arrangements for the interruption of current in response to temperature
H01H 85/02 - Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive Details
H01M 10/0525 - Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodesLithium-ion batteries
H01M 50/583 - Devices or arrangements for the interruption of current in response to current, e.g. fuses
A vertical takeoff and landing (VTOL) aircraft, including: a vehicle controller circuit programmed to operate the VTOL aircraft without an onboard human operator; a rotor system; an airframe; and an external cargo coupling to receive an external payload of at least approximately 300 pounds beneath the airframe.
There is disclosed in one example an unmanned vertical lift aircraft, comprising: an airframe; a drive system configured for vertical takeoff and landing (VTOL); a power plant to power the drive system; and an internal cargo bay comprising a fore aperture and an aft aperture, the fore and aft apertures having dimensions substantially conforming to a cross section of the internal cargo bay, and the internal cargo bay comprising a substantially linear and open volume between the fore and aft apertures.
There is disclosed in one example an apparatus, including: a hardware platform including a processor and a memory; and instructions encoded within the memory to instruct the processor to: receive stored performance data for an aircraft battery, the stored performance data including data that correlate power density to temperature and remaining charge; simulate a planned flight for an aircraft, including predicting a plurality of temperature and remaining charge values; and direct operation of a heat exchange apparatus to precondition the battery to a selected temperature before the planned flight.
A method of simulating an aircraft one-engine inoperative (“OEI”) event includes operating a supplemental power unit (“SPU”) at a first SPU power level less than an SPU contingency power rating, operating a primary engine at a first primary-engine power level, reducing the primary-engine power level to less than the first primary-engine power level, and maintaining a sum of the primary-engine power level and the SPU power level at a power level substantially equal to the SPU contingency power rating.
G09B 9/08 - Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
G06F 30/20 - Design optimisation, verification or simulation
A retractable cargo hook for aircraft is described. The cargo hook comprises a torsion spring allowing rotatable attachment to an aircraft body. An optional recessed portion of the aircraft body can house and receive the cargo hook. This can protect interior components from crashes which can push the cargo hook into the aircraft fuselage, damaging components.
A method of constructing a fuel cell system includes providing an open cell structure to form a first end plate, filling at least part of the open cell structure with a stiffening material, disposing a fuel cell stack between the first end plate and a second end plate, and compressing the fuel cell stack by moving the first end plate toward the second end plate. A fuel cell system includes a first end plate comprising an open cell structure, a second end plate, and a fuel cell stack compressed between the first end plate and the second end plate.
A battery cell assembly, including a cell having a first electrode and a second electrode rolled together to form a cylindrical shape; a first end cap disposed on a first end of the cell and contacting the first electrode; a second end cap disposed on a second end of the cell and contacting the second electrode; and a jacket configured to couple the first end cap and the second end cap to the cell, the jacket made from a non-conductive material.
H01M 10/0587 - Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
H01M 50/107 - Primary casingsJackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
H01M 10/04 - Construction or manufacture in general
Embodiments are directed to systems and methods for utilizing a two-degree-of-freedom model-following control law within an architecture of nested loop functions. This allows for the separation of command and feedback path requirements and enables the restrictions of the inner loops to be applied to the outer loop feedbacks. This method of restriction allows a better allocation of coordinated authority between the loops.
G05D 1/10 - Simultaneous control of position or course in three dimensions
G05D 1/08 - Control of attitude, i.e. control of roll, pitch, or yaw
G05B 11/42 - Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
One embodiment is an aircraft including a fuselage; a wing connected to the fuselage; first and second booms connected to the wing on opposite sides of the fuselage; first and second forward propulsion systems attached to forward ends of the first and second booms; first and second aft propulsion systems fixedly attached proximate aft ends of the first and second booms; and first and second wing-mounted propulsion systems connected to outboard ends of wings; wherein the first and second wing-mounted propulsion systems are tiltable between a first position when the aircraft is in a hover mode and a second position when the aircraft is in a cruise mode.
A method of adjusting a directional movement ability in an aircraft having two or more rotors includes receiving a desired thrust demand for each rotor of the two or more rotors, comparing the desired thrust demands to determine a maximum thrust demand, determining whether the maximum thrust demand exceeds a maximum thrust limit of the two or more rotors, and adjusting each desired thrust demand based on whether the maximum thrust demand exceeds the maximum thrust limit to provide an adjusted thrust demand for each rotor of the two or more rotors. Each rotor can be operated based on a respective adjusted thrust demand.
An electric-powered aircraft battery pack and associated battery pack cooling system. The battery pack comprises a plurality of thermally conductive cooling plates and at least one battery cell coupled with each cooling plate. Heat generated by the battery cells is transferred by conduction to the associated cooling plate. The heat carried by the cooling plates is then transferred by convection to a fluid medium. In some embodiments, heat is transferred from the cooling plate to ambient air or ram air of the aircraft. In some embodiments, heat is transferred from the cooling plate to coolant liquid of a battery pack cooling system.
B60L 50/60 - Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
B60L 58/26 - Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
A fast-rope system for use with a rotary aircraft includes a tubular housing attached to an interior portion of a cabin and adjacent to an upper portion of an exit door opening of the rotary aircraft and a fast-rope frame structure rotatably coupled to the tubular housing. The fast-rope frame structure includes a cylindrical pipe contained partially within the tubular housing and operable to rotate within the tubular housing and a cantilever beam structure fixedly connected to the cylindrical pipe and configured to have a fast rope attached thereto and move in response to rotation of the cylindrical pipe within the tubular housing.
The current disclosure describes a cloaking system for an aircraft. Cameras on the aircraft can detect background colors during flight. Electroluminescent paint on the aircraft can be powered on that resembles the background color. The color and luminescence of the aircraft will allow for dynamic cloaking unachievable by prior art camouflage paint colors.
In an embodiment, a method includes receiving flight data related to an aircraft that includes an engine installed therein. The flight data includes values of an engine parameter. The method also includes determining values of a measured installation delta for the engine based, at least in part, on the flight data. The method also includes determining values of a measured power parameter for the engine based, at least in part, on the flight data. The method also includes generating a mathematical model of a plurality of installation deltas for the engine as a function of the engine parameter, where the plurality of installation deltas include the measured installation delta and an unmeasured installation delta. The method also includes validating the mathematical model based, at least in part, on the values of the measured installation delta. The method also includes generating a performance profile of the engine.
There is disclosed in one example a mechanical assembly, including: a parent part including a parent part lug; a bushing to pass through the lug, the bushing comprising a central inner diameter, and respective left and right relief zones having a second inner diameter different from the central inner diameter; and a through-pin to pass through the bushing.
In one embodiment of the present disclosure, there is provided an aircraft gearbox including a gear and a gear shrouding for providing lubrication to the gear. The gear shrouding is disposed around the gear, has an inner surface facing the gear and an opposing outer surface facing away from the gear, and includes a channel formed along at least a portion of the gear shrouding between the inner surface and the outer surface of the gear shrouding, an input orifice extending to the channel, wherein the input orifice is at a first position on the channel, and an output orifice extending to the channel, wherein the output orifice is at a second position on the channel different from the first position. In another embodiment, the gear shrouding further includes a second output orifice at a third position on the channel different from the first and second positions.
A rotor system includes a drive hub, a set of rotor blades extending radially from the drive hub, and a set of tension-torsion straps connecting the rotor blades to the drive hub. The drive hub has a rotor mast opening extending along a mast axis. The rotor system is configured to rotate about the mast axis. The drive hub further has a set of mounting slots for mounting the tension-torsion straps. The mounting slots are arranged along a circle around the drive hub, each mounting slot extending through the drive hub along a respective mounting axis. The mounting axis of each of the mounting slots is biased relative to the mast axis. The tension-torsion straps are mounted to the drive hub at their corresponding mounting slots.
In an embodiment, a ducted fan assembly includes a housing that further includes a rotor. The ducted fan assembly also includes a rim that extends around at least a portion of a perimeter of the ducted fan assembly, where the rim defines an opening surrounding at least a portion of the housing. The ducted fan assembly also includes a skin that is attached to the rim and extends around the at least a portion of the perimeter of the ducted fan assembly to form a leading edge of the ducted fan assembly, the skin and the rim creating a cavity therebetween. The cavity is at least partially filled with a material to absorb energy from an impact of the skin with a foreign object.
Embodiments are directed to a radiopaque foam used to repair composite structures. A method for creating the radiopaque foam comprises providing first and second resin components that are radiolucent to x-ray imaging. A barium sulfate component is combined with the second resin component. After combining the barium sulfate component and the second resin component, the first resin component and the second resin component are mixed to create a pourable foam. An amount of barium sulfate combined with the second resin component is sufficient to render the pourable foam radiopaque to x-ray imaging.
C08J 9/00 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof
C08J 9/30 - Working-up of macromolecular substances to porous or cellular articles or materialsAfter-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
B29C 73/10 - Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass using preformed elements using patches sealing on the surface of the article
B29C 44/42 - Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
An exemplary tiltrotor aircraft with a hybrid drive system includes a first propulsion system having a first engine and a first supplemental driver operably coupled to a first proprotor that is operable between a helicopter mode and an airplane mode and a second propulsion system having a second engine and a second supplemental driver operably coupled to a second proprotor that is operable between a helicopter mode and an airplane mode.
A hybrid power system for a vertical takeoff and landing (“VTOL”) aircraft including a first power source operable to provide a power output for at least a forward flight mode; and a second power source configured to provide a high specific power output for an altitude adjustment flight mode, the second power source including an auxiliary gas generator coupled to a turbine and a drive system. In other aspects, there is provided a VTOL aircraft and methods for providing power to a VTOL aircraft.
B64D 27/10 - Aircraft characterised by the type or position of power plants of gas-turbine type
B64C 27/28 - Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B64D 27/24 - Aircraft characterised by the type or position of power plants using steam or spring force
A rotorcraft includes an avionics control unit (ACU) and multiple power distribution units (PDUs) electrically connected to an electrical bus, wherein each PDU of the multiple PDUs is electrically connected to a respective multiple electrical loads, and wherein each PDU of the multiple PDUs is configured to receive commands from the ACU to couple or decouple one or more of its respectively connected multiple electrical loads from the electrical bus. The ACU is configured to send commands to the multiple PDUs to couple or decouple a first set of electrical loads and to couple or decouple a second set of electrical loads from the electrical bus, wherein the coupling or decoupling of the first set and the coupling or decoupling the second set is based on a first priority of the first set and a second priority of the second set, respectively.
H02J 3/14 - Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
B64C 13/50 - Transmitting means with power amplification using electrical energy
B64C 27/68 - Transmitting means, e.g. interrelated with initiating means or means acting on blades using electrical energy, e.g. having electrical power amplification
G06F 1/26 - Power supply means, e.g. regulation thereof
A system for securing a bearing to a shaft includes a shaft having a raised portion extending radially outward from the shaft. The raised portion includes a first angled face on a first side of the raised portion and a second angled face on a second side of the raised portion. The bearing includes an outer race comprising a bearing surface on an inner face of the outer race, an inner race comprising a bearing surface on an outer face of the inner race and a third angled face on an inner face of the inner race that is configured to mate with the first angled face, and a plurality of rollers disposed between the inner and outer races.
F16C 19/26 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
An exemplary length adjustable link includes a tube having an internal bore and internal surface, a first rod end having a first shaft disposed in a first end of the internal bore, a second rod end having a second shaft disposed in a second end of the internal bore, and a member threadably connecting the first rod end to the second rod end.
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B64C 27/57 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
B64C 27/80 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors
B64C 27/605 - Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including swash plate, spider or cam mechanisms
An exemplary pitch lock for a tiltrotor aircraft to enable and disable a pitching degree of freedom of a rotor blade assembly includes a first tab coupled to a blade stop assembly, the first tab having a first ramp surface, a second tab coupled to a blade cuff, the second tab having a second ramp surface, a hasp having a central opening to receive the first and the second tab and rollers rotatably coupled to the hasp on opposite sides of the central opening, where the rollers engage the first and second ramp surfaces and retain the first and the second tabs in the central opening.
B64C 27/57 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B64C 27/80 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors
B64C 27/605 - Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including swash plate, spider or cam mechanisms
An exemplary spring-loaded link for an aircraft including a spring interposed between a first and a second rod, the spring, when compressed, urging the first rod and the second rod away from each other.
B64C 27/57 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
F16F 3/02 - Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B64C 27/80 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors
B64C 27/605 - Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including swash plate, spider or cam mechanisms
B64C 11/38 - Blade pitch-changing mechanisms fluid, e.g. hydraulic
B64C 27/59 - Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
B64C 27/64 - Transmitting means, e.g. interrelated with initiating means or means acting on blades using fluid pressure, e.g. having fluid power amplification
An annular spar for a ducted-rotor of an aircraft may be fabricated from composite material, such as carbon-fiber-reinforced plastic (CFRP). The spar may include an annular plate, a first circumferential flange that extends from an outer edge of the plate, and a second circumferential flange that extends from an inner edge of the plate. The first and second circumferential flanges may taper inwardly toward a center axis of the spar. The spar may be constructed of a plurality of layers of CFRP. One or more of the layers may be fabricated from a single ply of CFRP, and one or more other layers may be fabricated from a plurality of plies of CFRP. The spar may exhibit a coefficient of thermal expansion (CTE) that allows an associated tip gap to remain essentially constant throughout a range of operating temperatures.
An exemplary proprotor blade assembly includes a structural skin extending spanwise from a root to a tip and along a chord from leading edge to a trailing edge and a structural core positioned inside of the structural skin, the structural skin comprising hex-shaped structures oriented normal to the structural skin.
Embodiments are directed to a double Hooke's joint gimbal in a rotor system. An upper Hooke's joint has four arms extending radially outward to define first and second axes, and a lower Hooke's joint has four arms extending radially outward to define third and fourth axes. A pair of connectors couple the upper Hooke's joint and the lower Hooke's joint. A first set of bearings are positioned between arms on the upper and lower Hooke's joints and the connectors. The first set of bearings comprise an elastomer, such as elastomeric journal bearings. The upper Hooke's joint is coupled to a yoke and rotor blades by a driver assembly that allows rotor blade flapping. The lower Hooke's joint is coupled to and driven by a mast. A spherical bearing allows the upper Hooke's joint to move laterally along the mast.
A movable ballast system for an aircraft includes first and second ballast docks secured to the aircraft. The first ballast dock includes a first housing and a first ballast tray secured within the first housing. The first ballast tray includes a plurality of channels. The second ballast dock is positioned aft of a CG of the aircraft and includes a second housing and a second ballast tray secured within the second housing. The second ballast tray includes a plurality of channels. The movable ballast system includes a plurality of movable ballasts, each movable ballast of the plurality of movable ballasts being configured to fit within at least one channel of each of the plurality of channels of the first and second ballast trays.
A movable ballast system for an aircraft includes first and second ballast docks secured to the aircraft. The first ballast dock includes a first housing and a first ballast tray and a first stop plate secured within the first housing. The first ballast tray includes a plurality of channels. The second ballast dock is positioned aft of a CG of the aircraft and includes a second housing and a second ballast tray and a second stop plate secured within the second housing. The second ballast tray includes a plurality of channels. The movable ballast system includes a plurality of movable ballasts, each movable ballast of the plurality of movable ballasts being configured to fit within at least one channel of each of the plurality of channels of the first and second ballast trays.
An example of a hub for a tail rotor includes a body configured to couple to a mast of a rotor system, a trunnion disposed within the body, first and second shafts disposed on opposite sides of the trunnion, first and second end plates secured to the body, and first and second end bearings, the first end bearing disposed between the first shaft and the first end plate and the second end bearing disposed between the second shaft and the second end plate.
A rotorcraft includes a main rotor system coupled to a mast and a rotor assembly. The rotor assembly includes a yoke comprising a rotor coupling, a first damper mount attached to the rotor coupling, a rotor extension configured to couple to the rotor coupling and comprising a second damper mount, a damper coupled to the first and second damper mounts, and a fairing enclosing the damper and the yoke.
An exemplary ducted fan with an optimized stator includes a duct surrounding a rotor hub from which blades radially extend and the stator having a stator span extending horizontally across an inside diameter of the duct, the stator having a stator chord extending from a leading edge to a trailing edge, wherein a length of the stator chord varies across the stator span.
An exemplary tiltrotor aircraft having a vertical takeoff and landing (VTOL) flight mode and a forward flight mode includes tiltable rotors located at forward boom ends, tiltable ducted fans located at wings aft of the forward boom ends, and aft rotors located on aft boom portions.
An exemplary tail rotor includes a first blade assembly configured to rotate in a first direction about an axis of rotation and a second blade assembly configured to rotate in a second direction about the axis of rotation.
B64C 27/82 - RotorcraftRotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting-rotor torque or changing direction of rotorcraft
B64C 27/78 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement in association with pitch adjustment of blades of anti-torque rotor
B64C 27/52 - Tilting of rotor bodily relative to fuselage
An example of a mounting rail system for a console of an aircraft includes a mounting rail with a track that includes two bevelled faces, a pyramidal nut configured to fit within the track, and a mounting bracket configured to be secured to the mounting rail via a fastener that attaches to the pyramidal nut. The pyramidal nut includes two bevelled faces that align with the two bevelled faces of the track.
A tension-torsion strap, for example for a rotor aircraft, including a continuous length of carbon fiber tow arranged in multiple loops to form an elongated member extending between opposing ends and a flexible cover encasing the carbon fiber tow.
A method of controlling a tail rotor system includes pivoting a swashplate of the tail rotor system about an axis passing through a diameter of the swashplate. Pivoting the swashplate causes a first linkage of a first pair of linkages coupled between the swashplate and a collective crosshead to move in a first direction and a second linkage of the first pair of linkages coupled between the swashplate and the collective crosshead to move in a second direction that is opposite the first direction. The movement of the first and second linkages causes a plane of rotation of a pair of rotors of the tail rotor system to cant relative to a centerline of a mast of the tail rotor system. A tail rotor system is also disclosed.
B64C 27/82 - RotorcraftRotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting-rotor torque or changing direction of rotorcraft
B64C 27/78 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement in association with pitch adjustment of blades of anti-torque rotor
An example of a hub for a tail rotor includes a body configured to couple to a mast of a rotor system, a trunnion disposed within the body, first and second shafts disposed on opposite sides of the trunnion, first and second end plates secured to the body, and first and second end bearings, the first end bearing disposed between the first shaft and the first end plate and the second end bearing disposed between the second shaft and the second end plate.
In some embodiments, a method of manufacturing composite laminate, including providing a first fibrous material having a plurality of fibers, providing a second fibrous material having a plurality of fibers, disposing the fibers of the first fibrous material in a first polymeric matrix, disposing the fibers of the second fibrous material in a second polymeric matrix, laying up a plurality of the first fibrous material on a rigid structure, laying up the second fibrous material on the rigid structure, wherein the first fibrous material is in contact with the second fibrous material, curing the first polymeric matrix, creating a plurality of baseline layers from the plurality of first fibrous material and the first polymeric matrix, and curing the second polymeric matrix, creating a compliant layer from the second fibrous material and the second polymeric matrix. The compliant layer is stronger than each individual baseline layers.
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B29C 70/30 - Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or coreShaping by spray-up, i.e. spraying of fibres on a mould, former or core
B32B 5/14 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
B29L 31/30 - Vehicles, e.g. ships or aircraft, or body parts thereof
44.
Systems and methods of optimizing utilization of vehicle onboard storage
In an embodiment, a method includes monitoring environmental conditions via a plurality of sensors positioned in proximity to a vehicle. The method also includes receiving, from one or more of the plurality of sensors, a first measured value of a first environmental variable and at least one additional measured value of at least one additional environmental variable. In addition, the method includes automatically determining, via a machine-learning model, a first expected value of the first environmental variable given the at least one additional measured value of the at least one additional environmental variable. Furthermore, the method includes automatically generating a storage decision in relation to the first measured value based, at least in part, on an evaluation of the first measured value relative to the first expected value. Additionally, the method includes causing execution of the storage decision at least with respect to onboard storage of the vehicle.
G07C 5/08 - Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle, or waiting time
H03M 7/30 - CompressionExpansionSuppression of unnecessary data, e.g. redundancy reduction
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04W 4/48 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
Methods and systems of locating an object of interest with a hyperspectral imaging system include placing a hyperspectral tag on the object of interest. A hyperspectral camera then then collects light emitted by an area of interest. An analyzer unit of the hyperspectral imaging system processes the collected light emitted by the area of interest into a hyperspectral image. The hyperspectral image includes a data file that includes information regarding a spectral response at each pixel of the first hyperspectral image. The analyzer unit then compares the spectral response at a first pixel of the hyperspectral image with the spectral response of the hyperspectral tag. Based upon the comparison, the analyzer unit generates an identity of the object of interest.
An exemplary liquid tank level measurement system includes a tank having a wall, an accelerometer attached to the wall and configured to measure a vibration in the wall, and an instrument electronically connected to the accelerometer, the instrument configured to communicate a liquid level condition responsive to a vibration measurement received from the accelerometer.
An inboard beam includes a body having an upper flange and a lower flange coupled thereto. The upper flange includes a first upper inboard aperture and an upper outboard aperture formed therein. The lower flange includes a first lower inboard aperture and a lower outboard aperture formed therein. An upper beam fitting is coupled to the upper flange and lower beam fitting is coupled to the lower flange. The upper beam fitting includes a first upper inboard post. The upper beam fitting includes an upper outboard post extending parallel to the inboard post. The lower beam fitting includes a first lower inboard post. The lower beam fitting includes a lower outboard post extending parallel to the lower inboard post.
A method of increasing a stability speed of a tiltrotor aircraft includes pivoting a rotor assembly having at least three rotor blades from a first position for operating the tiltrotor aircraft in a helicopter mode to a second position for operating the tiltrotor aircraft in an airplane mode, and increasing a stiffness of the rotor assembly when the rotor assembly is in the second position.
An exemplary rotorcraft includes a power train with an engine coupled to a gearbox, a main rotor blade having a mast coupled to the power train, a control input linkage in communication between a pilot input device and the main rotor blade configured to communicate a control input force from the pilot input device to the main rotor blade, and a counterweight system in connection with the control input linkage and the power train to apply a centrifugal force to the control input linkage.
B64C 27/605 - Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including swash plate, spider or cam mechanisms
A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
In one embodiment, a method is performed by a computer system in an aircraft. The method includes receiving an advance indication of a take-off or landing event to be executed by the aircraft in proximity to a landing area such that the landing area includes an arrangement of a plurality of emitters of electromagnetic radiation. The method further includes, responsive to the receiving, detecting, via a sensor in communication with the computer system, emission states of at least some of the plurality of emitters. In addition, the method includes transforming the detected emission states into an instruction set for the take-off or landing event. The method also includes initiating monitoring of the aircraft relative to the instruction set as the aircraft executes the take-off or landing event in proximity to the landing area.
An aircraft includes a variable-speed gearbox. The variable-speed gearbox includes a low-speed gear train and a high-speed gear train, each gear train of which is configured to selectively provide torque from an engine of the aircraft to a proprotor. The variable-speed gearbox also includes a hydraulic system configured to provide torque to the proprotor. The hydraulic system includes a hydraulic pump driven by the engine of the tiltrotor aircraft and a variable-displacement motor driven by a hydraulic fluid from the hydraulic pump.
F16H 61/02 - Control functions within change-speed- or reversing-gearings for conveying rotary motion characterised by the signals used
F16H 61/12 - Detecting malfunction or potential malfunction, e.g. fail safe
F16H 3/083 - Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously- meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys
F16H 3/097 - Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously- meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts the input and output shafts being aligned on the same axis
F16H 61/00 - Control functions within change-speed- or reversing-gearings for conveying rotary motion
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B64D 35/04 - Transmitting power from power plants to propellers or rotorsArrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors
F16H 47/02 - Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
An aircraft having an electric motor coupled to a rotor and an instrument electronically connected to the electric motor and configured to communicate a time available value before a motor condition reaches a motor condition limit.
B64D 31/06 - Initiating means actuated automatically
B64D 45/00 - Aircraft indicators or protectors not otherwise provided for
G01C 23/00 - Combined instruments indicating more than one navigational value, e.g. for aircraftCombined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
A method of blade fold for a tiltrotor aircraft includes configuring the tiltrotor aircraft in a flight ready position with a rotor system in an inverted-Y position, unlocking a first rotor blade of the rotor system to permit the first rotor blade to pivot relative to a yoke of the rotor system, restraining the first rotor blade to allow the first rotor blade to pivot relative to the yoke as the yoke is rotated, rotating the rotor system in a first direction so that the first rotor blade pivots closer to a second rotor blade, rotating the rotor system in a second direction to orient the rotor system into a modified inverted-Y position, unlocking a third rotor blade to allow the third rotor blade to pivot relative to the yoke as the yoke is rotated, and rotating the rotor system in the second direction so that the third rotor blade pivots closer to the second rotor blade.
The aircraft includes a rotor. The rotor includes a plurality of rotor blades. The aircraft further includes a non-rotating aircraft component. A proximity sensor is disposed with at least one of the non-rotating aircraft component and the rotor blades. A flight control computer is electrically coupled to the proximity sensor.
B64C 27/52 - Tilting of rotor bodily relative to fuselage
B64C 11/06 - Blade mountings for variable-pitch blades
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
The aircraft includes a rotor. The rotor includes a plurality of rotor blades. The aircraft further includes a non-rotating aircraft component. A proximity sensor is disposed with at least one of the non-rotating aircraft component and the rotor blades. A flight control computer is electrically coupled to the proximity sensor.
B64C 27/57 - Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
57.
Blade fold method and apparatus for a tilt rotor hub
A folding rotor blade assembly includes a blade fold support and a blade-fold actuator system coupled to the blade fold support. The blade-fold actuator system includes a motor, a tab configured to selectively prevent rotation of a blade tang of a rotor blade, and a cam connected to the blade fold support and coupled to the motor, the cam configured to move the tab between a locked position that prevents rotation of the blade tang and an unlocked position that permits rotation of the blade tang.
A blade-fold bushing system includes a splined bushing comprising a first plurality of teeth, a castellated bushing comprising a second plurality of teeth and a shaft portion configured to coaxially fit within the splined bushing, and a lock bushing coaxially aligned with the castellated bushing. A support tool for use with a blade-fold bushing system includes an outer head comprising a third plurality of teeth configured to mesh with the first plurality of teeth of the splined bushing, and an inner head comprising a fourth plurality of teeth configured to mesh with the second plurality of teeth of the castellated bushing.
A gimbal joint may employ a plurality of wear sleeves, each disposed between a pin or pin receptive bore of a first structure and a corresponding bore or pin of a second structure and between another pin or bore of the second structure and a corresponding bore or pin of a third structure. Each of these structures may be adapted to rotate in a single plane, with one structure adapted to also tilt about a first axis, and one other structure adapted to tilt about a second axis. Each integral flanged wear sleeve may comprise a right circular hollow cylindrical body portion, which may be interiorly sized to be retained on one of the pins and externally sized to be retained in one of the pin receptive bores, and a flange portion may radiate from one end of the cylindrical body portion.
F16C 17/02 - Sliding-contact bearings for exclusively rotary movement for radial load only
F16C 33/20 - Sliding surface consisting mainly of plastics
F16D 3/205 - Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
F16D 3/202 - Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
60.
Systems and methods for controlled filtering of aircraft control input
In one embodiment, a method is performed by a control computer. The method includes receiving a time series of control inputs in relation to a control axis of an aircraft, where the control computer causes actuation in response to each control input in the time series as the control input is received. The method also includes determining aircraft oscillation over a sample period corresponding to the time series. The method also includes evaluating information related to the determined aircraft oscillation using engagement settings associated with a control filter. The method also includes engaging the control filter responsive to the information satisfying the engagement settings, where the engaged control filter systematically attenuates future control inputs in relation to the control axis prior to actuation responsive thereto.
An ice-management method for an aircraft includes scavenging torque from a mast of the aircraft with a system that is configured to provide an ice-management capability. The method includes using the scavenged torque to impart a vibratory force to an arm of the system and imparting the vibratory force from the arm to an inner surface of a spinner of the aircraft via a contact of the arm.
B64D 15/12 - De-icing or preventing icing on exterior surfaces of aircraft by electric heating
B64D 15/16 - De-icing or preventing icing on exterior surfaces of aircraft by mechanical means, e.g. pulsating mats or shoes attached to, or built into, surface
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B64D 7/04 - Arrangement of military equipment, e.g. armaments, armament accessories or military shielding, in aircraftAdaptations of armament mountings for aircraft the armaments being firearms fixedly mounted
A folding rotor blade assembly for an aircraft a yoke, an inboard beam coupled to the yoke, an inboard centrifugal force bearing coupled to the inboard beam, a grip coupled to the inboard beam, an outboard bearing housing coupled to the grip, and a rotor blade pivotally coupled to the grip by a blade fold bolt that is positioned outboard of the outboard bearing housing.
An exemplary passive oil system includes a reservoir housing configured in operation to rotate around a rotational axis, the reservoir housing defining a reservoir between a top wall, a bottom wall, innermost side, and an outer sidewall; and an outlet positioned adjacent the outer sidewall to discharge a lubrication fluid contained in the reservoir in response to the reservoir housing rotating around the rotational axis.
A device to verify main rotor swashplate positioning includes an inner surface of a first section and a gradient surface of a second section. The gradient surface of the second section may have a plurality of graduation indications. In one implementation, the inner surface of the first section at least partially defines a travel arc that is parallel to and concentric with the inner surface. In such an implementation, the device may be configured to move along the travel arc as it rotates about a collective sleeve to contact a swashplate lug.
B64F 5/60 - Testing or inspecting aircraft components or systems
G07C 5/08 - Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle, or waiting time
A masking tool system includes a first masking body and a second masking body. The first masking body includes a bore passing through a portion of the first masking body and a first sealing element disposed on a first end of the first masking body. The second masking body includes a bore passing through the second masking body and a second sealing element disposed on a first end of the second masking body. The system may also include a rod configured to pass through the bores of the first and second masking bodies and to secure the first and second masking bodies to a metallic article placed therebetween. A diagonal length of the masking tool system induces a wobbling rotation during processing.
An afterbody for a rotor blade of a rotorcraft is unitarily formed of a single material of construction. The afterbody includes an upper surface disposed from a lower surface, a concave leading edge connected to the upper surface and the lower surface, and a trailing edge formed at an intersection of the upper surface with the lower surface.
A rotor system for an aircraft including a driving member; an externally driven rim configured to be rotated by the driving member; a hub having a hub axis, the hub including a rotatable housing and a non-rotatable housing; a plurality of rotor blade assemblies rotatably coupled to the rotatable housing of the hub and the externally driven rim such that rotation of the externally driven rim rotates the plurality of rotor blade assemblies about the hub axis, each rotor blade assembly having a rotor blade rotatable about a respective pitch change axis; and a pitch control mechanism operably associated with the hub and the plurality of rotor blade assemblies, wherein, actuation of the pitch control mechanism rotates each rotor blade assembly about the respective pitch change axis to collectively control the pitch of the rotor blade, thereby generating a variable thrust output. Also, a method of operating the rotor system.
B64C 27/82 - RotorcraftRotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting-rotor torque or changing direction of rotorcraft
A standpipe assembly for a rotorcraft includes a slip ring positioned within the mast of the rotorcraft. The slip ring includes a stator rotationally connected to a rotor. A flexible coupling is connected to the stator and a standpipe tube is connected to the flexible coupling. The flexible coupling is capable of angular, axial, and torsional displacement.
H01R 39/34 - Connections of conductor to slip-ring
F16D 3/72 - Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members with axially-spaced attachments to the coupling parts
F16D 3/52 - Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising a continuous strip, spring, or the like engaging the coupling parts at a number of places
An example of an aerial vehicle includes a rudder removably connected to the aerial vehicle by a twist lock mechanism. The twist lock mechanism is biased in a locked position by an elastic member.
B64C 39/02 - Aircraft not otherwise provided for characterised by special use
B64C 29/02 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
A hybrid yoke including a center and yoke arms connected to flexure arms. An inboard centrifugal force bearing assembly connects to the yoke arm and a grip and an outboard shear bearing assembly connects to the flexure arm and the grip. In use, the center and yoke arms carry the centrifugal force at a position inboard of the flexure arm.
A tri-hybrid yoke including a center ring connected to a CF fitting connected to flexure arms. An inboard centrifugal force bearing assembly connects to the CF fitting and a grip. An outboard shear bearing assembly connects to the flexure arm and the grip. In use, the center ring and the CF fittings carry the centrifugal force at a position inboard of the flexure arm.
A multi-piece inboard beam assembly for use in a rotor blade assembly of a rotorcraft. The inboard beam assembly includes an inboard beam connected to an inboard beam fitting with an anti-rotational connection. The inboard beam is connected to a yoke via bearings and the inboard beam fitting is connected to a grip in a double shear condition. In use, the grip, the inboard beam fitting with the double shear connection, the inboard beam, a centrifugal force bearing held by the inboard beam, and the yoke carry the centrifugal force created upon rotation of the rotor blade assembly.
In one aspect, there is a method of making a pre-cured laminate having a total number of plies in a mold, the mold having a cavity with a periphery defined by a forward edge, an aft edge, and outboard ends. The method includes selecting a first plurality of resin impregnated plies that continuously extend beyond the periphery of the cavity, the first plurality of resin impregnated plies includes at least 50 percent of the total number of plies; laying the plies in a mold; compacting the plies in a mold; and pre-curing the plies to form a pre-cured laminate, which can extend beyond the periphery of the cavity. In an embodiment, a pre-cured laminate includes a first plurality of resin impregnated plies that continuously extend beyond the periphery of the cavity.
B29C 70/34 - Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or coreShaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression
B64C 1/12 - Construction or attachment of skin panels
B29C 70/30 - Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or coreShaping by spray-up, i.e. spraying of fibres on a mould, former or core
B64F 5/10 - Manufacturing or assembling aircraft, e.g. jigs therefor
B29C 70/54 - Component parts, details or accessoriesAuxiliary operations
B29D 99/00 - Subject matter not provided for in other groups of this subclass
B64C 3/26 - Construction, shape, or attachment of separate skins, e.g. panels
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
B29C 65/48 - Joining of preformed partsApparatus therefor using adhesives
B32B 3/12 - Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. apertured or formed of separate pieces of material characterised by a layer of regularly-arranged cells whether integral or formed individually or by conjunction of separate strips, e.g. honeycomb structure
B32B 7/12 - Interconnection of layers using interposed adhesives or interposed materials with bonding properties
B64F 5/00 - Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided forHandling, transporting, testing or inspecting aircraft components, not otherwise provided for
B29L 31/30 - Vehicles, e.g. ships or aircraft, or body parts thereof
A hybrid composite reinforced ring gear minimizing radial deformation during high RPM conditions includes a composite backing secured to a metal rim. In use, at operating temperature the composite backing contracts while the metal rim expands thus creating a compressive stress on the metal rim and significantly reduces radial deformation due to centrifugal forces as compared to an all steel ring gear.
12 - Land, air and water vehicles; parts of land vehicles
39 - Transport, packaging, storage and travel services
Goods & Services
Aircraft, namely, air taxis in the nature of vertical take-off and landing (VTOL) aircraft and structural parts for the foregoing, excluding drones and parachutes Air taxi services; Air taxi services incorporating artificial intelligence; Air taxi services utilizing aircraft incorporating artificial intelligence
12 - Land, air and water vehicles; parts of land vehicles
39 - Transport, packaging, storage and travel services
Goods & Services
Aircraft, namely, air taxis in the nature of vertical take-off and landing (VTOL) aircraft and structural parts for the foregoing, excluding drones and parachutes Air taxi services; Air taxi services incorporating artificial intelligence; Air taxi services utilizing aircraft incorporating artificial intelligence