A method for producing modified music can be for facilitating playing of a musical instrument and/or facilitate learning of a song. Such methods can include several computer implemented steps which can be some or all of the following steps; digitally obtaining original note data about a song and/or original audio data of the song, creating modified note data for a musical instrument, synchronizing audio data of the song to the modified note data, and presenting the modified note data to a user. The steps can also be ordered as outlined above and below.
The present invention relates to the field of audio recognition, in particular to computer implemented note recognition methods in a gaming application. Furthermore, the present invention relates to improving latency of such audio recognition methods. One of the embodiments of the invention described herein is a method for note recognition of an audio source. The method includes: dividing an audio input into a plurality of frames, each frame having a pre-determined length, conducting a frequency analysis of at least a set of the plurality of frames, based on the frequency analysis, determining if a frame is a transient frame with a frequency change between the beginning and end of the frame, comparing the frequency analysis of each said transient frame to the frequency analysis of an immediately preceding frame and, based on said comparison, determining at least one probable pitch present at the end of each transient frame, and for each transient frame, outputting pitch data indicative of the probable pitch present at the end of the transient frame.
A63F 13/358 - Adapting the game course according to the network or server load, e.g. for reducing latency due to different connection speeds between clients
A63F 13/814 - Musical performances, e.g. by evaluating the player's ability to follow a notation
A63F 13/215 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising means for detecting acoustic signals, e.g. using a microphone
G10H 3/12 - Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussion instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent device
G10H 1/00 - Details of electrophonic musical instruments
3.
Latency enhanced note recognition method in gaming
The present invention relates to the field of audio recognition, in particular to computer implemented note recognition methods in a gaming application. Furthermore, the present invention relates to improving latency of such audio recognition methods. One of the embodiments of the invention described herein is a method for note recognition of an audio source. The method includes: dividing an audio input into a plurality of frames, each frame having a pre-determined length, conducting a frequency analysis of at least a set of the plurality of frames, based on the frequency analysis, determining if a frame is a transient frame with a frequency change between the beginning and end of the frame, comparing the frequency analysis of each said transient frame to the frequency analysis of an immediately preceding frame and, based on said comparison, determining at least one probable pitch present at the end of each transient frame, and for each transient frame, outputting pitch data indicative of the probable pitch present at the end of the transient frame.
G10H 3/12 - Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussion instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent device
A63F 13/358 - Adapting the game course according to the network or server load, e.g. for reducing latency due to different connection speeds between clients
A63F 13/814 - Musical performances, e.g. by evaluating the player's ability to follow a notation
A63F 13/215 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising means for detecting acoustic signals, e.g. using a microphone
4.
Selective pitch emulator for electrical stringed instruments
Presented is a method for controlling an electronic stringed instrument. Embodiments of electrical stringed instruments according to the present invention can be actual stringed instruments or virtual representations of stringed instruments. The methods provide a way in which to teach and play electronic stringed instruments which allow a novice musician to focus on a small portion of playing of a stringed instrument while maintaining overall musicality and ability to play the instrument.
G10H 1/34 - Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments
G10H 3/18 - Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussion instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent device using mechanically actuated vibrators with pick-up means using strings, e.g. electric guitars
The present invention relates to the field of audio recognition, in particular to computer implemented note recognition methods. Furthermore, the present invention relates to improving latency of such audio recognition methods. One of the embodiments of the invention described herein is a method for note recognition of an audio source. The method includes: dividing an audio input into a plurality of frames, each frame having a pre-determined length, conducting a frequency analysis of at least a set of the plurality of frames, based on the frequency analysis, determining if a frame is a transient frame with a frequency change between the beginning and end of the frame, comparing the frequency analysis of each said transient frame to the frequency analysis of an immediately preceding frame and, based on said comparison, determining at least one probable pitch present at the end of each transient frame, and for each transient frame, outputting pitch data indicative of the probable pitch present at the end of the transient frame.
G10H 3/12 - Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussion instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent device
G10H 1/00 - Details of electrophonic musical instruments
6.
Method for adjusting the complexity of a chord in an electronic device
Conventionally, an electronic musical user input, such as an electronic keyboard has pre-programmed pitches associated with each key. These pre-programmed pitches correspond to the pitches from their acoustic counterparts. While some methods do exist of remapping the keys in such a way that a user cannot make a so called ‘bad’ sound by playing a wrong 5 not, there is little freedom in the selection of the ‘good’ notes. Therefore, there is herein provided a method of adjusting the complexity of a chord which therein determines the actual set of pitches which can be assigned to a user input device in order to increase the flexibility of remapping systems.
A method is provided of aligning pitch data with audio data in a computing device, the method comprising the computer implemented steps of compiling a plurality of pitch data related to an audio file, each pitch data including information about at least one distinct pitch which is capable of being used by an electronic device to emulate said pitch, said plurality of pitch data compiled in a chronological order relating to said audio file, and arranging the compiled pitch data with the corresponding audio file containing audio data having at least one chord change, wherein the pitch data is offset from the audio data by a predetermined time margin. Further, an audio file is provided, stored on a non-transitory computer readable medium, having pitch data corresponding to and offset from chord changes in audio data by a predetermined time margin advance, and a non-transitory computer readable medium is provided, having stored thereon a set of computer executable instructions.
Presented is a method for controlling an electronic stringed instrument. Embodiments of electrical stringed instruments according to the present invention can be actual stringed instruments or virtual representations of stringed instruments. The methods provide a way in which to teach and play electronic stringed instruments which allow a novice musician to focus on a small portion of playing of a stringed instrument while maintaining overall musicality and ability to play the instrument.
G10H 1/34 - Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments
G10H 3/18 - Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussion instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent device using mechanically actuated vibrators with pick-up means using strings, e.g. electric guitars
Improvisation or playing along with a musical group or with a song is enjoyable to people and musicians of all ability levels. However, it is easy to play notes which do not harmonize with other notes and pitches which are being played. Provided herein is a method, computer program product and electronic device for assigning a set of pitches to a plurality of cells of an electronic device having a touch screen input device. The method may include the steps of obtaining an input chord, disassembling the chord into at least one base note and a plurality of individual voices, arranging a predetermined number of voices of the chord according to at least one predefined rule, and assigning at least one set of pitches to a plurality of cells of an electronic device, said set of pitches corresponding to the base note and arranged predetermined number of voices of the chord. The present method allows a musician to freely play along without the possibility of playing an errant note as the user does not control the actual pitch associated with the cells being indicated by a user on the touch screen.
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
10.
Chord based method of assigning musical pitches to keys
Improvisation or playing along with a musical group or with a song is enjoyable to people and musicians of all ability levels. However, it is easy to play notes which do not harmonize with other notes and pitches which are being played. Provided herein is a method, computer program product and electronic device for assigning a set of pitches to a plurality of physical keys of an electronic device. The method may include the steps of obtaining an input chord, disassembling the chord into at least one base note and a plurality of individual voices, arranging a predetermined number of voices of the chord according to at least one predefined rule, and assigning at least one set of pitches to a plurality of physical keys of an electronic device, said set of pitches corresponding to the base note and arranged predetermined number of voices of the chord. The present method allows a musician to freely play along without the possibility of playing an errant note as the user does not control the actual pitch associated with the physical keys being played.
09 - Scientific and electric apparatus and instruments
15 - Musical instruments
28 - Games; toys; sports equipment
41 - Education, entertainment, sporting and cultural services
Goods & Services
Music-composition software; computer software for creating and editing music and sounds; computer software for processing digital music files; games software; computer games programs downloaded via the internet [software]; education software; application software; computer programs [downloadable software]; computer software applications, downloadable; computer game software downloadable from a global computer network; computer game software for use on mobile and cellular phones. Musical instruments; computer controlled musical instruments; electric and electronic musical instruments; electronic apparatus for synthesising music [musical instrument]; electronic musical apparatus for instruction; electronic musical apparatus for practice; electronic musical synthesizers; electronically operated computer controlled musical apparatus; music synthesizers. Musical games; electronic educational teaching games; handheld computer games. Providing on-line computer games; Internet games (non-downloadable); game services provided on-line from a computer network; musical education services.