Hana Microelectronics, Inc.

United States of America

Back to Profile

1-7 of 7 for Hana Microelectronics, Inc. Sort by
Query
Aggregations
Date
2022 2
2020 3
Before 2020 2
IPC Class
H01L 31/101 - Devices sensitive to infrared, visible or ultraviolet radiation 2
H01L 31/16 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources 2
G01J 5/0801 - Means for wavelength selection or discrimination 1
G01J 5/0818 - Waveguides 1
G01S 17/04 - Systems determining the presence of a target 1
See more
Found results for  patents

1.

OPTICAL SENSOR WITH OPTICAL LAYER AND METHOD OF MANUFACTURE

      
Application Number US2022025122
Publication Number 2022/221732
Status In Force
Filing Date 2022-04-15
Publication Date 2022-10-20
Owner HANA MICROELECTRONICS, INC. (USA)
Inventor
  • Kwangkaew, Vanapong
  • Mitra, Sanjay
  • Silapapipat, Sirirat

Abstract

An optical sensor comprising a substrate. a silicon layer having an optical sensor. light transmissive material covering at least portions of the silicon layer, the optical sensor and the substrate; and an optical layer positioned above the light transmissive material. In some embodiments the optical layer can be a light filtering layer adapted and configured to selectively reflect, absorb or prohibit passage of light in a desired frequency range.

IPC Classes  ?

  • H01L 31/101 - Devices sensitive to infrared, visible or ultraviolet radiation

2.

OPTICAL SENSOR WITH LIGHT PIPE AND METHOD OF MANUFACTURE

      
Application Number US2022025124
Publication Number 2022/221733
Status In Force
Filing Date 2022-04-15
Publication Date 2022-10-20
Owner HANA MICROELECTRONICS, INC. (USA)
Inventor
  • Kwangkaew, Vanapong
  • Mitra, Sanjay
  • Silapapipat, Sirirat

Abstract

An optical sensor comprising a substrate, a silicon layer having an optical sensor, light block material covering at least portions of said silicon layer and the substrate, defining a light pipe aperture above the optical sensor; and an optical layer positioned within the light pipe aperture. In some embodiments, the light pipe aperture is at least partially filled with a light transmissive material.

IPC Classes  ?

  • G01J 5/0801 - Means for wavelength selection or discrimination
  • G01J 5/0818 - Waveguides
  • H01L 31/101 - Devices sensitive to infrared, visible or ultraviolet radiation

3.

PROXIMITY SENSOR

      
Application Number US2020024597
Publication Number 2020/198296
Status In Force
Filing Date 2020-03-25
Publication Date 2020-10-01
Owner HANA MICROELECTRONICS, INC. (USA)
Inventor
  • Kwangkaew, Vanapong
  • Silapapipat, Sirirat
  • Mitra, Sanjay

Abstract

A sensor comprising a light emitter and light detector coupled directly with or formed directly on a lead frame and directly covered and encapsulated by a layer of light transmissive compound. A gap in the light transmissive compound between the light emitter and the light detector wherein in some embodiments the gap can be filled with a light blocking barrier material.

IPC Classes  ?

  • G01S 17/04 - Systems determining the presence of a target

4.

RECHARGEABLE BATTERY AND HEARING AID SYSTEM

      
Application Number US2019060630
Publication Number 2020/097571
Status In Force
Filing Date 2019-11-08
Publication Date 2020-05-14
Owner HANA MICROELECTRONIC INC (USA)
Inventor
  • Kim, In Suk
  • Teo, Chwee Heng

Abstract

A rechargeable hearing aid system comprising a hearing aid capable of amplifying or selectively amplifying surrounding sounds, a rechargeable battery unit that can comprise a rechargeable battery of any form, a ferrite sheet, an inductive charging coil in electrical communication with said rechargeable battery and a power source. In operation, the hearing aid can be placed in proximity to the power source and the batter within the hearing aid can be charged absent direct electrical contact between the power source and the battery.

IPC Classes  ?

  • H04R 25/00 - Deaf-aid sets
  • H02J 50/10 - Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
  • H02J 7/02 - Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters

5.

PROXIMITY SENSOR WITH LIGHT BLOCKING BARRIER

      
Application Number US2019051166
Publication Number 2020/056366
Status In Force
Filing Date 2019-09-13
Publication Date 2020-03-19
Owner HANA MICROELECTRONICS, INC (USA)
Inventor
  • Kwangkaew, Vanapong
  • Silapapipat, Sirirat
  • Mitra, Sanjay

Abstract

A sensor comprising a light emitter and light detector directly covered and encapsulated by a layer of light transmissive compound. A gap in the light transmissive compound between the light emitter and the light detector filled with a light blocking barrier.

IPC Classes  ?

  • H01L 31/16 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
  • G02B 1/15 -

6.

PROXIMITY SENSOR WITH INFRARED INK COATING

      
Application Number US2019033087
Publication Number 2019/222732
Status In Force
Filing Date 2019-05-20
Publication Date 2019-11-21
Owner HANA MICROELECTRONICS, INC. (USA)
Inventor
  • Kwangkaew, Vanapong
  • Silapapipat, Sirirat
  • Mitra, Sanjay

Abstract

A sensor comprising a light emitter and light detector directly covered and encapsulated by a layer of light transmissive compound. A gap in the light transmissive compound between the light emitter and the light detector filled with an infrared ink. In some embodiments, an infrared ink can cover at least a portion of a top surface of the sensor and define apertures above the light detector and/or light emitter.

IPC Classes  ?

  • H01L 31/14 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices

7.

PROXIMITY SENSOR WITH LIGHT BLOCKING COMPOUND

      
Application Number US2016024316
Publication Number 2016/154582
Status In Force
Filing Date 2016-03-25
Publication Date 2016-09-29
Owner HANA MICROELECTRONICS, INC. (USA)
Inventor
  • Kwangkaew, Vanapong
  • Chansawang, Krisadayut
  • Silapapipat, Sirirat
  • Bootwicha, Preecha
  • Mitra, Sanjay

Abstract

A sensor comprising a light emitter and light detector directly covered and encapsulated by a layer of light blocking compound. The light blocking compound can be thick enough between the light emitter and light detector to block substantially all light emitted by the light emitter from reaching the light detector directly, but be thin enough above the light emitter and light detector to allow at least some level of light emitted by the light emitter to escape out of the sensor, be reflected by another object, re-enter the sensor, and survive passing through the light blocking compound to enter the light detector.

IPC Classes  ?

  • H01L 31/16 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
  • G02B 1/11 - Anti-reflection coatings