A system and method for transporting and distributing hydrogen, reducing the risk of hydrogen leakage, maintaining a record of provenance, and measuring and recording its purity level as it flows from source to destination to assure it complies with a predetermined range of values. The system includes a hydrogen delivery line made from metallic or non-metallic pipe that may be placed inside a safety pipe such that a channel is formed between an exterior of the hydrogen delivery line and an interior of the safety pipe. A sweeper gas or liquid may be injected into the channel to purge any hydrogen that might escape from the hydrogen delivery line, and one or more sensors may be used to detect and avoid the presence of an unacceptable level of hydrogen, or to stop the flow of hydrogen and remediate the problem well before a safety or environmental risk can occur.
A system and method for transporting and distributing hydrogen, reducing the risk of hydrogen leakage, maintaining a record of provenance, and measuring and recording its purity level as it flows from source to destination to assure it complies with a predetermined range of values. The system includes a hydrogen delivery line made from metallic or non-metallic pipe that may be placed inside a safety pipe such that a channel is formed between an exterior of the hydrogen delivery line and an interior of the safety pipe. A sweeper gas or liquid may be injected into the channel to purge any hydrogen that might escape from the hydrogen delivery line, and one or more sensors may be used to detect and avoid the presence of an unacceptable level of hydrogen, or to stop the flow of hydrogen and remediate the problem well before a safety or environmental risk can occur.
A system, method and apparatus are proposed to assist in assembling the frame, attaching the skin, and performing other tasks in manufacturing an airship and constructing other structures that are otherwise challenging, inefficient, or unsuitable for humans to perform, and/or that traditionally require significant investments in capital intensive manufacturing facilities. Several embodiments are proposed in which these and other recurring manufacturing tasks can be performed safely and efficiently with the assistance of autonomous, semi-autonomous, and/or human-directed robots, acting independently and in robot swarms.
A lighter-than-air airship has an exoskeleton constructed of spokes and hubs to create a set of connected hexagrams comprised of isosceles triangles wherein the spokes flex and vary in length to produce the slope of said airship's surface. In one embodiment, the exoskeleton connects to a nose cone that includes a cockpit cabin for controlling the airship's operation from a single location that can be physically separated from the exoskeleton in response to catastrophic events and for autonomous and/or remotely piloted operation. An improved means is also provided for landing and unloading cargo, and through use of unmanned aerial vehicles in another embodiment, the airship is configured for remote pickup, transport, delivery and return of payloads such as packages. In yet another embodiment, the airship provides a communications platform for beam form transmission and satellite signal relay, including in combination with the foregoing disclosed attributes.
A system, method and apparatus are disclosed for enabling the efficient utilization of hydrogen as an emissions-free fuel for airships and other aircraft, including in one embodiment for transporting cryogenic hydrogen as the airship's payload. A system, method and apparatus are disclosed to provide substantially higher net energy density for the propulsion system, optimizing the weight of the cryogenic tanks, utilizing boiloff directly or indirectly for propulsion power, and employing a novel thermal management system both to cool the fuel cells and help regulate the conversion of liquid hydrogen into gas. A system, method and apparatus are also disclosed for ground-based facilities including strategically located depots, optionally supplied by such hydrogen transport vehicles, and utilizing a novel thermal compression system to store, pressurize and distribute hydrogen, including but not limited to gaseous hydrogen pipelines, transport trailers, and dispensing systems.
H01M 8/04082 - Arrangements for control of reactant parameters, e.g. pressure or concentration
H01M 8/04014 - Heat exchange using gaseous fluidsHeat exchange by combustion of reactants
H01M 8/04111 - Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
A system, method and apparatus are disclosed for enabling the efficient utilization of hydrogen as an emissions-free fuel for airships and other aircraft, including in one embodiment for transporting cryogenic hydrogen as the airship's payload. A system, method and apparatus are disclosed to provide substantially higher net energy density for the propulsion system, optimizing the weight of the cryogenic tanks, utilizing boiloff directly or indirectly for propulsion power, and employing a novel thermal management system both to cool the fuel cells and help regulate the conversion of liquid hydrogen into gas. A system, method and apparatus are also disclosed for ground-based facilities including strategically located depots, optionally supplied by such hydrogen transport vehicles, and utilizing a novel thermal compression system to store, pressurize and distribute hydrogen, including but not limited to gaseous hydrogen pipelines, transport trailers, and dispensing systems.
A62C 31/05 - Nozzles specially adapted for fire-extinguishing with two or more outlets
A62C 3/02 - Fire prevention, containment or extinguishing specially adapted for particular objects or places for area conflagrations, e.g. forest fires, subterranean fires
A62C 99/00 - Subject matter not provided for in other groups of this subclass
A62C 3/00 - Fire prevention, containment or extinguishing specially adapted for particular objects or places
A62C 31/02 - Nozzles specially adapted for fire-extinguishing
A62C 19/00 - Hand fire-extinguishers in which the extinguishing substance is expelled by an explosionExploding containers thrown into the fire
A62C 31/00 - Delivery of fire-extinguishing material
A system and method for transporting and distributing hydrogen, reducing the risk of hydrogen leakage, maintaining a record of provenance, and measuring and recording its purity level as it flows from source to destination to assure it complies with a predetermined range of values. The system includes a hydrogen delivery line made from metallic or non-metallic pipe that may be placed inside a safety pipe such that a channel is formed between an exterior of the hydrogen delivery line and an interior of the safety pipe. A sweeper gas or liquid may be injected into the channel to purge any hydrogen that might escape from the hydrogen delivery line, and one or more sensors may be used to detect and avoid the presence of an unacceptable level of hydrogen, or to stop the flow of hydrogen and remediate the problem well before a safety or environmental risk can occur.
A system, method and apparatus are proposed to assist in assembling the frame, attaching the skin, and performing other tasks in manufacturing an airship and constructing other structures that are otherwise challenging, inefficient, or unsuitable for humans to perform, and/or that traditionally require significant investments in capital intensive manufacturing facilities. Several embodiments are proposed in which these and other recurring manufacturing tasks can be performed safely and efficiently with the assistance of autonomous, semi-autonomous, and/or human-directed robots, acting independently and in robot swarms.
A system, method and apparatus are proposed to assist in assembling the frame, attaching the skin, and performing other tasks in manufacturing an airship and constructing other structures that are otherwise challenging, inefficient, or unsuitable for humans to perform, and/or that traditionally require significant investments in capital intensive manufacturing facilities. Several embodiments are proposed in which these and other recurring manufacturing tasks can be performed safely and efficiently with the assistance of autonomous, semi-autonomous, and/or human-directed robots, acting independently and in robot swarms.
A system, method and apparatus are proposed to assist in assembling the frame, attaching the skin, and performing other tasks in manufacturing an airship and constructing other structures that are otherwise challenging, inefficient, or unsuitable for humans to perform, and/or that traditionally require significant investments in capital intensive manufacturing facilities. Several embodiments are proposed in which these and other recurring manufacturing tasks can be performed safely and efficiently with the assistance of autonomous, semi-autonomous, and/or human-directed robots, acting independently and in robot swarms.
06 - Common metals and ores; objects made of metal
17 - Rubber and plastic; packing and insulating materials
39 - Transport, packaging, storage and travel services
Goods & Services
Pipes made of metal, metal tubes and fittings of metal for pipes; metal pipes for hydrogen transport and distribution lines Flexible pipes, not of metal, non-metal flexible tubing, non-metal fittings for pipes and non-metal pipe liners used for hydrogen transport and distribution lines; extruded semifinished goods made of synthetic materials in the form of flexible plastic and synthetic polymer pipes for hydrogen transport and distribution lines Distribution and transport of hydrogen gas
13.
Method and apparatus for lighter-than-air airship with improved structure and delivery system
A lighter-than-air airship has an exoskeleton constructed of spokes and hubs to create a set of connected hexagrams comprised of isosceles triangles wherein the spokes flex and vary in length to produce the slope of said airship's surface. In one embodiment, the exoskeleton connects to a nose cone that includes a cockpit cabin for controlling the airship's operation from a single location that can be physically separated from the exoskeleton in response to catastrophic events and for autonomous and/or remotely piloted operation. An improved means is also provided for landing and unloading cargo, and through use of unmanned aerial vehicles in another embodiment, the airship is configured for remote pickup, transport, delivery and return of payloads such as packages. In yet another embodiment, the airship provides a communications platform for beam form transmission and satellite signal relay, including in combination with the foregoing disclosed attributes.
A system uses existing pipelines, e.g., natural gas, oil, etc., to transport hydrogen to one or more distribution points. The disclosed hydrogen distribution system enables use of water, sewer, storm drain and other existing pipelines for local distribution. Hydrogen is produced from an energy source at a producing location. A safety pipe is located inside an existing pipeline configured to carry a first product and a hydrogen delivery line, configured to carry hydrogen, is placed inside the safety pipe such that a channel is formed between an exterior of the hydrogen delivery line and an interior of the safety pipe. Hydrogen is injected into the hydrogen delivery line and a sweeper gas is injected into the channel to purge any hydrogen that might be leaking from the hydrogen delivery line.
A system uses existing pipelines, e.g., natural gas, oil, etc., to transport hydrogen to one or more distribution points. The disclosed hydrogen distribution system enables use of water, sewer, storm drain and other existing pipelines for local distribution. Hydrogen is produced from an energy source at a producing location. A safety pipe is located inside an existing pipeline configured to carry a first product and a hydrogen delivery line, configured to carry hydrogen, is placed inside the safety pipe such that a channel is formed between an exterior of the hydrogen delivery line and an interior of the safety pipe. Hydrogen is injected into the hydrogen delivery line and a sweeper gas is injected into the channel to purge any hydrogen that might be leaking from the hydrogen delivery line.
A system, method and apparatus to transport and distribute hydrogen, store energy at scale, and interconnect locations where large quantities of "green" hydrogen can be produced most advantageously, with cities, towns and rural communities where hydrogen is needed as a clean transportation fuel, industrial feedstock, power source, and for long-term storage of electrical power. A hydrogen distribution pipeline enables use of natural gas, oil and other existing pipelines to transport hydrogen to one or more distribution points; and in one embodiment, integrates a lighter-than-air airship to transport hydrogen between locations where pipelines don't exist or are impractical. The disclosed hydrogen distribution pipeline also enables use of water, sewer, storm drain and other existing pipelines for local distribution, thereby saving time and money, and reducing construction disruption to the local community, in establishing these infrastructure components necessary to the widespread use of hydrogen in addressing climate change.
A system, method and apparatus to transport and distribute hydrogen, store energy at scale, and interconnect locations where large quantities of "green" hydrogen can be produced most advantageously, with cities, towns and rural communities where hydrogen is needed as a clean transportation fuel, industrial feedstock, power source, and for long-term storage of electrical power. A hydrogen distribution pipeline enables use of natural gas, oil and other existing pipelines to transport hydrogen to one or more distribution points; and in one embodiment, integrates a lighter-than-air airship to transport hydrogen between locations where pipelines don't exist or are impractical. The disclosed hydrogen distribution pipeline also enables use of water, sewer, storm drain and other existing pipelines for local distribution, thereby saving time and money, and reducing construction disruption to the local community, in establishing these infrastructure components necessary to the widespread use of hydrogen in addressing climate change.
A lighter-than-air airship has an exoskeleton constructed of spokes and hubs to create a set of connected hexagrams comprised of isosceles triangles wherein the spokes flex and vary in length to produce the slope of said airship's surface. In one embodiment, the exoskeleton connects to a nose cone that includes a cockpit cabin for controlling the airship's operation from a single location that can be physically separated from the exoskeleton in response to catastrophic events and for autonomous and/or remotely piloted operation. An improved means is also provided for landing and unloading cargo, and through use of unmanned aerial vehicles in another embodiment, the airship is configured for remote pickup, transport, delivery and return of payloads such as packages. In yet another embodiment, the airship provides a communications platform for beam form transmission and satellite signal relay, including in combination with the foregoing disclosed attributes.
B64D 9/00 - Equipment for handling freightEquipment for facilitating passenger embarkation or the like
B66F 11/04 - Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
B64D 1/08 - Dropping, ejecting, or releasing articles the articles being load-carrying devices
B64D 5/00 - Aircraft transported by aircraft, e.g. for release or reberthing during flight
A lighter-than-air airship has an exoskeleton constructed of spokes and hubs to create a set of connected hexagrams comprised of isosceles triangles wherein the spokes flex and vary in length to produce the slope of said airship's surface. In one embodiment, the exoskeleton connects to a nose cone that includes a cockpit cabin for controlling the airship's operation from a single location that can be physically separated from the exoskeleton in response to catastrophic events and for autonomous and/or remotely piloted operation. An improved means is also provided for landing and unloading cargo, and through use of unmanned aerial vehicles in another embodiment, the airship is configured for remote pickup, transport, delivery and return of payloads such as packages. In yet another embodiment, the airship provides a communications platform for beam form transmission and satellite signal relay, including in combination with the foregoing disclosed attributes.
B64D 1/08 - Dropping, ejecting, or releasing articles the articles being load-carrying devices
B64D 5/00 - Aircraft transported by aircraft, e.g. for release or reberthing during flight
B64D 9/00 - Equipment for handling freightEquipment for facilitating passenger embarkation or the like
B66F 11/04 - Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
20.
Method and apparatus for lighter-than-air airship with improved structure and delivery system
A lighter-than-air airship has an exoskeleton constructed of spokes and hubs to create a set of connected hexagrams comprised of isosceles triangles wherein the spokes flex and vary in length to produce the slope of said airship's surface. In one embodiment, the exoskeleton connects to a nose cone that includes a cockpit cabin for controlling the airship's operation from a single location that can be physically separated from the exoskeleton in response to catastrophic events and for autonomous and/or remotely piloted operation. An improved means is also provided for landing and unloading cargo, and through use of unmanned aerial vehicles in another embodiment, the airship is configured for remote pickup, transport, delivery and return of payloads such as packages. In yet another embodiment, the airship provides a communications platform for beam form transmission and satellite signal relay, including in combination with the foregoing disclosed attributes.
A system, method and apparatus to transport and distribute hydrogen, store energy at scale, and interconnect locations where large quantities of “green” hydrogen can be produced most advantageously, with cities, towns and rural communities where hydrogen is needed as a clean transportation fuel, industrial feedstock, power source, and for long-term storage of electrical power. A hydrogen distribution pipeline enables use of natural gas, oil and other existing pipelines to transport hydrogen to one or more distribution points; and in one embodiment, integrates a lighter-than-air airship to transport hydrogen between locations where pipelines don't exist or are impractical. The disclosed hydrogen distribution pipeline also enables use of water, sewer, storm drain and other existing pipelines for local distribution, thereby saving time and money, and reducing construction disruption to the local community, in establishing these infrastructure components necessary to the widespread use of hydrogen in helping address climate change.
A lighter-than-air airship has an exoskeleton constructed of spokes and hubs to create a set of connected hexagrams comprised of isosceles triangles wherein the spokes flex and vary in length to produce the slope of said airship's surface. In one embodiment, the exoskeleton connects to a nose cone that includes a cockpit cabin for controlling the airship's operation from a single location that can be physically separated from the exoskeleton in response to catastrophic events and for autonomous and/or remotely piloted operation. An improved means is also provided for landing and unloading cargo, and through use of unmanned aerial vehicles in another embodiment, the airship is configured for remote pickup, transport, delivery and return of payloads such as packages. In yet another embodiment, the airship provides a communications platform for beam form transmission and satellite signal relay, including in combination with the foregoing disclosed attributes.
A system for transporting hydrogen from where it can be economically made to where it is most needed using airships. Green technologies can be used to generate electricity near to the primary energy sources. This electricity can then be used to produce hydrogen directly from water. Hydrogen can be delivered using an airship in which the hydrogen gas can also be used for generating lift, providing propulsion energy and serving ancillary needs. The ship can be equipped with solar cells that generate electricity that can be used to make hydrogen from water, and can be used to power the ship's propulsion system.
A system for efficiently transporting hydrogen from where it can be economically made to where it is most needed using specially designed airships. Technologies such as geothermal, wind, solar, wave tidal or hydropower can be used to generate electricity in-situ or very near to the primary energy sources. This electricity can then be used to produce hydrogen directly from water through various methods known in the art. Hydrogen can be delivered from the place where it is produced to the place where it is needed using an airship. The hydrogen can provide propulsion energy and serve ancillary needs. In other embodiments of the invention, the airship of the present invention can be used to dramatically reduce the cost of transportation of freight, the cost of passenger transportation, and to save on the area required for landing at the points of loading/unloading and embarkation/debarkation.
A hydrogen airship for efficiently transporting hydrogen from where it can be economically made to where it is most needed using specially designed airships. Hydrogen can be delivered from the place where it is produced to the place where it is needed using an airship in which the hydrogen gas can also be used for generating lift, providing propulsion energy and serving ancillary needs. A unique docking system can use a remotely piloted unmanned aircraft flown from the mother craft to carry a guide line into a receiving attachment point.
A system for efficiently transporting hydrogen from where it can be economically made to where it is most needed using specially designed airships. Technologies such as geothermal, wind, solar, wave tidal or hydropower can be used to generate electricity in-situ or very near to the primary energy sources. This electricity can then be used to produce hydrogen directly from water through various methods known in the art. Hydrogen can be delivered from the place where it is produced to the place where it is needed using an airship in which the hydrogen gas can also be used for generating lift, providing propulsion energy and serving ancillary needs. In other embodiments of the invention, the airship of the present invention can be used to dramatically reduce the cost of transportation of freight, the cost of passenger transportation, and to save on the area required for landing at the points of loading/unloading and embarkation/debarkation. And in another embodiment, the airship of the present invention can be used for transporting water and food to areas where needed. A unique docking system can use a remotely piloted unmanned aircraft flown from the mother craft to carry a guide line into a receiving attachment point.