A unibody heater module is disclosed having an end cap and a base, wherein the base of the heater canister is filled with a solid-state reaction mixture. Twist-to-activate heater starting functionality is embedded directly into the unibody heater module. A reactive starting pellet is embedded into the upper surface of the compacted solid-state reaction mix. The plunger head of a firing pin passing through the center of an internal metal spacer is held a small distance away from the upper surface of the starting pellet. When the user activated CUI is rotated, the base of a cam pushes on one end of a firing pin protruding through a small hole in the end cap of the unibody heater module. The opposite end of the plunger plunges into the starter pellet so as to initiate heater activation in response to operation of the CUI by the user.
A unibody heater module is disclosed having an end cap and a base, wherein the base of the heater canister is filled with a solid-state reaction mixture. Twist-to-activate heater starting functionality is embedded directly into the unibody heater module. A reactive starting pellet is embedded into the upper surface of the compacted solid-state reaction mix. The plunger head of a firing pin passing through the center of an internal metal spacer is held a small distance away from the upper surface of the starting pellet. When the user activated CUI is rotated, the base of a cam pushes on one end of a firing pin protruding through a small hole in the end cap of the unibody heater module. The opposite end of the plunger plunges into the starter pellet so as to initiate heater activation in response to operation of the CUI by the user.
F24V 30/00 - Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
A47J 36/28 - Warming devices generating the heat by exothermic reactions, e.g. heat released by the contact of unslaked lime with water
A unibody heater module is disclosed having an end cap and a base, wherein the base of the heater canister is filled with a solid-state reaction mixture. Twist-to-activate heater starting functionality is embedded directly into the unibody heater module. A reactive starting pellet is embedded into the upper surface of the compacted solid-state reaction mix. The plunger head of a firing pin passing through the center of an internal metal spacer is held a small distance away from the upper surface of the starting pellet. When the user activated CUI is rotated, the base of a cam pushes on one end of a firing pin protruding through a small hole in the end cap of the unibody heater module. The opposite end of the plunger plunges into the starter pellet so as to initiate heater activation in response to operation of the CUI by the user.
A simple integrated assemblage of components built around a modular solid state heater, and incorporating an intuitive consumer user interface (CUI), enables self-heating functionality to be applied in standard beverage cans. The CUI includes an actuation mechanism for user initiation of heating, as well as a novel means of breaching the can to access the heated beverage.
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
A simple integrated assemblage of components built around a modular solid state heater, and incorporating an intuitive consumer user interface (CUI), enables self-heating functionality to be applied in standard beverage cans. The CUI includes an actuation mechanism for user initiation of heating, as well as a novel means of breaching the can to access the heated beverage.
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
A simple integrated assemblage of components built around a modular solid state heater, and incorporating an intuitive consumer user interface (CUI), enables self-heating functionality to be applied in standard beverage cans. The CUI includes an actuation mechanism for user initiation of heating, as well as a novel means of breaching the can to access the heated beverage.
A modular heating system and method is presented that automatically dissipates thermal energy from a heater or heated package if the energy cannot be assimilated without excessive temperature increase. A heater containing reactants that generate heat when combined is placed in thermal contact with a passive thermal control material which is in thermal contact with a container configured to contain a substance to be heated. The passive thermal control material allows the transmission of heat between the heater and the container as long as the temperature of the heat passing through the passive thermal control material does not exceed the activation temperature of the material. If the temperature of the heat passing through the passive thermal control material exceeds the material's decomposition temperature, the passive thermal control material decomposes and thereby dissipates heat.
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
B65D 81/18 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
B65D 85/72 - Containers, packaging elements or packages, specially adapted for particular articles or materials for edible or potable liquids, semiliquids, or plastic or pasty materials
A modular heating system and method is presented that automatically dissipates thermal energy from a heater or heated package if the energy cannot be assimilated without excessive temperature increase. A heater containing reactants that generate heat when combined is placed in thermal contact with a passive thermal control material which is in thermal contact with a container configured to contain a substance to be heated. The passive thermal control material allows the transmission of heat between the heater and the container as long as the temperature of the heat passing through the passive thermal control material does not exceed the activation temperature of the material. If the temperature of the heat passing through the passive thermal control material exceeds the material's decomposition temperature, the passive thermal control material decomposes and thereby dissipates heat.
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
B65D 81/18 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
B65D 85/72 - Containers, packaging elements or packages, specially adapted for particular articles or materials for edible or potable liquids, semiliquids, or plastic or pasty materials
A modular heating system and method is presented that automatically dissipates thermal energy from a heater or heated package if the energy cannot be assimilated without excessive temperature increase. A heater containing reactants that generate heat when combined is placed in thermal contact with a passive thermal control material which is in thermal contact with a container configured to contain a substance to be heated. The passive thermal control material allows the transmission of heat between the heater and the container as long as the temperature of the heat passing through the passive thermal control material does not exceed the activation temperature of the material. If the temperature of the heat passing through the passive thermal control material exceeds the material's decomposition temperature, the passive thermal control material decomposes and thereby dissipates heat.
F24J 1/00 - Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion (for cooking-vessels A47J 36/28;self-heating compresses A61F 7/03;materials for the production of heat or cold undergoing non-reversible chemical reactions, other than by combustion, when used C09K 5/18)
A47J 36/28 - Warming devices generating the heat by exothermic reactions, e.g. heat released by the contact of unslaked lime with water
A modular heating system and method is presented that automatically shuts down the chemical reaction within a heater if the heat generated by the reaction is excessive. Heaters are designed to generate sufficient heat to warm food or drink in an adjacent container. If the container is empty, or if the heater is dislodged from the container, the heat generated by the heater will become dangerously high. When excessive heat is generated by the reaction in the heater, systems and methods of the present invention respond by terminating the reaction before all of the reaction mixture has reacted.
A heating device comprises a heating chamber defining an interior space for receiving and storing a substance to be heated, a heater for use as a source of heat which includes a reaction chamber, a solid state reaction composition disposed within the reaction chamber such that it is physically isolated from and in thermal communication with the interior space of the heating chamber, an activation mechanism in communication with the composition disposed within the reaction chamber, and wherein the reaction composition is inert until the activation mechanism is actuated. Activation mechanism comprises an actuator having a user interface portion and an actuation portion, and the actuation portion carries a reaction initiation material that, when assembled with the heater, is capable of initiating a chemical reaction in the chemical composition when the actuation portion is actuated by a user.
F24J 1/00 - Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion (for cooking-vessels A47J 36/28;self-heating compresses A61F 7/03;materials for the production of heat or cold undergoing non-reversible chemical reactions, other than by combustion, when used C09K 5/18)
16.
PACKAGE HEATING DEVICE AND CHEMICAL COMPOSITIONS FOR USE THEREWITH
A heating device comprising an exothermic solid state reaction composition for various applications, for example heating prepared foods or beverages in their containers. The heating device comprises a heating chamber comprising a solid state reaction composition that is physically isolated from and in thermal communication with the interior space of the heating chamber, an activation mechanism in communication with the composition disposed within the reaction chamber, and wherein the reaction composition is inert until the activation mechanism is actuated. Activation mechanism comprises an actuator having a user interface portion and an actuation portion, and the actuation portion carries a reaction initiation material that, when assembled with the heater, is capable of initiating a chemical reaction in the chemical composition when the actuation portion is actuated by a user. Various passive and active thermal controls for heating device are also provided.
A solid state moderated chemical reaction for use with a heating device comprises the complete reaction between iron powder and the oxidizer sodium chlorate in stoichiometric balance such that the oxygen, rather than being emitted externally to the device, is fully reacted internally in the heating device to a solid oxide. A heating device comprises a heating chamber defining an interior space for receiving and storing a substance to be heated, a heater for use as a source of heat which includes a reaction chamber, a solid state reaction composition disposed within the reaction chamber such that it is physically isolated from and in thermal communication with the interior space of the heating chamber, an activation mechanism in communication with the composition disposed within the reaction chamber, and wherein the reaction composition is inert until the activation mechanism is actuated. Activation mechanism comprises an actuator having a user interface portion and an actuation portion, and the actuation portion carries a reaction initiation material that, when assembled with the heater, is capable of initiating a chemical reaction in the chemical composition when the actuation portion is actuated by a user. Heater comprises a housing defining an exterior shape of the heater and an interior space, a solid state chemical heating composition disposed within the interior space, and an activation mechanism in communication with the composition and having an actuator and disposed within the housing such that the activation mechanism is actuable exteriorly from the housing. Heater may be incorporated into the heating device, or alternatively may be modular and removably coupled to heating device. Heater may include an opening, or alternatively may be fully sealed for emission-free operation as well as to assure a controlled internal environment and to promote stability during storage. Various passive and active thermal controls based on physical or chemical responses of materials to temperature and appropriate to important use conditions for heating device are also provided.
A heating device, such as a package or container, and associated a heating element having an activation mechanism, for heating a substance contained within the device, such as food or beverage.
A47J 36/30 - Devices for warming by making use of burning cartridges or other chemical substances
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
B65D 85/18 - Containers, packaging elements or packages, specially adapted for particular articles or materials for wearing apparel, headwear or footwear
A heating device, such as a package or container, and associated a heating element having an activation mechanism, for heating a substance contained within the device, such as food or beverage.
A47J 36/30 - Devices for warming by making use of burning cartridges or other chemical substances
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
B65D 85/18 - Containers, packaging elements or packages, specially adapted for particular articles or materials for wearing apparel, headwear or footwear
F24V 30/00 - Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion
20.
PACKAGE HEATING APPARATUS AND CHEMICAL COMPOSITION
A heating device is provided comprising a heating chamber for receiving and storing a substance to be heated having at least two walls, a reaction chamber affixed to a wall of the heating chamber, a solid-state modified thermite reaction composition located within the reaction chamber and an actuatable trigger mechanism affixed to the reaction chamber such that the trigger mechanism is in contact with the reaction composition. According to another aspect, a heating device is provided comprising a heating chamber defining an interior space for receiving and storing a substance to be heated, a reaction chamber, a solid-state modified thermite reaction composition disposed within the reaction chamber such that it is physically isolated from and in thermal communication with the interior space of the heating chamber and an activator mechanism affixed to either reaction chamber or heating chamber such that the activator mechanism is in communication with the reaction composition.
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
A47J 36/28 - Warming devices generating the heat by exothermic reactions, e.g. heat released by the contact of unslaked lime with water
B65D 81/38 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
B65D 17/34 - Arrangement or construction of pull or lift tabs
21.
SOLID-STATE THERMITE COMPOSITION BASED HEATING DEVICE
A solid state thermite reaction composition is provided comprising a fuel component, an initiating oxidizer, a primary oxidizer, a fluxing agent and a thermal diluent. According to another aspect, a heating device is provided comprising a heating chamber for receiving and storing a substance to be heated having at least two walls, a reaction chamber affixed to a wall of the heating chamber, a solid state thermite reaction composition located within the reaction chamber and an actuatable trigger mechanism affixed to the reaction chamber such that the trigger mechanism is in contact with the reaction composition. According to another aspect, a solid-state thermite reaction activation mechanism is provided comprising a first compound substantially in contact with a thermite reaction fuel, a second compound and a removable barrier located between the first and second compounds preventing any contact between the first and second compounds.
A solid state thermite reaction composition is provided comprising a fuel component, an initiating oxidizer, a primary oxidizer, a fluxing agent and a thermal diluent. According to other aspects, a heating device, a heating element and an activation mechanism are provided. The heating device comprises a heating chamber defining an interior space for receiving and storing a substance to be heated, a reaction chamber disposed within the heating chamber, a solid state thermite reaction composition disposed within the reaction chamber such that it is physically isolated from and in thermal communication with the interior space of the heating chamber, and an activation mechanism having an actuator. The activation mechanism is in communication with the composition disposed within the reaction chamber and the reaction composition is inert until the activator mechanism is actuated.
F24J 1/00 - Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion (for cooking-vessels A47J 36/28;self-heating compresses A61F 7/03;materials for the production of heat or cold undergoing non-reversible chemical reactions, other than by combustion, when used C09K 5/18)
A47J 36/28 - Warming devices generating the heat by exothermic reactions, e.g. heat released by the contact of unslaked lime with water
B65D 81/34 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs intended to be cooked or heated within the package
23.
Solid-state thermite composition based heating device
A solid state thermite reaction composition is provided comprising a fuel component, an initiating oxidizer, a primary oxidizer, a fluxing agent and a thermal diluent. According to another aspect, a heating device is provided comprising a heating chamber for receiving and storing a substance to be heated having at least two walls, a reaction chamber affixed to a wall of the heating chamber, a solid state thermite reaction composition located within the reaction chamber and an actuatable trigger mechanism affixed to the reaction chamber such that the trigger mechanism is in contact with the reaction composition. According to another aspect, a solid-state thermite reaction activation mechanism is provided comprising a first compound substantially in contact with a thermite reaction fuel, a second compound and a removable barrier located between the first and second compounds preventing any contact between the first and second compounds.
C06B 33/06 - Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being an inorganic oxygen-halogen salt
C06B 33/00 - Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
C06B 29/00 - Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
F24J 1/00 - Apparatus or devices using heat produced by exothermal chemical reactions other than by combustion (for cooking-vessels A47J 36/28;self-heating compresses A61F 7/03;materials for the production of heat or cold undergoing non-reversible chemical reactions, other than by combustion, when used C09K 5/18)
C06B 33/12 - Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being two or more oxygen-yielding compounds