Methods and systems for measuring temperature and/or strain changes in an optical fiber by analyzing Raman scattered light. The methods and systems involve the use of a wavelength locker to generate an altered beam output, the intensity of which is altered in response to the strain change in the optical fiber, and a reference beam. By analyzing the altered beam and the reference beam, the strain change can be accurately and inexpensively determined according to the present disclosure.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01K 11/324 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
The present disclosure provides methods and systems for detecting moving vehicles travelling on transportation infrastructure by evaluating strain data of an optical fiber disposed at a location in proximity to the transportation infrastructure. The strain data is classified, which comprises using a classifier trained to identify a vehicle signature in the strain data indicative of a vehicle travelling on the transportation infrastructure. An occurrence of a vehicle event is determined based on an identification of the vehicle signature in the strain data, and an indication of the vehicle event is output.
There is provided a method of estimating flowrate in a pipeline based on acoustic behaviour of the pipe. First acoustic data is measured from the pipeline. A flowrate of the fluid in the pipeline is then estimated. The estimation is based on the first acoustic data and based on a correlation established between second acoustic data and corresponding flowrate data from an experimental pipeline. The correlation is established by a machine learning process (which may include the use of an artificial neural network, such as an autoencoder). The second acoustic data and corresponding flowrate data are used as inputs to the machine learning process.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
Devices and systems for reducing fiber slack and vibration. A plurality of tensioning devices may be used to attach an optical fiber to the outer surface of a pipe where physical conditions are to be measured by the optical fiber. The devices and systems can be configured to provide a uniform tension distribution along an optical fiber to mitigate adverse conditions such as fiber slack and vibration to enable accurate measurements in optical fiber sensors (OFS) systems, with ease of installation and a fail-safe system.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
A multi-fiber polarization diversity receiver includes an optical collimator positioned to receive one or more uncollimated beams emitted by one or more fiber cores and to output one or more collimated beams. The one or more collimated beams are split by a splitter assembly into a first one or more split collimated beams and a second one or more split collimated beams. The first and second one or more split beams are then respectively polarized by first and second polarizers that are configured to output polarized light relative to each other to improve the ability to sense diverse polarization signals. As they are polarized relative to each other to improve the ability to sense diverse polarization signals, interferometry may then be performed in an improved way on pairs of reflected pulses.
G02B 27/28 - Optical systems or apparatus not provided for by any of the groups , for polarising
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
A method of identifying a zone of interest in a wellbore is described. The method includes performing by one or more computer processors at least some of the following steps. Production data comprising data relating to surface production from the wellbore is obtained. Parameter data comprising data relating to one or more parameters of the wellbore as a function of depth along the wellbore is obtained. Cross-correlation data is generated by cross-correlating the production data with the parameter data. The cross-correlation data comprises data relating to cross-correlation strength as a function of the depth along the wellbore. One or more zones of interest are identified within the cross-correlation data, based on the cross-correlation strength and the depth along the wellbore.
E21B 47/10 - Locating fluid leaks, intrusions or movements
E21B 47/113 - Locating fluid leaks, intrusions or movements using electrical indicationsLocating fluid leaks, intrusions or movements using light radiation
E21B 47/135 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range using light waves, e.g. infrared or ultraviolet waves
Methods, systems, and techniques for wind detection. A first acoustic signal generated by an acoustic sensor positioned to be actuated in response to wind is measured. An average value of the first acoustic signal over a sampling duration is determined. The average value may be a median, and the sampling duration may be at least 15 minutes. If the average value of the first acoustic signal satisfies a wind detection threshold, the first acoustic signal is determined to be generated by the wind.
G01V 1/36 - Effecting static or dynamic corrections on records, e.g. correcting spreadCorrelating seismic signalsEliminating effects of unwanted energy
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01V 1/00 - SeismologySeismic or acoustic prospecting or detecting
G01V 1/22 - Transmitting seismic signals to recording or processing apparatus
Methods, systems, and techniques for wind detection. A first acoustic signal generated by an acoustic sensor positioned to be actuated in response to wind is measured. An average value of the first acoustic signal over a sampling duration is determined. The average value may be a median, and the sampling duration may be at least 15 minutes. lf the average value of the first acoustic signal satisfies a wind detection threshold, the first acoustic signal is determined to be generated by the wind.
G01P 5/24 - Measuring speed of fluids, e.g. of air streamMeasuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G08B 13/16 - Actuation by interference with mechanical vibrations in air or other fluid
G08B 29/18 - Prevention or correction of operating errors
G01H 17/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the other groups of this subclass
9.
METHODS AND SYSTEMS FOR TRACKING AN OBJECT MOVING ALONG A CONDUIT
An object moving along a conduit having multiple channels is tracked. Each channel defines a portion of a length of the conduit. For each channel, acoustic data, generated from one or more acoustic signals detected at the channel in response to movement of the object along the conduit, is generated. For at least one channel, the acoustic data obtained for the at least one channel is cross-correlated with the acoustic data obtained for at least one other one of the channels. Based on the cross-correlating, a position of the object within the conduit is determined.
G01S 5/18 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
F16L 55/48 - Indicating the position of the pig or mole in the pipe or conduit
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
10.
METHODS AND SYSTEMS FOR TRACKING AN OBJECT MOVING ALONG A CONDUIT
An object moving along a conduit having multiple channels is tracked. Each channel defines a portion of a length of the conduit. For each channel, acoustic data, generated from one or more acoustic signals detected at the channel in response to movement of the object along the conduit, is generated. For at least one channel, the acoustic data obtained for the at least one channel is cross-correlated with the acoustic data obtained for at least one other one of the channels. Based on the cross-correlating, a position of the object within the conduit is determined.
An object moving along a conduit having multiple channels is tracked. Each channel defines a portion of a length of the conduit. For each channel, acoustic data, generated from one or more acoustic signals detected at the channel in response to movement of the object along the conduit, is generated. For at least one channel, the acoustic data obtained for the at least one channel is cross-correlated with the acoustic data obtained for at least one other one of the channels. Based on the cross-correlating, a position of the object within the conduit is determined.
A system and method for detecting dynamic strain of a housing. The system includes an optical fiber linearly affixed along a surface of a length of the housing and an interrogator comprising a laser source and a photodetector. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs. The segment of the optical fiber is linearly affixed along the surface of the housing. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
E21B 47/007 - Measuring stresses in a pipe string or casing
E21B 47/135 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range using light waves, e.g. infrared or ultraviolet waves
F17C 13/02 - Special adaptations of indicating, measuring, or monitoring equipment
F17D 5/00 - Protection or supervision of installations
There are described methods, systems, and computer-readable media for detecting events in a conduit. Multiple lengths of optical fiber positioned alongside a conduit are used to detect a signal. For each length of optical fiber, interferometric data is obtained from the detected signal. The interferometric data obtained for one length of optical fiber is compared to the interferometric data obtained for one or more other lengths of optical fiber. Based on the comparison, it is determined whether the signal originated from the conduit.
Methods, systems, and techniques for simulating an event. Simulated event data comprising a simulated event, and authentic raw data, are both obtained. The simulated event data and the authentic raw data are blended to form blended data that comprises the simulated event. The blended data may be fed into an event detection system, such as a pipeline leak detection system, for testing purposes.
G06F 30/27 - Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
Methods, systems, and techniques for simulating an event. Simulated event data comprising a simulated event, and authentic raw data, are both obtained. The simulated event data and the authentic raw data are blended to form blended data that comprises the simulated event. The blended data may be fed into an event detection system, such as a pipeline leak detection system, for testing purposes.
There is described a method of determining a position of a pipeline inspection gauge (PIG) in a fluid conduit. While the PIG is moving through the fluid conduit, one or more sensors positioned along the fluid conduit are used to detect one or more signals. Parameter data is extracted from the detected one or more signals. The parameter data includes one or more parameters of the detected one or more signals as a function of time and position along the fluid conduit. PIG movement data indicative of a position of the PIG in the fluid conduit as a function of time is generated using the parameter data.
F16L 55/48 - Indicating the position of the pig or mole in the pipe or conduit
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
17.
Optical interrogator for performing interferometry using fiber Bragg gratings
There is described a method for interrogating optical fiber comprising fiber Bragg gratings (“FBGs”), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01K 11/3206 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
18.
METHODS AND SYSTEMS FOR TRACKING A PIPELINE INSPECTION GAUGE
There is described a method of determining a position of a pipeline inspection gauge (PIG) in a fluid conduit. While the PIG is moving through the fluid conduit, one or more sensors positioned along the fluid conduit are used to detect one or more signals. Parameter data is extracted from the detected one or more signals. The parameter data includes one or more parameters of the detected one or more signals as a function of time and position along the fluid conduit. PIG movement data indicative of a position of the PIG in the fluid conduit as a function of time is generated using the parameter data.
There is provided a system for determining multiple baselines for detecting events in a conduit. The system comprises an optical fiber interrogator for interrogating optical fiber; and one or more processors communicative with the optical fiber interrogator and memory having stored thereon computer program code configured, when executed by the one or more processors, to cause the one or more processors to perform a method. The method comprises, for each of multiple channels of the conduit, each channel comprising a portion of the conduit: obtaining phase data for the channel, the phase data being obtained by causing the optical fiber interrogator to interrogate optical fiber positioned alongside the conduit; and determining one or more baselines from the phase data. As a result, events in the conduit may be detected with fewer false positives.
G01D 5/30 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with deflection of beams of light, e.g. for direct optical indication the beams of light being detected by photocells
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01K 11/3206 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
Using at least one sensor positioned to monitor a fluid conduit, an acoustic event is detected. A speed of sound of the acoustic event is determined. The speed of sound of the acoustic event is compared to a baseline speed of sound. Based on the comparison, whether or not a leak has occurred in the fluid conduit may be determined.
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
21.
Methods of wrapping optical fiber around a fluid conduit
A method of wrapping optical fiber around a fluid conduit. The optical fiber is wrapped at least partially around the conduit. The optical fiber is secured relative to the conduit at one or more securing locations, thereby defining a sequence of multiple optical fiber portions. Each optical fiber portion comprises a portion of the optical fiber. Each securing location delimits a given optical fiber portion from the subsequent optical fiber portion in the sequence of optical fiber portions. A direction of wrapping of each consecutive optical fiber portion in the sequence of optical fiber portions may be alternated between a clockwise direction and a counter-clockwise direction.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelinesProtecting measuring instruments in boreholes against heat, shock, pressure or the like
E21B 47/113 - Locating fluid leaks, intrusions or movements using electrical indicationsLocating fluid leaks, intrusions or movements using light radiation
F17D 5/06 - Preventing, monitoring, or locating loss using electric or acoustic means
22.
METHOD AND SYSTEM FOR DETECTING EVENTS IN A CONDUIT
There are described methods, systems, and computer-readable media for detecting events in a conduit. A first length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the first length of optical fiber. A second length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the second length of optical fiber. The interferometric data obtained from the first length of optical fiber is compared with the interferometric data obtained with the second length of optical fiber. Based on the comparison, whether an event has occurred in the conduit is determined.
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01M 3/02 - Investigating fluid tightness of structures by using fluid or vacuum
F17D 5/06 - Preventing, monitoring, or locating loss using electric or acoustic means
23.
Method and system for testing a fiber optic monitoring system in a conduit
An apparatus includes an enclosure having one or more apertures for receiving therethrough optical fiber, and one or more actuators sealed within the enclosure for generating one or more interference signals for interfering with optical fiber within the enclosure such that an optical path length of the optical fiber is altered. A method for verifying an event detection system includes interrogating optical fiber positioned alongside a conduit by sending one or more light pulses along the optical fiber and receiving reflections of the one or more light pulses. The method further includes using an event verification device housed within an enclosure through which passes the optical fiber to generate one or more interference signals for interfering with the optical fiber such that an optical path length of the optical fiber is altered.
G01B 11/00 - Measuring arrangements characterised by the use of optical techniques
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01K 11/32 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres
G01K 15/00 - Testing or calibrating of thermometers
24.
Optical interrogator for performing interferometry using fiber Bragg gratings
There is described a method for interrogating optical fiber comprising fiber Bragg gratings (“FBGs”), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01K 11/3206 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
25.
METHODS AND SYSTEMS FOR TRACKING A PIPELINE INSPECTION GAUGE
There is described a method of determining a position of a pipeline inspection gauge (PIG) in a fluid conduit. While the PIG is moving through the fluid conduit, one or more sensors positioned along the fluid conduit are used to detect one or more signals. Parameter data is extracted from the detected one or more signals. The parameter data includes one or more parameters of the detected one or more signals as a function of time and position along the fluid conduit. PIG movement data indicative of a position of the PIG in the fluid conduit as a function of time is generated using the parameter data.
26.
Method and system for detecting events in a conduit
There are described methods, systems, and computer-readable media for detecting events in a conduit. Multiple lengths of optical fiber positioned alongside a conduit are used to detect a signal. For each length of optical fiber, interferometric data is obtained from the detected signal. The interferometric data obtained for one length of optical fiber is compared to the interferometric data obtained for one or more other lengths of optical fiber. Based on the comparison, it is determined whether the signal originated from the conduit.
There is described a method of determining a position of a pipeline inspection gauge (PIG) in a fluid conduit. While the PIG is moving through the fluid conduit, one or more sensors positioned along the fluid conduit are used to detect one or more signals. Parameter data is extracted from the detected one or more signals. The parameter data includes one or more parameters of the detected one or more signals as a function of time and position along the fluid conduit. PIG movement data indicative of a position of the PIG in the fluid conduit as a function of time is generated using the parameter data.
G01D 21/00 - Measuring or testing not otherwise provided for
F16L 55/48 - Indicating the position of the pig or mole in the pipe or conduit
G01B 17/00 - Measuring arrangements characterised by the use of infrasonic, sonic, or ultrasonic vibrations
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
28.
METHODS AND SYSTEMS FOR TRACKING A PIPELINE INSPECTION GAUGE
There is described a method of determining a position of a pipeline inspection gauge (PIG) in a fluid conduit. While the PIG is moving through the fluid conduit, one or more sensors positioned along the fluid conduit are used to detect one or more signals. Parameter data is extracted from the detected one or more signals. The parameter data includes one or more parameters of the detected one or more signals as a function of time and position along the fluid conduit. PIG movement data indicative of a position of the PIG in the fluid conduit as a function of time is generated using the parameter data.
F16L 55/48 - Indicating the position of the pig or mole in the pipe or conduit
G01B 17/00 - Measuring arrangements characterised by the use of infrasonic, sonic, or ultrasonic vibrations
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
G01D 21/00 - Measuring or testing not otherwise provided for
A system and method for detecting dynamic strain of a housing. The system includes an optical fiber linearly affixed along a surface of a length of the housing and an interrogator comprising a laser source and a photodetector. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs. The segment of the optical fiber is linearly affixed along the surface of the housing. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
F17C 13/02 - Special adaptations of indicating, measuring, or monitoring equipment
F17D 5/00 - Protection or supervision of installations
E21B 47/007 - Measuring stresses in a pipe string or casing
E21B 47/135 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range using light waves, e.g. infrared or ultraviolet waves
An optical fiber assembly comprising an optical fiber casing and optical fiber deployed within and fixed relative to the casing at multiple fixation points spaced along the casing. The optical fiber assembly includes one or more weights attached within the casing to the optical fiber, for increasing a tension of the optical fiber between the multiple fixation points; flexible portions and rigid portions, with the optical fiber fixed to the flexible portions; and/or at least one guide member positioned at at least one of the fixation points and configured to constrain a bend radius of the optical fiber.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
31.
Method and system for detecting events in a conduit
There is provided a system for determining multiple baselines for detecting events in a conduit. The system comprises an optical fiber interrogator for interrogating optical fiber; and one or more processors communicative with the optical fiber interrogator and memory having stored thereon computer program code configured, when executed by the one or more processors, to cause the one or more processors to perform a method. The method comprises, for each of multiple channels of the conduit, each channel comprising a portion of the conduit: obtaining phase data for the channel, the phase data being obtained by causing the optical fiber interrogator to interrogate optical fiber positioned alongside the conduit; and determining one or more baselines from the phase data. As a result, events in the conduit may be detected with fewer false positives.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01K 11/3206 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
32.
Method and system for simulating a leak in a pipeline, and an outlet for coupling a conduit to a pipeline
Various embodiments provide a method of simulating a leak in a pipeline. The method includes: receiving a fluid stream from a fluid supply; and outputting the received fluid stream through an outlet such that the received fluid stream hits an outer surface of the pipeline at a location opposite the outlet such that a vibration is caused in the pipeline. Some other embodiments provide a corresponding system for simulating a leak in a pipeline, and a corresponding outlet for coupling a conduit to a pipeline.
F17D 5/02 - Preventing, monitoring, or locating loss
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
Using at least one sensor positioned to monitor a fluid conduit, an acoustic event is detected. A speed of sound of the acoustic event is determined. The speed of sound of the acoustic event is compared to a baseline speed of sound. Based on the comparison, whether or not a leak has occurred in the fluid conduit may be determined.
Using at least one sensor positioned to monitor a fluid conduit, an acoustic event is detected. A speed of sound of the acoustic event is determined. The speed of sound of the acoustic event is compared to a baseline speed of sound. Based on the comparison, whether or not a leak has occurred in the fluid conduit may be determined.
There is described a method of locating an area of interest in a conduit, comprising: measuring multiple acoustic signals at multiple locations along the conduit; for each acoustic signal, determining its autocorrelation; and applying a relationship to the determined autocorrelations to estimate a location of the area of interest, wherein the relationship is between autocorrelations of acoustic signals measured in a modelled conduit and modelled areas of interest in the modelled conduit, wherein it is assumed that acoustic signals propagating along the modelled conduit reflect from at least one point in the modelled conduit.
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
E21B 47/107 - Locating fluid leaks, intrusions or movements using acoustic means
E21B 47/117 - Detecting leaks, e.g. from tubing, by pressure testing
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
37.
METHODS OF WRAPPING OPTICAL FIBER AROUND A FLUID CONDUIT
A method of wrapping optical fiber around a fluid conduit. The optical fiber is wrapped at least partially around the conduit. The optical fiber is secured relative to the conduit at one or more securing locations, thereby defining a sequence of multiple optical fiber portions. Each optical fiber portion comprises a portion of the optical fiber. Each securing location delimits a given optical fiber portion from the subsequent optical fiber portion in the sequence of optical fiber portions. A direction of wrapping of each consecutive optical fiber portion in the sequence of optical fiber potions may be alternated between a clockwise direction and a counter-clockwise direction.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
E21B 47/135 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range using light waves, e.g. infrared or ultraviolet waves
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
38.
METHODS OF WRAPPING OPTICAL FIBER AROUND A FLUID CONDUIT
A method of wrapping optical fiber around a fluid conduit. The optical fiber is wrapped at least partially around the conduit. The optical fiber is secured relative to the conduit at one or more securing locations, thereby defining a sequence of multiple optical fiber portions. Each optical fiber portion comprises a portion of the optical fiber. Each securing location delimits a given optical fiber portion from the subsequent optical fiber portion in the sequence of optical fiber portions. A direction of wrapping of each consecutive optical fiber portion in the sequence of optical fiber potions may be alternated between a clockwise direction and a counter-clockwise direction.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
E21B 47/135 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range using light waves, e.g. infrared or ultraviolet waves
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
40.
Method and system for determining whether an event has occurred from dynamic strain measurements
Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G01M 3/00 - Investigating fluid tightness of structures
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
G01M 3/38 - Investigating fluid tightness of structures by using light
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01K 11/3206 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
G01B 21/32 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
41.
Methods and systems for providing access to interferometric system data
A computer-implemented method of providing access to interferometric system data stored in a data repository. A query that includes a data parameter identifier is received. The data repository is accessed and the interferometric system data is stored in the data repository using a data structure that has one or more data parameter arrays and one or more corresponding data group members. Each data group member includes one or more data arrays each associated with a data parameter in the corresponding data parameter array. Using the data parameter identifier, one or more target data parameters are determined from among the one or more data parameter arrays. One or more target data arrays that correspond to the one or more target data parameters are determined from among the one or more data arrays. The interferometric system data, which is in the one or more target data arrays, is extracted.
There are described methods, systems, and computer-readable media for detecting events in a conduit. A first length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the first length of optical fiber. A second length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the second length of optical fiber. The interferometric data obtained from the first length of optical fiber is compared with the interferometric data obtained with the second length of optical fiber. Based on the comparison, whether an event has occurred in the conduit is determined.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
43.
METHOD AND SYSTEM FOR TESTING A FIBER OPTIC MONITORING SYSTEM IN A CONDUIT
There is described an apparatus for testing whether a fiber optic monitoring system is functioning properly. The apparatus includes an enclosure comprising one or more apertures for receiving therethrough optical fiber; and one or more actuators sealed within the enclosure for generating one or more interference signals for interfering with optical fiber within the enclosure such that an optical path length of the optical fiber is altered. There is also described a method for verifying an event detection system, comprising: interrogating optical fiber positioned alongside a conduit by sending one or more light pulses along the optical fiber and receiving reflections of the one or more light pulses; and using a event verification device housed within an enclosure through which passes the optical fiber to generate one or more interference signals for interfering with the optical fiber such that an optical path length of the optical fiber is altered.
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
44.
METHOD AND SYSTEM FOR TESTING A FIBER OPTIC MONITORING SYSTEM IN A CONDUIT
There is described an apparatus for testing whether a fiber optic monitoring system is functioning properly. The apparatus includes an enclosure comprising one or more apertures for receiving therethrough optical fiber; and one or more actuators sealed within the enclosure for generating one or more interference signals for interfering with optical fiber within the enclosure such that an optical path length of the optical fiber is altered. There is also described a method for verifying an event detection system, comprising: interrogating optical fiber positioned alongside a conduit by sending one or more light pulses along the optical fiber and receiving reflections of the one or more light pulses; and using a event verification device housed within an enclosure through which passes the optical fiber to generate one or more interference signals for interfering with the optical fiber such that an optical path length of the optical fiber is altered.
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
45.
METHOD AND SYSTEM FOR DETECTING EVENTS IN A CONDUIT
There are described methods, systems, and computer-readable media for detecting events in a conduit. Multiple lengths of optical fiber positioned alongside a conduit are used to detect a signal. For each length of optical fiber, interferometric data is obtained from the detected signal. The interferometric data obtained for one length of optical fiber is compared to the interferometric data obtained for one or more other lengths of optical fiber. Based on the comparison, it is determined whether the signal originated from the conduit.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
46.
METHOD AND SYSTEM FOR DETECTING EVENTS IN A CONDUIT
There are described methods, systems, and computer-readable media for detecting events in a conduit. A first length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the first length of optical fiber. A second length of optical fiber, positioned alongside the conduit, is interrogated to obtain interferometric data from the second length of optical fiber. The interferometric data obtained from the first length of optical fiber is compared with the interferometric data obtained with the second length of optical fiber. Based on the comparison, whether an event has occurred in the conduit is determined.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
47.
METHOD AND SYSTEM FOR DETECTING EVENTS IN A CONDUIT
There are described methods, systems, and computer-readable media for detecting events in a conduit. Multiple lengths of optical fiber positioned alongside a conduit are used to detect a signal. For each length of optical fiber, interferometric data is obtained from the detected signal. The interferometric data obtained for one length of optical fiber is compared to the interferometric data obtained for one or more other lengths of optical fiber. Based on the comparison, it is determined whether the signal originated from the conduit.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
48.
Method and system for detecting whether an acoustic event has occured along a fluid conduit
Methods, systems, and techniques for determining whether an acoustic event lias occurred along a fluid conduit iliat lias acoustic sensors positioned along its length. For each of the sensors, a processor is used to determine a linear relationship between a measured acoustic signal measured using the sensor and a white noise acoustic source located along a longitudinal segment of the fluid conduit overlapping the sensor. From the linear relationship, the processor determines an acoustic path response that includes an acoustic response of the longitudinal segment and an acoustic source transfer function dial transforms the white noise acoustic source. Over time, variations in the acoustic path responses and/or acoustic source transfer functions are monitored. When the event threshold is exceeded, the acoustic event is identified as having occurred along the longitudinal segment corresponding to the acoustic path response or acoustic source transfer function that varied in excess of the event threshold.
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
There is described a method of making an acoustic sensor having a frequency response approximating a desired frequency response. The method comprises wrapping optical fiber around a core according to a wrapping pattern. The wrapping pattern is determined from an impulse response of the acoustic sensor. The impulse response is determined from the desired frequency response of the acoustic sensor.
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
There is described an optical fiber assembly comprising an optical fiber casing and optical fiber deployed within and fixed relative to the casing at multiple fixation points spaced along the casing. The optical fiber assembly may further comprise one or more weights attached within the casing to the optical fiber, for increasing a tension of the optical fiber between the multiple fixation points. The optical fiber casing may comprise flexible portions and rigid portions, with the optical fiber fixed to the flexible portions.
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
52.
Optical interrogator for performing interferometry using Bragg gratings
An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
There is described an optical fiber assembly comprising an optical fiber casing and optical fiber deployed within and fixed relative to the casing at multiple fixation points spaced along the casing. The optical fiber assembly may further comprise one or more weights attached within the casing to the optical fiber, for increasing a tension of the optical fiber between the multiple fixation points. The optical fiber casing may comprise flexible portions and rigid portions, with the optical fiber fixed to the flexible portions.
G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
A system and method for detecting dynamic strain of a housing. The system includes an optical fiber linearly affixed along a surface of a length of the housing and an interrogator comprising a laser source and a photodetector. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs. The segment of the optical fiber is linearly affixed along the surface of the housing. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
E21B 47/007 - Measuring stresses in a pipe string or casing
E21B 47/135 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. of radio frequency range using light waves, e.g. infrared or ultraviolet waves
There is provided a method of estimating flowrate in a pipeline based on acoustic behaviour of the pipe. First acoustic data is measured from the pipeline. A flowrate of the fluid in the pipeline is then estimated. The estimation is based on the first acoustic data and based on a correlation established between second acoustic data and corresponding flowrate data from an experimental pipeline. The correlation is established by a machine learning process (which may include the use of an artificial neural network, such as an autoencoder). The second acoustic data and corresponding flowrate data are used as inputs to the machine learning process.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
There is described a method of locating an area of interest in a conduit, comprising: measuring multiple acoustic signals at multiple locations along the conduit; for each acoustic signal, determining its autocorrelation; and applying a relationship to the determined autocorrelations to estimate a location of the area of interest, wherein the relationship is between autocorrelations of acoustic signals measured in a modelled conduit and modelled areas of interest in the modelled conduit, wherein it is assumed that acoustic signals propagating along the modelled conduit reflect from at least one point in the modelled conduit.
G01S 15/02 - Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
E21B 47/113 - Locating fluid leaks, intrusions or movements using electrical indicationsLocating fluid leaks, intrusions or movements using light radiation
E21B 47/10 - Locating fluid leaks, intrusions or movements
G01M 3/00 - Investigating fluid tightness of structures
57.
SYSTEM AND METHOD FOR LOCATING AN AREA OF INTEREST IN A CONDUIT
There is described a method of locating an area of interest in a conduit, comprising: measuring multiple acoustic signals at multiple locations along the conduit; for each acoustic signal, determining its autocorrelation; and applying a relationship to the determined autocorrelations to estimate a location of the area of interest, wherein the relationship is between autocorrelations of acoustic signals measured in a modelled conduit and modelled areas of interest in the modelled conduit, wherein it is assumed that acoustic signals propagating along the modelled conduit reflect from at least one point in the modelled conduit.
G01S 15/02 - Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
E21B 47/10 - Locating fluid leaks, intrusions or movements
E21B 47/113 - Locating fluid leaks, intrusions or movements using electrical indicationsLocating fluid leaks, intrusions or movements using light radiation
G01M 3/00 - Investigating fluid tightness of structures
58.
METHOD AND SYSTEM FOR DETECTING EVENTS IN A CONDUIT
There is provided a system for determining multiple baselines for detecting events in a conduit. The system comprises an optical fiber interrogator for interrogating optical fiber; and one or more processors communicative with the optical fiber interrogator and memory having stored thereon computer program code configured, when executed by the one or more processors, to cause the one or more processors to perform a method. The method comprises, for each of multiple channels of the conduit, each channel comprising a portion of the conduit: obtaining phase data for the channel, the phase data being obtained by causing the optical fiber interrogator to interrogate optical fiber positioned alongside the conduit; and determining one or more baselines from the phase data.
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01D 1/18 - Measuring arrangements giving results other than momentary value of variable, of general application with arrangements for signalling that a predetermined value of an unspecified parameter has been exceeded
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
59.
METHOD AND SYSTEM FOR DETECTING EVENTS IN A CONDUIT
There is provided a system for determining multiple baselines for detecting events in a conduit. The system comprises an optical fiber interrogator for interrogating optical fiber; and one or more processors communicative with the optical fiber interrogator and memory having stored thereon computer program code configured, when executed by the one or more processors, to cause the one or more processors to perform a method. The method comprises, for each of multiple channels of the conduit, each channel comprising a portion of the conduit: obtaining phase data for the channel, the phase data being obtained by causing the optical fiber interrogator to interrogate optical fiber positioned alongside the conduit; and determining one or more baselines from the phase data.
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01D 1/18 - Measuring arrangements giving results other than momentary value of variable, of general application with arrangements for signalling that a predetermined value of an unspecified parameter has been exceeded
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
60.
Methods and systems using optical fiber interferometry
Described are methods and systems using optical fiber interferometry to sense interference causing events in a region of interest and differentiate between a strain event and a thermal event. Other methods and systems relate to the use of optical fiber interferometry for determining temperature offset in a region of interest and using the determined temperature offset for determining temperature in the region of interest.
G01K 11/32 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres
G01K 1/20 - Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01N 25/16 - Investigating or analysing materials by the use of thermal means by investigating thermal coefficient of expansion
G01N 21/45 - RefractivityPhase-affecting properties, e.g. optical path length using interferometric methodsRefractivityPhase-affecting properties, e.g. optical path length using Schlieren methods
61.
Method and system for detecting whether an acoustic event has occurred along a fluid conduit
Methods, systems, and techniques for determining whether an acoustic event has occurred along a fluid conduit having acoustic sensors positioned therealong. The method uses a processor to, for each of the sensors, determine a predicted acoustic signal using one or more past acoustic signals measured prior to measuring a measured acoustic signal using the sensor; determine a prediction error between the measured acoustic signal and the predicted acoustic signal; from the prediction error, determine a power estimate of an acoustic source located along a longitudinal segment of the fluid conduit overlapping the sensor; and determine whether the power estimate of the acoustic source exceeds an event threshold for the sensor. When the power estimate of at least one of the acoustic sources exceeds the event threshold, the processor attributes the acoustic event to one of the sensors for which the power estimate of the acoustic source exceeds the event threshold.
F17D 5/06 - Preventing, monitoring, or locating loss using electric or acoustic means
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
G01M 3/38 - Investigating fluid tightness of structures by using light
E21B 47/26 - Storing data down-hole, e.g. in a memory or on a record carrier
E21B 47/107 - Locating fluid leaks, intrusions or movements using acoustic means
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01N 29/14 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
62.
Method and system for determining whether an event has occurred from dynamic strain measurements
Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G01M 3/00 - Investigating fluid tightness of structures
G01M 3/24 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
G01M 3/38 - Investigating fluid tightness of structures by using light
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01K 11/32 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres
G01B 21/32 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
63.
METHODS AND SYSTEMS FOR PROVIDING ACCESS TO INTERFEROMETRIC SYSTEM DATA
A computer-implemented method of providing access to interferometric system data stored in a data repository A query that includes a data parameter identifier is received. The data repository is accessed and the interferometric system data is stored in the data repository using a data structure that has one or more data parameter arrays and one or more corresponding data group members Each data group member includes one or more data arrays each associated with a data parameter in the corresponding data parameter array Using the data parameter identifier, one or more target data parameters are determined from among the one or more data parameter arrays One or more target data arrays that correspond to the one or more target data parameters are determined from among the one or more data arrays The interferometric system data, which is in the one or more target data arrays, is extracted.
E21B 47/26 - Storing data down-hole, e.g. in a memory or on a record carrier
E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
F17D 5/06 - Preventing, monitoring, or locating loss using electric or acoustic means
A computer-implemented method of providing access to interferometric system data stored in a data repository. A query that includes a data parameter identifier is received. The data repository is accessed and the interferometric system data is stored in the data repository using a data structure that has one or more data parameter arrays and one or more corresponding data group members. Each data group member includes one or more data arrays each associated with a data parameter in the corresponding data parameter array. Using the data parameter identifier, one or more target data parameters are determined from among the one or more data parameter arrays. One or more target data arrays that correspond to the one or more target data parameters are determined from among the one or more data arrays. The interferometric system data, which is in the one or more target data arrays, is extracted.
G06F 17/30 - Information retrieval; Database structures therefor
E21B 47/14 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
E21B 47/26 - Storing data down-hole, e.g. in a memory or on a record carrier
F17D 5/06 - Preventing, monitoring, or locating loss using electric or acoustic means
A method for non-intrusive pipeline testing involves constructing the pipeline at a construction location that is above ground, affixing an optical fiber along a surface of a length of the pipeline that is at the construction location, measuring dynamic strain experienced by the length of the pipeline by performing optical interferometry using the optical fiber, and moving the length of the pipeline from the construction location to a different installation location. The optical fiber includes at least one pair of fiber Bragg gratings (“FBGs”) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs.
F16B 2/06 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
G01N 29/00 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic wavesVisualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
G01M 3/38 - Investigating fluid tightness of structures by using light
G01M 5/00 - Investigating the elasticity of structures, e.g. deflection of bridges or aircraft wings
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G02B 6/46 - Processes or apparatus adapted for installing optical fibres or optical cables
G02B 6/293 - Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
G02B 6/34 - Optical coupling means utilising prism or grating
66.
METHOD AND SYSTEM FOR DETECTING WHETHER AN ACOUSTIC EVENT HAS OCCURRED ALONG A FLUID CONDUIT
Methods, systems, and techniques for determining whether an acoustic event has occurred along a fluid conduit that has acoustic sensors positioned along its length. For each of the sensors, a processor is used to determine a linear relationship between a measured acoustic signal measured using the sensor and a white noise acoustic source located along a longitudinal segment of the fluid conduit overlapping the sensor. From the linear relationship, the processor determines an acoustic path response that includes an acoustic response of the longitudinal segment and an acoustic source transfer function that transforms the white noise acoustic source. Over time, variations in the acoustic path responses and/or acoustic source transfer functions are monitored. When the event threshold is exceeded, the acoustic event is identified as having occurred along the longitudinal segment corresponding to the acoustic path response or acoustic source transfer function that varied in excess of the event threshold.
Methods, systems, and techniques for determining whether an acoustic event has occurred along a fluid conduit that has acoustic sensors positioned along its length. For each of the sensors, a processor is used to determine a linear relationship between a measured acoustic signal measured using the sensor and a white noise acoustic source located along a longitudinal segment of the fluid conduit overlapping the sensor. From the linear relationship, the processor determines an acoustic path response that includes an acoustic response of the longitudinal segment and an acoustic source transfer function that transforms the white noise acoustic source. Over time, variations in the acoustic path responses and/or acoustic source transfer functions are monitored. When the event threshold is exceeded, the acoustic event is identified as having occurred along the longitudinal segment corresponding to the acoustic path response or acoustic source transfer function that varied in excess of the event threshold.
Methods, systems, and techniques for determining whether an acoustic event has occurred along a fluid conduit having acoustic sensors positioned therealong. The method uses a processor to, for each of the sensors, determine a predicted acoustic signal using one or more past acoustic signals measured prior to measuring a measured acoustic signal using the sensor; determine a prediction error between the measured acoustic signal and the predicted acoustic signal; from the prediction error, determine a power estimate of an acoustic source located along a longitudinal segment of the fluid conduit overlapping the sensor; and determine whether the power estimate of the acoustic source exceeds an event threshold for the sensor. When the power estimate of at least one of the acoustic sources exceeds the event threshold, the processor attributes the acoustic event to one of the sensors for which the power estimate of the acoustic source exceeds the event threshold.
There is described a method for interrogating optical fiber comprising fiber Bragg gratings ("FBGs"), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
70.
OPTICAL INTERROGATOR FOR PERFORMING INTERFEROMETRY USING FIBER BRAGG GRATINGS
There is described a method for interrogating optical fiber comprising fiber Bragg gratings ("FBGs"), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
71.
Optical interrogator for performing interferometry using fiber Bragg gratings
There is described a method for interrogating optical fiber comprising fiber Bragg gratings (“FBGs”), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01K 11/3206 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
72.
OPTICAL INTERROGATOR FOR PERFORMING INTERFEROMETRY USING FIBER BRAGG GRATINGS
There is described a method for interrogating optical fiber comprising fiber Bragg gratings ("FBGs"), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
G01D 5/32 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
73.
OPTICAL INTERROGATOR FOR PERFORMING INTERFEROMETRY USING FIBER BRAGG GRATINGS
There is described a method for interrogating optical fiber comprising fiber Bragg gratings ("FBGs"), using an optical fiber interrogator. The method comprises (a) generating an initial light pulse from phase coherent light emitted from a light source, wherein the initial light pulse is generated by modulating the intensity of the light; (b) splitting the initial light pulse into a pair of light pulses; (c) causing one of the light pulses to be delayed relative to the other of the light pulses; (d) transmitting the light pulses along the optical fiber; (e) receiving reflections of the light pulses off the FBGs; and (f) determining whether an optical path length between the FBGs has changed from an interference pattern resulting from the reflections of the light pulses.
74.
Method and system for simulating a leak in a pipeline, and an outlet for coupling a conduit to a pipeline
Various embodiments provide a method of simulating a leak in a pipeline. The method includes: receiving a fluid stream from a fluid supply; and outputting the received fluid stream through an outlet such that the received fluid stream hits an outer surface of the pipeline at a location opposite the outlet such that a vibration is caused in the pipeline. Some other embodiments provide a corresponding system for simulating a leak in a pipeline, and a corresponding outlet for coupling a conduit to a pipeline.
F17D 5/02 - Preventing, monitoring, or locating loss
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
There is described a method of making an acoustic sensor having a frequency response approximating a desired frequency response. The method comprises wrapping optical fiber around a core according to a wrapping pattern. The wrapping pattern is determined from an impulse response of the acoustic sensor. The impulse response is determined from the desired frequency response of the acoustic sensor.
There is described a method of making an acoustic sensor having a frequency response approximating a desired frequency response. The method comprises wrapping optical fiber around a core according to a wrapping pattern. The wrapping pattern is determined from an impulse response of the acoustic sensor. The impulse response is determined from the desired frequency response of the acoustic sensor.
An optical fiber interrogator for interrogating optical fiber that includes fiber Bragg gratings (“FBGs”). The interrogator includes a light source operable to emit phase coherent light, amplitude modulation circuitry optically coupled to the light source and operable to generate pulses from the light, and control circuitry communicatively coupled to the amplitude modulation circuitry that is configured to perform a method for interrogating the optical fiber. The method includes generating a pair of light pulses by using the amplitude modulation circuitry to modulate light output by the light source without splitting the light.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01D 18/00 - Testing or calibrating apparatus or arrangements provided for in groups
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to-end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to- end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
There are described methods and systems for deploying optical fiber within a conduit. In one aspect, an optical fiber injector comprising a pressure vessel having a fluid inlet and a fluid outlet. The fluid outlet is engaged with an open end of the conduit. A length of optical fiber is provided within the pressure vessel. The optical fiber is then jetted into the conduit by injecting a fluid into the pressure vessel via the fluid inlet. The optical fiber injector is configured such that the fluid is directed from the fluid inlet to the fluid outlet, and urges the optical fiber to move through the conduit, thereby deploying the optical fiber within the conduit. In a further aspect, there is provided a modular assembly comprising a pipeline and a line of two or more conduits arranged end-to- end. Each pair of opposing ends of adjacent conduits is connected together by a separate splice box. The line is positioned along and adjacent to a length of the pipeline.
Methods and systems for estimating a distance between an acoustic sensor and an acoustic reflector in a conduit are disclosed. One such method includes using the acoustic sensor to measure a combined acoustic signal that comprises an originating acoustic signal propagating along the conduit and an echo signal. The echo signal is generated by the originating acoustic signal reflecting off the acoustic reflector after propagating past the acoustic sensor. A frequency domain representation of the combined acoustic signal is determined and the echo signal is identified by identifying in the frequency domain representation periodic oscillations having a peak-to-peak difference between 0.75 Hz and 1500 Hz. The distance between the acoustic sensor and the acoustic reflector is determined from the velocity of the echo signal and a time required for the echo signal to propagate between the acoustic sensor and the acoustic reflector.
A clamp for clamping optical fiber to a tube. The clamp has a body portion coupled at one end to a first arm and at an opposing end to a second arm, and a resilient portion to permit the clamp to elastically deform from a closed state in which the clamp is fastened around the tube to an open state in which the clamp is radially moveable off the tube. At least one of the body portion, the first arm and the second arm has a clamping surface to clamp a portion of the optical fiber against the tube when the clamp is fastened around the tube, and a clamping mechanism operable to extend at least part of the clamping surface towards the tube when the clamp is secured to the tube to increase a clamping force applied by the clamping surface.
F16B 2/24 - Clips, i.e. with gripping action effected solely by the inherent resistance to deformation of the material of the fastening of resilient material, e.g. rubbery material of metal
F16B 2/06 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
F17D 5/00 - Protection or supervision of installations
G02B 6/46 - Processes or apparatus adapted for installing optical fibres or optical cables
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G02B 6/00 - Light guidesStructural details of arrangements comprising light guides and other optical elements, e.g. couplings
F16L 3/06 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets partly surrounding the pipes, cables or protective tubing with supports for wires
F17D 5/06 - Preventing, monitoring, or locating loss using electric or acoustic means
83.
Fiber optic sensor shaped for a particular frequency response and method of manufacturing same
Sensor shaped to have a frequency response that has less spectral fading than a sensor with a rectangular wrapping pattern, and methods for making such sensors, are disclosed. One such method includes selecting a wrapping pattern comprising multiple layers in which a top layer has a different length than a bottom layer and where the bottom layer is adjacent a mandrel. The method further includes wrapping optical fiber around the mandrel according to the wrapping pattern.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
Described are methods and systems using optical fiber interferometry to sense interference causing events in a region of interest and differentiate between a strain event and a thermal event. Other methods and systems relate to the use of optical fiber interferometry for determining temperature offset in a region of interest and using the determined temperature offset for determining temperature in the region of interest.
G01H 9/00 - Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
G01K 1/20 - Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01K 11/32 - Measuring temperature based on physical or chemical changes not covered by group , , , or using changes in transmittance, scattering or luminescence in optical fibres
G01N 21/45 - RefractivityPhase-affecting properties, e.g. optical path length using interferometric methodsRefractivityPhase-affecting properties, e.g. optical path length using Schlieren methods
G01N 25/16 - Investigating or analysing materials by the use of thermal means by investigating thermal coefficient of expansion
There is provided a method of estimating flowrate in a pipeline based on acoustic behaviour of the pipe. First acoustic data is measured from the pipeline. A flowrate of the fluid in the pipeline is then estimated. The estimation is based on the first acoustic data and based on a correlation established between second acoustic data and corresponding flowrate data from an experimental pipeline. The correlation is established by a machine learning process (which may include the use of an artificial neural network, such as an autoencoder). The second acoustic data and corresponding flowrate data are used as inputs to the machine learning process.
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
There is provided a method of estimating flowrate in a pipeline based on acoustic behaviour of the pipe. First acoustic data is measured from the pipeline. A flowrate of the fluid in the pipeline is then estimated. The estimation is based on the first acoustic data and based on a correlation established between second acoustic data and corresponding flowrate data from an experimental pipeline. The correlation is established by a machine learning process (which may include the use of an artificial neural network, such as an autoencoder). The second acoustic data and corresponding flowrate data are used as inputs to the machine learning process.
G01F 1/66 - Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
G06F 15/18 - in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines (adaptive control systems G05B 13/00;artificial intelligence G06N)
Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
G01B 21/32 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01M 3/00 - Investigating fluid tightness of structures
88.
METHOD AND SYSTEM FOR DETERMINING WHETHER AN EVENT HAS OCCURRED FROM DYNAMIC STRAIN MEASUREMENTS
Methods, systems, and techniques for determining whether an event has occurred from dynamic strain measurements involve determining, using a processor, at least one event parameter from a signal representing the dynamic strain measurements, and then having the processor use the at least one event parameter to determine whether the event has occurred. The at least one event parameter is any one or more of a measure of magnitude of the signal, frequency centroid of the signal, filtered baseline of the signal, harmonic power of the signal, and time-integrated spectrum flux of the signal.
G01B 21/32 - Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G01M 3/00 - Investigating fluid tightness of structures
89.
METHOD AND SYSTEM FOR NON-INTRUSIVE PIPELINE TESTING
A method for non-intrusive pipeline testing involves constructing the pipeline at a construction location that is above ground, affixing an optical fiber along a surface of a length of the pipeline that is at the construction location, measuring dynamic strain experienced by the length of the pipeline by performing optical interferometry using the optical fiber, and moving the length of the pipeline from the construction location to a different installation location. The optical fiber includes at least one pair of fiber Bragg gratings ("FBGs") tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
F16B 2/06 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
F17D 3/01 - Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
90.
METHOD AND SYSTEM FOR NON-INTRUSIVE PIPELINE TESTING
A method for non-intrusive pipeline testing involves constructing the pipeline at a construction location that is above ground, affixing an optical fiber along a surface of a length of the pipeline that is at the construction location, measuring dynamic strain experienced by the length of the pipeline by performing optical interferometry using the optical fiber, and moving the length of the pipeline from the construction location to a different installation location. The optical fiber includes at least one pair of fiber Bragg gratings ("FBGs") tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs.
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
F16B 2/06 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
F17D 3/01 - Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
A device and system for detecting dynamic strain. The device comprises a longitudinally extending carrier and an optical fiber embedded along an outer surface of a length of the carrier. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths. The system comprises the device and an interrogator comprising a laser source and a photodetector. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
G01D 5/353 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
A system and method for detecting dynamic strain of a housing. The system includes an optical fiber linearly affixed along a surface of a length of the housing and an interrogator comprising a laser source and a photodetector. The optical fiber comprises at least one pair of fiber Bragg gratings (FBGs) tuned to reflect substantially identical wavelengths with a segment of the optical fiber extending between the FBGs. The segment of the optical fiber is linearly affixed along the surface of the housing. The interrogator is configured to perform interferometry by shining laser light along the optical fiber and detecting light reflected by the FBGs. The interrogator outputs dynamic strain measurements based on interferometry performed on the reflected light.
G01L 1/24 - Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis
F17C 13/02 - Special adaptations of indicating, measuring, or monitoring equipment
F17D 5/00 - Protection or supervision of installations
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
93.
A METHOD AND SYSTEM FOR SIMULATING A LEAK IN A PIPELINE, AND AN OUTLET FOR COUPLING A CONDUIT TO A PIPELINE
Various embodiments provide a method of simulating a leak in a pipeline. The method includes: receiving a fluid stream from a fluid supply; and outputting the received fluid stream through an outlet such that the received fluid stream hits an outer surface of the pipeline at a location opposite the outlet such that a vibration is caused in the pipeline. Some other embodiments provide a corresponding system for simulating a leak in a pipeline, and a corresponding outlet for coupling a conduit to a pipeline.
Various embodiments provide a method of simulating a leak in a pipeline. The method includes: receiving a fluid stream from a fluid supply; and outputting the received fluid stream through an outlet such that the received fluid stream hits an outer surface of the pipeline at a location opposite the outlet such that a vibration is caused in the pipeline. Some other embodiments provide a corresponding system for simulating a leak in a pipeline, and a corresponding outlet for coupling a conduit to a pipeline.
Methods and systems for estimating a distance between an acoustic sensor and an acoustic reflector in a conduit are disclosed. One such method includes using the acoustic sensor to measure a combined acoustic signal that comprises an originating acoustic signal propagating along the conduit and an echo signal. The echo signal is generated by the originating acoustic signal reflecting off the acoustic reflector after propagating past the acoustic sensor. A frequency domain representation of the combined acoustic signal is determined and the echo signal is identified by identifying in the frequency domain representation periodic oscillations having a peak-to-peak difference between 0.75Hz and 1500Hz. The distance between the acoustic sensor and the acoustic reflector is determined from the velocity of the echo signal and a time required for the echo signal to propagate between the acoustic sensor and the acoustic reflector.
Methods and systems for estimating a distance between an acoustic sensor and an acoustic reflector in a conduit are disclosed. One such method includes using the acoustic sensor to measure a combined acoustic signal that comprises an originating acoustic signal propagating along the conduit and an echo signal. The echo signal is generated by the originating acoustic signal reflecting off the acoustic reflector after propagating past the acoustic sensor. A frequency domain representation of the combined acoustic signal is determined and the echo signal is identified by identifying in the frequency domain representation periodic oscillations having a peak-to-peak difference between 0.75Hz and 1500Hz. The distance between the acoustic sensor and the acoustic reflector is determined from the velocity of the echo signal and a time required for the echo signal to propagate between the acoustic sensor and the acoustic reflector.
Sensor shaped to have a frequency response that has less spectral fading than a sensor with a rectangular wrapping pattern, and methods for making such sensors, are disclosed. One such method includes selecting a wrapping pattern comprising multiple layers in which a top layer has a different length than a bottom layer and where the bottom layer is adjacent a mandrel. The method further includes wrapping optical fiber around the mandrel according to the wrapping pattern.
Sensor shaped to have a frequency response that has less spectral fading than a sensor with a rectangular wrapping pattern, and methods for making such sensors, are disclosed. One such method includes selecting a wrapping pattern comprising multiple layers in which a top layer has a different length than a bottom layer and where the bottom layer is adjacent a mandrel. The method further includes wrapping optical fiber around the mandrel according to the wrapping pattern.
Various embodiments provide a clamp for clamping optical fiber to a tube, the clamp comprising a body portion coupled at one end to a first arm and at an opposing end to a second arm, the clamp having a resilient portion to permit the clamp to elastically deform from a closed state in which the clamp is fastened around the tube to an open state in which the clamp is radially moveable off the tube, wherein application of a force separating the first and second arms biases the resilient portion and transitions the clamp from the closed state to the open state, and wherein the resilient portion returns the clamp from the open state to the closed state when the force is removed, at least one of the body portion, the first arm and the second arm having a clamping surface to clamp a portion of the optical fiber against the tube when the clamp is fastened around the tube, and a clamping mechanism operable to extend at least part of the clamping surface towards the tube when the clamp is secured to the tube to increase a clamping force applied by the clamping surface. Various other embodiments provide a method of clamping optical fiber to a tube.
F16B 2/06 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
F16L 3/02 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets partly surrounding the pipes, cables or protective tubing
F17D 5/00 - Protection or supervision of installations
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
G02B 6/46 - Processes or apparatus adapted for installing optical fibres or optical cables
Various embodiments provide a clamp for clamping optical fiber to a tube, the clamp comprising a body portion coupled at one end to a first arm and at an opposing end to a second arm, the clamp having a resilient portion to permit the clamp to elastically deform from a closed state in which the clamp is fastened around the tube to an open state in which the clamp is radially moveable off the tube, wherein application of a force separating the first and second arms biases the resilient portion and transitions the clamp from the closed state to the open state, and wherein the resilient portion returns the clamp from the open state to the closed state when the force is removed, at least one of the body portion, the first arm and the second arm having a clamping surface to clamp a portion of the optical fiber against the tube when the clamp is fastened around the tube, and a clamping mechanism operable to extend at least part of the clamping surface towards the tube when the clamp is secured to the tube to increase a clamping force applied by the clamping surface. Various other embodiments provide a method of clamping optical fiber to a tube.
F16B 2/06 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
F16L 3/02 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets partly surrounding the pipes, cables or protective tubing
F17D 5/00 - Protection or supervision of installations
G01B 11/16 - Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge