A method that consists of the following steps: depressuring and isolating the annular space; recording a first pressure and temperature prevailing in the annular space; injecting a given amount of a measuring gas into the annular space and isolating the annular space, the annular space remaining under negative pressure after the injection and isolation; measuring the given amount of measuring gas; recording a second pressure in the annular space after the isolation of the annular space; and determining the free volume of the annular space on the basis of the first pressure, the second pressure, the temperature, and the measurement of the given amount of measuring gas.
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
2.
Mechanically lined pipe having an inner polymer liner
A mechanically lined pipe including a host pipe having an inner surface which is lined with a metallic liner, the metallic liner having an inner surface which is lined with a polymer liner which presses the metallic liner against the inner surface of the host pipe, as well as to methods of reeling and unreeling the mechanically lined pipe. A method of making a mechanically lined pipe having an internal polymer liner, the mechanically lined pipe including a host pipe having an inner surface which is lined with a metallic liner, the method including the steps of: (a) providing a mechanically lined pipe having an internal diameter, (b) providing a polymer liner having an outer diameter which is greater than the internal diameter of the mechanically liner pipe, (c) reducing the outer diameter of the polymer liner such that it is less than the internal diameter of the mechanically liner pipe, (d) inserting the polymer liner into the mechanically lined pipe, and (e) allowing the polymer liner to expand such that it presses the metallic liner against the inner surface of the host pipe.
F16L 9/147 - Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement
F16L 1/12 - Laying or reclaiming pipes on or under water
F16L 58/08 - Coatings characterised by the materials used by metal
B29C 63/42 - Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
F16L 58/10 - Coatings characterised by the materials used by rubber or plastics
A pipe tensioner for laying or recovering a subsea pipeline comprising at least two opposing continuous tracks able to hold the subsea pipeline, each track having a plurality of pads mounted on the continuous track for contacting the subsea pipeline, characterised in that at least one pad is a load pad comprising one or more load sensors for measuring loading on the load pad during handling of the subsea pipeline.
G01L 5/1627 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges
F16L 1/235 - Apparatus for controlling the pipe during laying
G01L 5/101 - Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors inserted into the flexible member
4.
Method for attaching an anchorage element to an element of the armor of a flexible pipe, associated pipe and associated fitting method
A method for attaching at least one transverse anchorage element to an armor element intended to be housed in an end-fitting of a flexible pipe, including the following steps: the supply of an attachment device accepting an anchorage element; the bringing of an opening to face the armor element; the melting of one end of the anchorage element facing the armor element and of a region of the armor element facing the anchorage element, inside the cavity of the attachment device; the forging of the anchorage element transversely on the armor element, using the attachment device; and the formation of a weld connecting the anchorage element and the armor element.
F16L 11/08 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
B23K 31/02 - Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by any single one of main groups relating to soldering or welding
F16L 33/01 - Arrangements for connecting hoses to rigid members; Rigid hose-connectors, i.e. single members engaging both hoses specially adapted for hoses having a multi-layer wall
3, and a melt index measured at 230° C. under a mass of 2.16 kg of less than 10 g/10 minutes, its preparation method and its use for the transport of hydrocarbons. Such a sheath may be used in contact with hydrocarbons at high temperature.
B32B 15/02 - Layered products essentially comprising metal in a form other than a sheet, e.g. wire, particles
B32B 15/085 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyolefins
B32B 27/22 - Layered products essentially comprising synthetic resin characterised by the use of special additives using plasticisers
An underwater pipe including a metal reinforcing layer around an inner polymeric sealing sheath which may be in contact with hydrocarbons. The inner polymeric sealing sheath includes a polypropylene block copolymer or a mixture of polypropylene block copolymers, wherein the polypropylene block copolymer or the mixture has a density greater than 0.900 g/cm3, and a melt index measured at 230° C. under a mass of 2.16 kg of less than 10 g/10 minutes, its preparation method and its use for the transport of hydrocarbons. Such a sheath may be used in contact with hydrocarbons at high temperature.
B32B 15/085 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin comprising polyolefins
B29C 48/09 - Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
B29C 48/00 - Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
A method that includes the following steps: determination of predictive meteorological data in a region surrounding the facility; querying of a database about the presence of birds in the region surrounding the facility; calculation, by a prediction unit, of the probability of birds passing opposite the facility as a function of time, on the basis of the predictive meteorological data and data relating to the presence of birds in the region surrounding the facility; and control, by a control unit, of at least one light source of the facility, on a basis of the probability of passage, calculated by the prediction unit.
G05F 1/00 - Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or val
A method of installing an In-Line Structure (ILS) to a fluid-filled pipeline extending from a reel, over an aligner, and through a lay-tower during offshore reeling, the pipeline having an oblique part from the reel to the aligner, and a vertical part from the aligner through the lay-tower, including at least the steps of: (a) draining fluid in the fluid-filled pipeline from the vertical part of the pipeline to create a drained portion of the vertical part of the pipeline up to and around the aligner; (b) cutting the pipeline at or near the draining of step (a) to create upper and lower open ends of the pipeline; (c) installing the In-Line Structure to at least the upper open end of the pipeline; (d) locating a vent hose through a vent port in the In-Line Structure; (e) adding fluid into the drained portion of the pipeline and venting air from the drained portion of the pipeline through the vent hose to wholly or substantially fill the drained portion of the pipeline with the fluid.
F16L 1/16 - Laying or reclaiming pipes on or under water on the bottom
F16L 1/12 - Laying or reclaiming pipes on or under water
9.
Movable device for inspecting a production line partially submerged in an expanse of water, suitable for negotiating a curve in the production line, and associated installation and method
A device comprises an assembly for attaching to and moving on the production line. The attachment and movement assembly comprises at least two clamps that can be actuated selectively to clamp the production line, the attachment and movement assembly comprising an active mechanism for moving the clamps longitudinally relative to each other. The attachment and movement assembly comprises a tilting mechanism for tilting the clamps relative to each other, between a position in which they are parallel to each other and a position in which they are tilted with respect to each other. The tilting mechanism comprises a flexion bar capable of switching from a straight configuration in the parallel position of the clamps to a curved configuration in the tilted position of the clamps.
G01N 29/22 - Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object - Details
G01N 29/265 - Arrangements for orientation or scanning by moving the sensor relative to a stationary material
A method of positioning an end of a pipeline on a subsea structure includes the steps of: (a) providing a channel on the subsea structure, the channel having an open end adjacent to a receptacle on the subsea structure, (b) providing a pipeline, (c) attaching a connector to an end of the pipeline, (d) laying the end of the pipeline with the connector attached into the channel, and (e) pulling the pipeline end along the channel such that the connector exits the open end of the channel and is received by the receptacle. A channel is used in the method and a subsea structure is used wherein the channel is provided on the upper surface of the subsea structure.
A method for nondestructive inspection of a flexible underwater pipe capable detecting a flooding of the annular space in which the armor layers are found. The method comprises the steps of arranging in the vicinity of the external sheath at least one pair of electrodes, measuring the impedance at the terminals of the pair of electrodes, at a frequency advantageously between 10 Hz and 10 MHz, and comparing the measured impedance with reference values so as to determine the nature of the fluid contained in the annular space.
G01N 27/22 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
G01N 27/02 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
12.
Clamp of a device on a production line at least partially submerged in a body of water, mobile device and associated method
A clamp comprises a plurality of pads; a belt for clamping the pads that is maneuverable between an unclamped configuration and a configuration clamping the pads against the production line; a clamping actuator for the clamp, mounted on a first point of the clamp, the clamping actuator having a grasping member for a second point of the clamp, the grasping member being movable between a deployed position and a retracted position moving the second point towards the first point. The spacing-apart mechanism is able to move the grasping member between a spaced-apart configuration of the second point in the deployed position of the grasping member and a grasping configuration in an intermediate position between the deployed position and the retracted position.
G01D 11/30 - Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
F16B 2/08 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using bands
F16B 2/10 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using pivoting jaws
F16B 2/12 - Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using sliding jaws
B63B 21/00 - Tying-up; Shifting, towing, or pushing equipment; Anchoring
A pipe-in-pipe (PIP) connector for use in a PIP pipeline for laying in a marine environment, the PIP pipeline including at least metal inner and outer pipes and an annular space thereinbetween, the connector including at least: (a) a first connector end including inner and outer longitudinal collars corresponding in circumference to the circumferences of the inner and outer pipes of the PIP pipeline, and weldable to a PIP pipeline, and (b) a second connector end including a machined portion configured to match and connect with a complementary portal or bore of an in-line subsea structure, and a coupling portion for coupling with a pipeline section, the coupling being decoupable.
An underwater facility (18) for the gas/liquid separation of a multiphase hydrocarbon mixture includes an underwater supply conduit (16) and a longitudinal separation chamber (26) intended to be installed substantially vertically, the separation chamber (26) having a lower end (30) and an opposing upper end (28), and an intermediate separation area (32), the separation chamber (26) further comprising an injection conduit (34) connected to the supply conduit (16), the injection conduit extending longitudinally into the intermediate area (32), the injection conduit having a tubular wall and a free opening that opens towards the upper end (28). The tubular wall is continuous to be impervious to the multiphase hydrocarbon mixture.
Connection end fitting of a flexible line, measurement device for measuring the integrity of the line, and method of measuring the integrity of the line with the measurement device
G01M 5/00 - Investigating the elasticity of structures, e.g. deflection of bridges or aircraft wings
F16L 11/08 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
F16L 33/01 - Arrangements for connecting hoses to rigid members; Rigid hose-connectors, i.e. single members engaging both hoses specially adapted for hoses having a multi-layer wall
16.
Method for pressurizing the inner flow space of a flexible pipe intended for transporting hydrocarbons
F16L 11/08 - Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
G01M 3/04 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
B29C 48/09 - Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
B29C 53/58 - Winding and joining, e.g. winding spirally helically
A submarine connection for interconnecting a riser pipe and a flexible pipe (26). The riser pipe has an upper end and the flexible pipe (26) has a lower end (30). A connection assembly includes a rigid fitting having a first limb (64) to be connected to the lower end (30) and a second limb (66) with a connector (67) on the end, and a body (36) having a head (42) and an opposing base (46) provided with an end piece (52) to be mounted on the upper end. The connection assembly also includes first guiding elements (60, 86) secured to the body (36), extending in a position at a distance from the axis of the end piece (52), and second guiding elements (76, 81) secured to the first limb (64), suitable for cooperating with the first guiding elements (60, 86).
E21B 43/01 - Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
A flexible tubular structure for oil exploitation, said flexible tubular structure having at least one reinforcing layer and at least one layer of a fluoropolymer compound, wherein said fluoropolymer compound has a composition including a polyvinylidene fluoride homopolymer and a vinylidene fluoride/fluorinated comonomer copolymer, and a plasticizer. The proportion by weight of hexafluoropropylene monomer in the copolymer is greater than 25%.
B32B 15/08 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
B32B 27/08 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of synthetic resin of a different kind
B32B 27/20 - Layered products essentially comprising synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
C08K 5/12 - Esters; Ether-esters of cyclic polycarboxylic acids
C08K 5/11 - Esters; Ether-esters of acyclic polycarboxylic acids
B29K 27/00 - Use of polyvinylhalogenides as moulding material
B29K 105/00 - Condition, form or state of moulded material
B29K 705/00 - Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts