The present disclosure relates to fractions of high purity lignin which are thermally stable, and to methods of producing such fractions from lignocellulosic materials. Methods for producing such high purity lignins are described, as well as methods for increasing the overall efficiency of the lignin extraction process.
A method including: (a) selectively reacting a first sugar in a mixture which includes at least one second sugar to form a product mixture comprising a product of said first sugar; (b) separating said product of said first sugar from said product mixture; and (c) separating at least one of said at least one second sugar from said product mixture.
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
C13K 13/00 - Sugars not otherwise provided for in this class
B01D 15/18 - Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
B01D 15/36 - Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
B01J 39/26 - Cation exchangers for chromatographic processes
C07G 1/00 - Low-molecular-weight derivatives of lignin
C08B 37/00 - Preparation of polysaccharides not provided for in groups ; Derivatives thereof
Processes for converting lignocellulose to feedstock and downstream products are disclosed. The processes may include acid treatment of lignocellulose to produce a fermentation feedstock. In various instances, the processes include recovery or recycling of acid, such as recovery of hydrochloric acid from concentrated and/or dilute streams. Downstream products may include acrylic acid-based products such as diapers, paper and paper-based products, ethanol, biofuels such as biodiesel and fuel additives, and detergents.
A61L 15/20 - Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
The present disclosure relates to lignocellulosic biomass processing and refining to produce hemicellulose and cellulose sugars. Methods and systems for refining a lignocellulosic hydrolysate are provided herein.
A sugar mixture comprising: monosaccharides; oligosaccharides in a ratio≥0.06 to total saccharides; disaccharides in a ratio to total saccharides≥0.05; pentose in a ratio to total saccharides≥0.05; at least one alpha-bonded di-glucose; and at least one beta-bonded di-glucose. Also disclosed are methods to make and/or use such mixtures.
The present disclosure relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming reactions of biomass or biomass-derived molecules.
C07C 29/17 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
C07C 5/03 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
C01B 3/22 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of gaseous or liquid organic compounds
A sugar composition comprising: at least 40% dissolved solids in an aqueous solution having a viscosity at least 10% lower than a 42 DE (Dextrose Equivalents) reference solution with a same dissolved solids concentration at a given temperature.
The present disclosure relates to methods of processing lignocellulosic material to obtain cellulose and cellulose sugars. Also provided are compositions of cellulose hydrolysates.
A method comprising: (a) providing a partially processed sucrose crop product containing at least 2% optionally at least 5% of the sucrose content of said crop at harvest on a dry solids basis, cellulose and lignin; (b) hydrolyzing said partially processed crop product with HCl to produce an acid hydrolyzate stream and a lignin stream; and (c) de-acidifying said hydrolyzate stream to produce a de-acidified sugar solution and an HCl recovery stream. Additional, methods, systems and sugar mixtures are also disclosed.
A method including: (a) contacting lime with an extract including a S1 solvent carrying a contaminant load to form a lime treated extract; and (b) reducing the contaminant load by removing solids. Optionally, the method includes washing the lime treated extract with water. Optionally, a pH of the lime treated extract is at least 6.5.
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
B01D 15/36 - Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
B01J 39/26 - Cation exchangers for chromatographic processes
C13K 1/02 - Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
C08B 37/00 - Preparation of polysaccharides not provided for in groups ; Derivatives thereof
The present disclosure relates to methods of producing hemicellulose and conversion products thereof from a biomass. Also provided are hemicellulose products and other conversion products thereof.
Processes for converting lignocellulose to feedstock and downstream products are disclosed. The processes may include acid treatment of lignocellulose to produce a fermentation feedstock. In various instances, the processes include recovery or recycling of acid, such as recovery of hydrochloric acid from concentrated and/or dilute streams. Downstream products may include acrylic acid-based products such as diapers, paper and paper-based products, ethanol, biofuels such as biodiesel and fuel additives, and detergents.
A61L 15/20 - Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
The present disclosure relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming reactions of biomass or biomass-derived molecules. The present invention relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming hydrogenation, hydrogenolysis, or hydrodeoxygenation reactions of biomass or biomass-derived molecules.
C07C 45/00 - Preparation of compounds having C=O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
C01B 3/00 - Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
C07C 5/03 - Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
C01B 3/22 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of gaseous or liquid organic compounds
C07C 29/17 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
17.
Sugar mixtures and methods for production and use thereof
A sugar mixture comprising: monosaccharides; oligosaccharides in a ratio ≥0.06 to total saccharides; disaccharides in a ratio to total saccharides ≥0.05; pentose in a ratio to total saccharides ≥0.05; at least one alpha-bonded di-glucose; and at least one beta-bonded di-glucose. Also disclosed are methods to make and/or use such mixtures.
The present invention relates to methods of processing cellulose pulp to recover a cellulosic hydrolysate therefrom. The methods can include contacting the cellulose pulp with water, a limited-solubility solvent, and a limited solubility acid, which can have a solubility in water of less than 1% wt/wt at 4°C. The methods can include recovering the limited solubility acid.
A method including: (a) selectively reacting a first sugar in a mixture which includes at least one second sugar to form a product mixture comprising a product of said first sugar; (b) separating said product of said first sugar from said product mixture; and (c) separating at least one of said at least one second sugar from said product mixture.
A sugar composition comprising at least 40% dissolved solids in an aqueous solution having a viscosity at least 10% lower than a 42 DE (Dextrose Equivalents) reference solution with a same dissolved solids concentration at a given temperature. Another sugar composition comprising at least 30% glucose relative to total sugars, at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and less than 0.25% ash. Another sugar composition comprising at least 30% glucose relative to total sugars at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and at least 2% total furfurals.
A sugar composition comprising at least 40% dissolved solids in an aqueous solution having a viscosity at least 10% lower than a 42 DE (Dextrose Equivalents) reference solution with a same dissolved solids concentration at a given temperature. Another sugar composition comprising at least 30% glucose relative to total sugars, at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and less than 0.25% ash. Another sugar composition comprising at least 30% glucose relative to total sugars at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and at least 2% total furfurals.
The invention relates methods and processes for the separation and refining of lignin from spent cooking liquor, called black liquor, present in industrial chemical plants, and compositions thereof. A process is provided for separating black liquor into at least two, three, or four streams selected from: (i) a gaseous stream comprising volatile sulfur compounds; (ii) a lignin-comprising stream produced by extracting lignin into a limited solubility solvent S1; (iii) a salt stream, comprising solid sodium and sulfate salts; and (iv) a salt-depleted and lignin-depleted aqueous stream comprising hydrocarbons.
The present disclosure relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming reactions of biomass or biomass-derived molecules. The present invention relates to methods, processes, and systems for utilizing the dehydrogenation of 2-butanol for hydrogen consuming hydrogenation, hydrogenolysis, or hydrodeoxygenation reactions of biomass or biomass-derived molecules.
A method including: (a) contacting lime with an extract including an S1 solvent carrying a contaminant load to form a lime treated extract; and (b) reducing the contaminant load by removing solids.
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
C13K 1/02 - Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
B01D 15/36 - Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
B01J 39/26 - Cation exchangers for chromatographic processes
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
B01D 15/36 - Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
B01J 39/26 - Cation exchangers for chromatographic processes
C13K 1/02 - Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
C08B 37/00 - Preparation of polysaccharides not provided for in groups ; Derivatives thereof
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
A sugar composition comprising at least 40% dissolved solids in an aqueous solution having a viscosity at least 10% lower than a 42 DE (Dextrose Equivalents) reference solution with a same dissolved solids concentration at a given temperature. Another sugar composition comprising at least 30% glucose relative to total sugars, at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and less than 0.25% ash. Another sugar composition comprising at least 30% glucose relative to total sugars at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and at least 2% total furfurals.
Abstract The present invention provides high purity lignin compositions that are extracted from biomass and characterized by a consistent glass transition temperature (Tg). The invention provides methods of producing said compositions from thermally stable lignin fractions extracted from lignocellulosic material. Also, the invention further provides a way to evaluate the stability of lignin fractions by methods typically applied to synthetic polymers. Date Recue/Date Received 2020-09-04
A method comprising: (a) providing a partially processed sucrose crop product containing at least 2% optionally at least 5% of the sucrose content of said crop at harvest on a dry solids basis, cellulose and lignin; (b) hydrolyzing said partially processed crop product with HCl to produce an acid hydrolyzate stream and a lignin stream; and (c) de-acidifying said hydrolyzate stream to produce a de-acidified sugar solution and an HCl recovery stream. Additional, methods, systems and sugar mixtures are also disclosed.
A method including: (a) selectively reacting a first sugar in a mixture which includes at least one second sugar to form a product mixture comprising a product of said first sugar; (b) separating said product of said first sugar from said product mixture; and (c) separating at least one of said at least one second sugar from said product mixture.
Processes for converting lignocellulose to feedstock and downstream products are disclosed. The processes may include acid treatment of lignocellulose to produce a fermentation feedstock. In various instances, the processes include recovery or recycling of acid, such as recovery of hydrochloric acid from concentrated and/or dilute streams. Downstream products may include acrylic acid-based products such as diapers, paper and paper-based products, ethanol, biofuels such as biodiesel and fuel additives, and detergents.
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
C13K 13/00 - Sugars not otherwise provided for in this class
C08J 11/10 - Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
A sugar mixture comprising: monosaccharides; oligosaccharides in a ratio ≧0.06 to total saccharides; disaccharides in a ratio to total saccharides ≧0.05; pentose in a ratio to total saccharides ≧0.05; at least one alpha-bonded di-glucose; and at least one beta-bonded di-glucose. Also disclosed are methods to make and/or use such mixtures.
A method including: (a) contacting lime with an extract including an S1 solvent carrying a contaminant load to form a lime treated extract; and (b) reducing the contaminant load by removing solids.