A key duplication system is described herein. A key duplicating machine includes a front panel having a slot to receive a key therein. The key duplicating machine also includes a sensing device configured to capture data related to a master key and a cutting member configured to cut a key pattern into a key blank. Additionally, the key duplicating machine includes a display to provide an interactive interface. The interactive interface renders audiovisual instructions based on a mode of the key duplicating machine.
This disclosure relates to a system for providing assistance when operating a key duplicating machine or when programming a new vehicle key. An application operating on a mobile device receives information regarding the vehicle and key application and will then assists the user while programming the key associated with the vehicle. In some examples, a key duplicating machine receives input from the user and passes data to the application in order to provide better and more specific assistance.
G07F 11/70 - Coin-freed apparatus for dispensing, or the like, discrete articles in which the articles are formed in the apparatus from components, blanks, or material constituents
G07F 17/26 - Coin-freed apparatus for hiring articlesCoin-freed facilities or services for printing, stamping, franking, typing, or teleprinting apparatus
3.
KEY DUPLICATION SYSTEM WITH AUTO TUNE FUNCTIONALITY
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. A second logic may be implemented for assembling one or more data points related to one or more key cutting parameters to allow for the creation and implantation of at least one automatic tuning function to provide for one or more subsequent fine tuning adjustments to a key cutting pattern.
A high security key scanning system and method is provided. The scanning system may comprise a sensing device configured to determine information and characteristics of a master high security key, and a digital logic to analyze the information and characteristics of the master key. The sensing device may be configured to capture information about the geometry of features cut into the surface of the master key. The logic may analyze the information related to that geometry and compare it to known characteristics of that style of high security key in order to determine the data needed to replicate the features on a new high security key blank. The system may be configured to capture the surface geometry using a camera or other imaging device. The system may utilize object coating techniques, illumination techniques, filtering techniques, image processing techniques, and feature extraction techniques to capture the desired features.
Provided is a system and method for duplicating a master key for a vehicle. The system includes determining that a first device is communicating with a t/r device, the t/r device including an antenna for communicating with the master key. A cloning application associated with said t/r device may be operating on the first device. The t/r device may retrieve security information from said master key. The cloning application may communicate the security information for said master key to said central network system. The central network system may generate duplicate security information. The central network system may communicate the duplicate security information to the cloning application. The cloning application may transmit the duplicate security information to the t/r device to program a duplicate master key with the duplicate security information.
Some of the inventive concepts described herein include a data key having a computer readable medium containing information indicative of a bitting pattern for a master key. The bitting pattern on the data key may be downloadable to a key cutting device to cut a duplicate key that has the same bitting pattern as the master key. In addition, a method of creating a data key is also provided herein. The method includes identifying a type of key; identifying a bitting pattern; and storing the type of key blank required and bitting pattern to be cut in the key blank on a computer readable medium.
A key identification system is provided. The key identification system comprises an imaging system to capture an image of a master key, and a logic to analyze the captured image. The imaging system may be capture an image of a groove in the master key from an angle between perpendicular and parallel to the blade of said master key. The logic analyzes the captured image to compare characteristics of the groove with groove characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank. The key identification system may further compensate for displacement or orientation of the master key with respect to the imaging system when analyzing characteristics of the groove.
A high security key scanning system and method is provided. The scanning system may comprise a sensing device configured to determine information and characteristics of a master high security key, and a digital logic to analyze the information and characteristics of the master key. The sensing device may be configured to capture information about the geometry of features cut into the surface of the master key. The logic may analyze the information related to that geometry and compare it to known characteristics of that style of high security key in order to determine the data needed to replicate the features on a new high security key blank. The system may be configured to capture the surface geometry using a camera or other imaging device. The system may utilize object coating techniques, illumination techniques, filtering techniques, image processing techniques, and feature extraction techniques to capture the desired features.
A key identification system is provided. The key identification system comprises an imaging system to capture an image of a master key, and a logic to analyze the captured image. The imaging system may be capture an image of a groove in the master key from an angle between perpendicular and parallel to the blade of said master key. The logic analyzes the captured image to compare characteristics of the groove with groove characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank. The key identification system may further compensate for displacement or orientation of the master key with respect to the imaging system when analyzing characteristics of the groove.
A high security key scanning system and method is provided. The scanning system may comprise a sensing device configured to determine information and characteristics of a master high security key, and a digital logic to analyze the information and characteristics of the master key. The sensing device may be configured to capture information about the geometry of features cut into the surface of the master key. The logic may analyze the information related to that geometry and compare it to known characteristics of that style of high security key in order to determine the data needed to replicate the features on a new high security key blank. The system may be configured to capture the surface geometry using a camera or other imaging device. The system may utilize object coating techniques, illumination techniques, filtering techniques, image processing techniques, and feature extraction techniques to capture the desired features.
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
G06K 9/46 - Extraction of features or characteristics of the image
G06K 9/48 - Extraction of features or characteristics of the image by coding the contour of the pattern
G07F 17/26 - Coin-freed apparatus for hiring articlesCoin-freed facilities or services for printing, stamping, franking, typing, or teleprinting apparatus
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
B23P 15/00 - Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
B23P 15/00 - Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
G06K 7/10 - Methods or arrangements for sensing record carriers by electromagnetic radiation, e.g. optical sensingMethods or arrangements for sensing record carriers by corpuscular radiation
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
A key identification system is provided. The key identification system comprises a sensing device configured to extract bitting information from a master key, and a logic configured to analyze the image. The sensing device may be configured to capture information about the bittings of the master key, such as an image of the bittings. The logic analyzes information about the bittings of the master key and compares it with bitting characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank.
A key identification system is provided. The key identification system comprises an imaging system to capture an image of a master key, and a logic to analyze the captured image. The imaging system may be capture an image of a groove in the master key from an angle between perpendicular and parallel to the blade of said master key. The logic analyzes the captured image to compare characteristics of the groove with groove characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank. The key identification system may further compensate for displacement or orientation of the master key with respect to the imaging system when analyzing characteristics of the groove.
A key cutting machine is provided for cutting a key blank from a master key. The key cutting machine comprises a first cutting member that rotates about a substantially horizontal axis for cutting a key pattern on a key blank and a second cutting member that rotates about a substantially vertical axis for cutting a key pattern on a key blank. Additional improvements or features of a key cutting machine are also described.
A key clamping device includes a first key clamp, a second key clamp and a rotational device connected to the first and second key clamps. The rotational device may facilitate rotation of the first and second key clamps.
Some of the inventive concepts described herein include a data key having a computer readable medium containing information indicative of a bitting pattern for a master key. The bitting pattern on the data key may be downloadable to a key cutting device to cut a duplicate key that has the same bitting pattern as the master key. In addition, a method of creating a data key is also provided herein. The method includes identifying a type of key; identifying a bitting pattern; and storing the type of key blank required and bitting pattern to be cut in the key blank on a computer readable medium.
A method and apparatus for holding a key or key blank while copying a key including at least one holder having an opening configured to at least partially enclose at least two sides of a keyway is provided herein. The opening of the holder includes at least one longitudinal groove or one longitudinal protrusion configured to mate with at least one longitudinal protrusion or longitudinal groove of the keyway. A user slides a first holder over the keyway of a key blank, and a second holder over a keyway of a key to be copied and places the holders into clamping jaws of a key cutting machine prior to copying a key.
An apparatus includes a display structure that supports products in a display area within reach of a customer location. The apparatus further includes a panel structure supported for movement along upper and lower tracks. The panel structure has a transparent viewing section and indicia relating to the products, but is not configured to support any products itself. The panel structure also has horizontally opposite side edges spaced apart at a width that is less than the width of the display area. A frame structure supports the upper and lower tracks at locations that provide the panel structure with a path of movement interposed between the customer location and the display area. The path of movement includes positions in which the display area can be reached from the customer location past either of the opposite side edges of the panel structure.
A47F 5/00 - Show stands, hangers, or shelves characterised by their constructional features
A47F 5/08 - Show stands, hangers, or shelves characterised by their constructional features secured to the wall, ceiling, or the likeWall-bracket display devices
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
A key identification system is provided. The key identification system comprises a sensing device configured to extract bitting information from a master key, and a logic configured to analyze the image. The sensing device may be configured to capture information about the bittings of the master key, such as an image of the bittings. The logic analyzes information about the bittings of the master key and compares it with bitting characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank.
G06K 9/62 - Methods or arrangements for recognition using electronic means
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
B23C 1/16 - Milling machines not designed for particular work or special operations specially designed for control by copying devices
B23C 1/18 - Milling machines not designed for particular work or special operations specially designed for control by copying devices for milling while revolving the work
29.
Key blank identification system with groove scanning
A key identification system is provided. The key identification system comprises an imaging system to capture an image of a master key, and a logic to analyze the captured image. The imaging system may be capture an image of a groove in the master key from an angle between perpendicular and parallel to the blade of said master key. The logic analyzes the captured image to compare characteristics of the groove with groove characteristics of known key blanks to determine the likelihood of a match between the master key and a known key blank. The key identification system may further compensate for displacement or orientation of the master key with respect to the imaging system when analyzing characteristics of the groove.
G06K 9/62 - Methods or arrangements for recognition using electronic means
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
B23C 1/16 - Milling machines not designed for particular work or special operations specially designed for control by copying devices
B23C 1/18 - Milling machines not designed for particular work or special operations specially designed for control by copying devices for milling while revolving the work
A key cutting machine has multiple modes of operation, including an automatic mode of operation wherein a clamp mechanism configured to hold a key blank is held without manual assistance in a position engaged with a key cutting element and a motor controls a movement of the clamp mechanism, a semi-automatic mode of operation wherein the clamp mechanism is held without manual assistance in a position engaged with the key cutting element and the motor does not control a movement of the clamp mechanism, and a manual mode of operation wherein the clamp mechanism is manually held in a position engaged with the key cutting element and the motor does not control a movement of the clamp mechanism. Additional improvements or features of a key cutting machine are also described.
A key cutting machine is provided for cutting a key blank from a master key. The key cutting machine comprises a first cutting member that rotates about a substantially horizontal axis for cutting a key pattern on a key blank and a second cutting member that rotates about a substantially vertical axis for cutting a key pattern on a key blank. Additional improvements or features of a key cutting machine are also described.
Apparatus, methods, and other embodiments associated with a key duplication machine are described. In one embodiment, an assembly for duplicating a master key includes an optical imaging device, a logic, a clamping assembly, and a cutting member. The optical imaging device is capable of capturing an optical image of at least a portion of the master key. The logic is capable of determining a key pattern of the master key from the optical image of the master key. The clamping assembly is capable of clamping a key blank and the cutting member is capable of cutting a key pattern into said key blank.
A key cutting machine is provided for cutting a key blank from a master key. The key cutting machine comprises a first cutting member that rotates about a substantially horizontal axis for cutting a key pattern on a key blank and a second cutting member that rotates about a substantially vertical axis for cutting a key pattern on a key blank. Additional improvements or features of a key cutting machine are also described.