A system for performing over-the-air (OTA) update is disclosed. The system may comprise a first communication interface, an electronic control subsystem of a vehicle, and a gateway. The gateway may be coupled to the electronic control subsystem by way of the first communication interface, receive trigger event information, and detect a trigger condition based on the trigger event information. The gateway may initiate, based on the detection of the trigger condition, a handshake with the electronic control subsystem, verify a set of parameters, and validate a version of a software or a firmware of at least one component of the electronic control subsystem. Based on the verification, the gateway may provide an update file to the electronic control subsystem by way of the first communication interface. The update file is configured to update the software or the firmware for the at least one component.
G07C 5/08 - Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle, or waiting time
H04L 67/00 - Network arrangements or protocols for supporting network services or applications
H04L 67/06 - Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
H04W 4/02 - Services making use of location information
H04W 4/20 - Services signalling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
H04W 4/44 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
2.
System and method for performing over-the-air update
A system for performing over-the-air (OTA) update is disclosed. The system may comprise a first communication interface, an electronic control subsystem of a vehicle, and a gateway. The gateway may be coupled to the electronic control subsystem by way of the first communication interface, receive trigger event information, and detect a trigger condition based on the trigger event information. The gateway may initiate, based on the detection of the trigger condition, a handshake with the electronic control subsystem, verify a set of parameters, and validate a version of a software or a firmware of at least one component of the electronic control subsystem. Based on the verification, the gateway may provide an update file to the electronic control subsystem by way of the first communication interface. The update file is configured to update the software or the firmware for the at least one component.
G07C 5/08 - Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle, or waiting time
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04L 67/00 - Network arrangements or protocols for supporting network services or applications
H04L 67/06 - Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
H04W 4/02 - Services making use of location information
H04W 4/20 - Services signalling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
H04W 4/44 - Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
A mobile helicopter landing pad comprises a platform with one or more elongate, concave guiding channels for aligning a helicopter on the landing pad by forcing the helicopter's skates into a specific alignment upon landing. The guiding channels may have laterally disposed rollers or else be made of slick material to allow the helicopter to slide towards the base of the guiding channel under the helicopter's own weight. Additional crosswise rollers at the bottom of the guiding channel(s) may be provided to allow the helicopter to be moved forward or backward after landing. A blade locking arm swings upward and secures the top rotor. The pad may include a foldable enclosure that protects the helicopter after landing, and an electronic guidance system that assists the pilot during landing by providing instructions to the pilot or visual indications of the prevailing wind direction and velocity, through illuminated signals on the platform.
A vehicle headlight and control system for a bus or large vehicle includes a headlight fixture with a center or low beam light source and side illumination light source operated independently. The side illumination light source may be activated when the vehicle is turning, as detected by the vehicle speed and steering shaft turn angle, to provide supplemental illumination. Both right and left side illumination sources may be provided, and may comprise LED light elements. The system may also include an audible sound generator to alert pedestrians when the vehicle is turning.
B60Q 1/12 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to steering position
B60Q 5/00 - Arrangement or adaptation of acoustic signal devices
A cover mechanism comprises a support frame with base supports and a multi-part expandable cover engaged with the base supports by grappling members or other means. The expandable cover may have a pliable exterior cover and a set of integral ribs, the expandable cover being foldable when not deployed and being expandable to form a self-supporting structure when deployed. The base supports may provide a sliding track for the grappling members to facilitate expansion of the cover. The base supports may be adapted to rest on the ground or buoyant so that the cover can be used with watercraft. The expandable cover may be deployed by pivoting it from a folded position to an upright position, sliding the cover along the base support tracks, and pivoting the cover from the front of the base supports downwards, forming an enclosure thereby.
An illuminated electronic display sign suitable for a transit vehicle comprises a support frame with a mounting surface, a plurality of lighting elements (210) disposed on or attached to the mounting surface, and electronic circuitry configured to provide commands to selectively illuminate the lighting elements (210) so as to create text or other information thereon. The lighting elements (210) each comprise a semiconductor-based light source and an optical cap, each having a transparent layer portion and a diffusion layer portion. The optical caps may be generally rectangular in shape, aligned in a two-dimensional grid having rows and columns and are substantially adjacent to one another, with narrow gaps therebetween for increased display area. The optical caps may be asymmetrical, with a flat upper portion and a gradually tapering top surface to help reduce glare. A control system including wireless circuitry may be used to control multiple electronic display signs.
G09F 9/33 - Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
G09F 21/04 - Mobile visual advertising by land vehicles
A message board lighting fixture has semiconductor based lighting elements for illumination and an integrated electronic message board display for displaying content to occupants of a transit vehicle or other area. The lighting fixture may include a concave fixture frame having a reflective interior, with lighting elements positioned along the length of the frame to provide area illumination. The electronic display may be mounted on a projecting frame substantially centrally within the cavity of the concave fixture frame, and may be augmented with additional semiconductor based lighting elements for backlighting. A detachable lens cover may have a diffusive portion and a separate transparent region over the electronic display area.
B60Q 3/60 - Arrangement of lighting devices for vehicle interiors; Lighting devices specially adapted for vehicle interiors characterised by optical aspects
F21K 9/60 - Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
G09F 9/33 - Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
G09F 21/04 - Mobile visual advertising by land vehicles
B60Q 3/51 - Mounting arrangements for mounting lighting devices onto vehicle interior, e.g. onto ceiling or floor
G02F 1/1335 - Structural association of cells with optical devices, e.g. polarisers or reflectors
H04N 21/414 - Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance
B60Q 1/50 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
A control network comprises a plurality of network nodes arranged in a plurality of tiers, with first-tier nodes and lower tier nodes. A master control bus interconnects the first-tier nodes, which are also connected to a power source. Lower-tier buses interconnect groups of the lower tier nodes. The lower-tier buses include both data lines and a power source line derived from the power source, allowing the lower tier nodes to selectively distribute power to local loads. A first-tier node may be embodied as a hub controller configured to be connected to one or more of said lower-tier buses. The hub controller may comprise a plurality of internal hub nodes (including a hub master node and hub slave nodes) integrated within the same physical unit.
G06F 1/26 - Power supply means, e.g. regulation thereof
H02J 13/00 - Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
An LED-based lighting unit for retrofitting a fluorescent light fixture in a transit vehicle has a concave frame or structure conforming to the shape of the fluorescent lighting fixture cavity, connector pins on either end of the frame for secure attachment to sockets of the fluorescent fixture, a plurality of LED modules for illuminating an area of a transit vehicle, a power adapter for receiving and converting an input power supply signal, and a diffusive lens cover. The frame may have rear fins or other features for facilitating dissipation of heat generated by the LEDs. A controller adjusts the intensity of the LEDs based on a reading from a temperature sensor and on a manual brightness setting. The change in light output may be accomplished by reducing a duty cycle of a pulse width modulated (PWM) waveform supplying the LEDs.
F21K 99/00 - Subject matter not provided for in other groups of this subclass
B60Q 3/02 - Arrangement of lighting devices for vehicle interior, the mounting or supporting thereof or circuits therefor for lighting passenger or driving compartment
10.
Control network for LED-based lighting system in a transit vehicle
A transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination. A control network comprises a plurality of slave nodes for controlling the LED-based lighting fixtures, and a master node for controlling the slave nodes. The master node may be connected to the slave nodes by a combined power/communication bus in a daisy chain fashion. The slave node may include a power regulator and a controller for providing a target current command to the power regulator, and may adjust the target current based upon temperature measurements or a recorded age of the LEDs. An optical sensor may provide automatic dimming. A reduced number of LEDs may be used in an emergency mode. The lighting fixture may include a ceiling panel fixture and a riser panel attachable by way of a hinge mechanism.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
B60Q 3/02 - Arrangement of lighting devices for vehicle interior, the mounting or supporting thereof or circuits therefor for lighting passenger or driving compartment
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
A mobile helicopter landing pad comprises a platform with one or more elongate, concave guiding channels for aligning a helicopter on the landing pad by forcing the helicopter's skates into a specific alignment upon landing. The guiding channels may have laterally disposed rollers or else be made of slick material to allow the helicopter to slide towards the base of the guiding channel under the helicopter's own weight. Additional crosswise rollers at the bottom of the guiding channel(s) may be provided to allow the helicopter to be moved forward or backward after landing. A blade locking arm swings upward and secures the top rotor. The pad may include a foldable enclosure that protects the helicopter after landing, and an electronic guidance system that assists the pilot during landing by providing instructions to the pilot or visual indications of the prevailing wind direction and velocity, through illuminated signals on the platform.
A transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination. A control network comprises a plurality of slave nodes for controlling the LED-based lighting fixtures, and a master node for controlling the slave nodes. The master node may be connected to the slave nodes by a combined power/communication bus in a daisy chain fashion. The slave node may include a power regulator and a controller for providing a target current command to the power regulator, and may adjust the target current based upon temperature measurements or a recorded age of the LEDs. An optical sensor may provide automatic dimming. A reduced number of LEDs may be used in an emergency mode. The lighting fixture may include a ceiling panel fixture and a riser panel attachable by way of a hinge mechanism.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
A vehicle headlight and control system for a bus or large vehicle includes a headlight fixture with a center or low beam light source and side illumination light source operated independently. The side illumination light source may be activated when the vehicle is turning, as detected by the vehicle speed and steering shaft turn angle, to provide supplemental illumination. Both right and left side illumination sources may be provided, and may comprise LED light elements. The system may also include an audible sound generator to alert pedestrians when the vehicle is turning.
B60Q 1/24 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead
H05B 37/00 - Circuit arrangements for electric light sources in general
B60Q 1/04 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
B60Q 1/12 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to steering position
B60Q 5/00 - Arrangement or adaptation of acoustic signal devices
A vehicle headlight and control system for a bus or large vehicle includes a headlight fixture with a center or low beam light source and side illumination light source operated independently. The side illumination light source may be activated when the vehicle is turning, as detected by the vehicle speed and steering shaft turn angle, to provide supplemental illumination. Both right and left side illumination sources may be provided, and may comprise LED light elements. The system may also include an audible sound generator to alert pedestrians when the vehicle is turning.
B60Q 1/04 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
B60Q 1/40 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction having automatic return to inoperative position
15.
Control network for LED-based lighting system in a transit vehicle
A transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination. A control network comprises a plurality of slave nodes for controlling the LED-based lighting fixtures, and a master node for controlling the slave nodes. The master node may be connected to the slave nodes by a combined power/communication bus in a daisy chain fashion. The slave node may include a power regulator and a controller for providing a target current command to the power regulator, and may adjust the target current based upon temperature measurements or a recorded age of the LEDs. An optical sensor may provide automatic dimming. A reduced number of LEDs may be used in an emergency mode. The lighting fixture may include a ceiling panel fixture and a riser panel attachable by way of a hinge mechanism.
A control network comprises a plurality of network nodes arranged in a plurality of tiers, with first-tier nodes and lower tier nodes. A master control bus interconnects the first-tier nodes, which are also connected to a power source. Lower-tier buses interconnect groups of the lower tier nodes. The lower-tier buses include both data lines and a power source line derived from the power source, allowing the lower tier nodes to selectively distribute power to local loads. A first-tier node may be embodied as a hub controller configured to be connected to one or more of said lower-tier buses. The hub controller may comprise a plurality of internal hub nodes (including a hub master node and hub slave nodes) integrated within the same physical unit.
A mobile helicopter landing pad comprises a platform with one or more elongate, concave guiding channels for aligning a helicopter on the landing pad by forcing the helicopter's skates into a specific alignment upon landing. The guiding channels may have laterally disposed rollers or else be made of slick material to allow the helicopter to slide towards the base of the guiding channel under the helicopter's own weight. Additional crosswise rollers at the bottom of the guiding channel(s) may be provided to allow the helicopter to be moved forward or backward after landing. A blade locking arm swings upward and secures the top rotor. The pad may include a foldable enclosure that protects the helicopter after landing, and an electronic guidance system that assists the pilot during landing by providing instructions to the pilot or visual indications of the prevailing wind direction and velocity, through illuminated signals on the platform.
An LED-based lighting unit for retrofitting a fluorescent light fixture in a transit vehicle has a concave frame or structure conforming to the shape of the fluorescent lighting fixture cavity, connector pins on either end of the frame for secure attachment to sockets of the fluorescent fixture, a plurality of LED modules for illuminating an area of a transit vehicle, a power adapter for receiving and converting an input power supply signal, and a diffusive lens cover. The frame may have rear fins or other features for facilitating dissipation of heat generated by the LEDs. A controller adjusts the intensity of the LEDs based on a reading from a temperature sensor and on a manual brightness setting. The change in light output may be accomplished by reducing a duty cycle of a pulse width modulated (PWM) waveform supplying the LEDs.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
G05F 1/00 - Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or val
A transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination. A control network comprises a plurality of slave nodes for controlling the LED-based lighting fixtures, and a master node for controlling the slave nodes. The master node may be connected to the slave nodes by a combined power/communication bus in a daisy chain fashion. The slave node may include a power regulator and a controller for providing a target current command to the power regulator, and may adjust the target current based upon temperature measurements or a recorded age of the LEDs. An optical sensor may provide automatic dimming. A reduced number of LEDs may be used in an emergency mode. The lighting fixture may include a ceiling panel fixture and a riser panel attachable by way of a hinge mechanism.
B60Q 1/14 - Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
20.
CONTROL NETWORK FOR LED-BASED LIGHTING SYSTEM IN A TRANSIT VEHICLE
A transit vehicle lighting system has a plurality of LED-based lighting fixtures for providing interior illumination. A control network comprises a plurality of slave nodes for controlling the LED-based lighting fixtures, and a master node for controlling the slave nodes. The master node may be connected to the slave nodes by a combined power/communication bus in a daisy chain fashion. The slave node may include a power regulator and a controller for providing a target current command to the power regulator, and may adjust the target current based upon temperature measurementsor a recorded age of the LEDs. An optical sensor may provide automatic dimming. A reduced number of LEDs may be used in an emergency mode. The lighting fixture may include a ceiling panel fixture and a riser panel attachable by way of a hinge mechanism.
H05B 33/08 - Circuit arrangements for operating electroluminescent light sources
B60Q 3/02 - Arrangement of lighting devices for vehicle interior, the mounting or supporting thereof or circuits therefor for lighting passenger or driving compartment
A network node well suited for use in a distributed control network includes a housing containing the node electronics, and an external port for receiving a detachable plug-in module. The plug-in module contains a programmable memory which, when the plug-in module is attached, allows electronic interconnection between the electronics of the network node and the readable memory. The readable memory stores a unique node identifier which becomes associated with the node, and can also store functional program code for the particular node. Thus, a node can be easily and rapidly replaced or reprogrammed, without the need for specialized equipment to download the node identifier or functional program code, and without the possibility of erroneous manual entry of the node identifier. The plug-in module further includes a writable memory portion which can be used to store data during operation of the node, for later retrieval.
G06F 3/00 - Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
A control network comprises a plurality of network nodes arranged in a plurality of tiers, with first-tier nodes and lower tier nodes. A master control bus interconnects the first-tier nodes, which are also connected to a power source. Lower-tier buses interconnect groups of the lower tier nodes. The lower-tier buses include both data lines and a power source line derived from the power source, allowing the lower tier nodes to selectively distribute power to local loads. A first-tier node may be embodied as a hub controller configured to be connected to one or more of said lower-tier buses. The hub controller may comprise a plurality of internal hub nodes (including a hub master node and hub slave nodes) integrated within the same physical unit.
A system for facilitating diagnosis and maintenance of one or more control networks located on a mobile conveyance comprises one or more wireless ground stations configured to communicate over a wireless communication channel with a control network via a wireless interface. A local area computer network receives and responds to messages to or from the control network via the wireless ground stations. The local area computer network comprises one or more user terminals, a server computer, a database comprising diagnostic information relating to said control network, and, optionally, a replacement parts database and/or job auction database. The local area network further includes a wide area network interface, which allow either additional diagnostic information relating to the control network to be retrieved, or parts to be manually or automatically ordered from remote vendor sites. The system may also include wireless handheld, portable equipment capable of communicated with the local area network and/or wide area network, for allowing service personnel to perform diagnostic analysis, maintenance, and testing of the control network(s).
09 - Scientific and electric apparatus and instruments
Goods & Services
electronic and electrical control products namely, automation controls, onboard computer, onboard data recorder, main bus controls, network controls, network sensor control, remote sensor controls, data logger, data recorder, input/output controls, power controls, digital LED controls, and test kit controls, excluding hydraulic control equipment and components; software for programming and operating the aforementioned electronic and electrical control products; and related user manuals excluding equipment, components thereof and computer software in the field of chemical analysis