A concrete composition having a 28-day design compressive strength of 3000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 340 pounds per cubic yard hydraulic cement (e.g. Portland cement), about 102 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1757 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1452 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 14/00 - Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stoneTreatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
2.
CONCRETE COMPOSITIONS OPTIMIZED FOR HIGH WORKABILITY
Concrete compositions have a fine-to-coarse aggregate ratio optimized for decreased viscosity and increased workability. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the aggregate content. To improve workability, the concrete compositions include between 45% and 65% fine aggregate and between 35% and 55% coarse aggregate as a function of total aggregate volume. For relatively low strength concrete (1500-4500 psi), the fine aggregate is 55-65% of the total aggregate volume. For medium strength concrete (4500-8000 psi), the fine aggregate is 50-60% of the total aggregate volume. For high strength concrete (ᡶ8000 psi), the fine aggregate is 45-55% of the total aggregate volume. Overall workability can be maintained or improved even if slump is decreased.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 14/00 - Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stoneTreatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
3.
CONCRETE HAVING HIGH WORKABILITY THROUGH CONTROL OF FINE-TO-COARSE PARTICULATES RATIO
Concrete compositions have a fine-to-coarse particulates ratio optimized for decreased viscosity and increased workability. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the particulates ratio. To improve workability, the concrete compositions include between 49-85% fine particulates (e.g., cement and fine aggregate) and between 15-51% coarse particulates as a percentage of overall particulates volume. For normal strength concrete (up to about 8500 psi, or 58.6 MPa), the fine particulates fraction comprises about 50-75% by volume of total particulates. For high strength concrete (ᡶ8500 psi, or 58.6 MPa), the fine particulates fraction comprises about 56-85% by volume of total particulates. Overall workability can be maintained or improved even if slump is decreased.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 14/00 - Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stoneTreatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
4.
HIGHLY WORKABLE CONCRETE COMPOSITIONS HAVING MINIMAL BLEEDING AND SEGREGATION
Concrete compositions have a fine-to-coarse aggregate ratio optimized for increased workability with minimal segregation and bleeding. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the aggregate content, while minimizing segregation and bleeding. To improve workability, the concrete compositions include between 45 % and 65 % fine aggregate and between 35 % and 55 % coarse aggregate as a function of total aggregate volume. For relatively low strength concrete (1500-4500 psi), the fine aggregate is 55-65 % of the total aggregate volume. For medium strength concrete (4500-8000 psi), the fine aggregate is 50-60 % of the total aggregate volume. For high strength concrete (ᡶ8000 psi), the fine aggregate is 45-55 % of the total aggregate volume. Overall workability can be maintained or improved even if slump is decreased.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 14/00 - Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stoneTreatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
5.
CONCRETE OPTIMIZED FOR HIGH WORKABILITY AND HIGH STRENGTH TO CEMENT RATIO
A concrete composition having a 28-day design compressive strength of 3000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 299 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 90 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1697 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1403 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, inch), about 269 pounds per cubic yard water (e.g., potable water), and about 1.4 fluid ounces of air entraining agent per cwt of hydraulic cement. Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 14/00 - Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stoneTreatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
6.
CONCRETE OPTIMIZED FOR HIGH WORKABILITY AND HIGH STRENGTH TO CEMENT RATIO
A concrete composition having a 28-day design compressive strength of 4000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 375 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 113 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1735 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1434 pounds per cubic yard coarse aggregate (e.g., CA-li state rock, 3/4 inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 14/00 - Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stoneTreatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
7.
CONCRETE OPTIMIZED FOR HIGH WORKABILITY AND HIGH STRENGTH TO CEMENT RATIO
A concrete composition having a 28-day design compressive strength of 4000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 366 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 110 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1654 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1367 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, 3/4 inch), about 269 pounds per cubic yard water (e.g., potable water), and about 1.4 fluid ounces of air entraining agent per cwt of hydraulic cement. Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
40 - Treatment of materials; recycling, air and water treatment,
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Consulting services in the field of providing customized formulations for preferred, lower cost, and higher strength concrete applications and batching processes.