A fusion cage may include an upper endplate directly hinged to a lower endplate. The fusion cage may be adjustable to provide various angles between the endplates. An insert may be coupled between the endplates to lock the endplates at a selected angle. Fasteners may extend through the fusion cage into adjacent bone portions. An instrument may couple to an endplate so that the hinged-together endplates may be inserted between bone portions. The instrument may be used to adjust the angle between the endplates and to couple the insert between the endplates.
A fusion cage may include an upper endplate directly hinged to a lower endplate. The fusion cage may be adjustable to provide various angles between the endplates. An insert may be coupled between the endplates to lock the endplates at a selected angle. Fasteners may extend through the fusion cage into adjacent bone portions. An instrument may couple to an endplate so that the hinged-together endplates may be inserted between bone portions. The instrument may be used to adjust the angle between the endplates and to couple the insert between the endplates.
Fasteners and instruments with fastener retention mechanisms are disclosed. The fastener retention mechanisms may be independent of fastener deployment forces, such as torque. The fastener retention mechanisms may include spring elements of the instruments, whose flexion is limited by other features of the instruments so that the springs function only in their elastic zones and are prevented from experiencing yielding, plastic deformation, bending, cracking, or breaking.
B25B 23/10 - Arrangements for handling screws or nuts for holding or positioning screw or nut prior to or during its rotation using mechanical gripping means
A61B 17/88 - Methods or means for implanting or extracting internal fixation devices
4.
METHODS AND INSTRUMENTATION FOR INTERVERTEBRAL CAGE EXPANSION
An instrument may be coupled to a multi-axis expandable intervertebral cage so that the cage may be inserted into an intervertebral space, expanded along multiple different directions, filled with bone graft, and locked with a fastener. The instrument may be part of an instrument set that includes auxiliary instruments to determine implant size, insert bone graft into the cage, and deliver the fastener.
A fusion cage may include an upper endplate directly hinged to a lower endplate. The fusion cage may be adjustable to provide various angles between the endplates. An insert may be coupled between the endplates to lock the endplates at a selected angle. Fasteners may extend through the fusion cage into adjacent bone portions. An instrument may couple to an endplate so that the hinged-together endplates may be inserted between bone portions. The instrument may be used to adjust the angle between the endplates and to couple the insert between the endplates.
A fusion cage may include an upper endplate directly hinged to a lower endplate. The fusion cage may be adjustable to provide various angles between the endplates. An insert may be coupled between the endplates to lock the endplates at a selected angle. Fasteners may extend through the fusion cage into adjacent bone portions. An instrument may couple to an endplate so that the hinged-together endplates may be inserted between bone portions. The instrument may be used to adjust the angle between the endplates and to couple the insert between the endplates.
MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH (USA)
Inventor
Rindal, Bjorn N.
Schumacher, Brian Scott
Slater, Nicholas
Mahpeykar, Navid
Berven, Sigurd
Cross Iii, William W.
Abstract
Systems and methods for joint preparation and fusion are disclosed. The system includes a cutting device having a handle, and rigid blade member. The blade member may include cutting edges on first and second sides, and may be curved in one or more planes. The blade member may be deployed to project outside of an outer tube, and the cutting device may be rotated to create a circular cavity. In a method of use, a cannula provides access to a procedure site such as a joint. A pathway to the joint is created, and the cutting device is inserted and deployed to undercut a cavity in the joint. A fusion device may be implanted across the joint to provide compression and fuse the joint. The system may also include instrumentation for creating access to a joint, bone graft insertion and implant insertion.
Interbody spacers are expandable horizontally and vertically by an application of axial force, and lockable in an expanded configuration. The spacers include support members interconnected to end bodies by pivotable link members. The spacers are introduced between vertebral bodies in a compressed configuration and expanded to fill the intervertebral space and provide support and selective lordotic correction. Graft material may be introduced into the expanded spacer. Provisional and/or supplementary locking means lock the spacers in the expanded configuration. Embodiments of the spacers include symmetrically and asymmetrically configured spacers. Methods of expansion include symmetric expansion or asymmetric expansion along each of two directions.
An interlocking interface retains a screw head in a socket to prevent migration of the screw head out of the socket, or to lock the screw head in the socket. The interlocking interface may retain or lock the screw at various polyaxial angles with respect to the socket. The screw head includes external corrugations. The socket includes an internal corrugated structure which interlocks with the external corrugations of the screw head when the screw is at various polyaxial angles with respect to the socket. A counterbore may be adjacent either or both ends of the socket.
F16B 39/28 - Locking of screws, bolts, or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
Screw and rod systems include polyaxial and hinge joints which provide independent first and second ranges of motion. The first and second ranges of motion are additive in a direction along the rod, so that the screw has greater angulation relative to the rod along the rod than transverse to the rod.
A system for single tunnel, double bundle anterior cruciate ligament reconstruction includes implant constructs and instruments. The implant constructs provide a combination of cortical fixation and bone tunnel aperture fixation. The implant constructs separate a graft into distinct bundles. The instruments are used to prepare shaped bone tunnels to receive the implant constructs and graft bundles. Methods for reconstructing the antero-medial and postero-lateral bundles of the anterior cruciate ligament may rely on single femoral and tibial tunnels and a single strand of graft.
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A61B 17/16 - Instruments for performing osteoclasisDrills or chisels for bonesTrepans
Systems for interbody fusion of adjacent bone portions may include an expanding implant and related instruments. An expanding implant may be formed as a linkage which is movable between a compact configuration and an expanded configuration. A shaft of the implant may increase and decrease in length to move between the compact and expanded configurations, and an implant width perpendicular to the length may be increased in the expanded configuration. The implant width may increase more in a first direction than a second direction opposite the first direction. An inserter instrument may releasably grasp the spacer and transform the implant between the compact and expanded configurations.
An interlocking interface retains a screw head in a socket to prevent migration of the screw head out of the socket, or to lock the screw head in the socket. The interlocking interface may retain or lock the screw at various polyaxial angles with respect to the socket. The screw head includes external corrugations. The socket includes an internal corrugated structure which interlocks with the external corrugations of the screw head when the screw is at various polyaxial angles with respect to the socket. A counterbore may be adjacent either or both ends of the socket.
F16B 39/28 - Locking of screws, bolts, or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
An interlocking interface retains a screw head in a socket to prevent migration of the screw head out of the socket, or to lock the screw head in the socket. The interlocking interface may retain or lock the screw at various polyaxial angles with respect to the socket. The screw head includes external corrugations. The socket includes an internal corrugated structure which interlocks with the external corrugations of the screw head when the screw is at various polyaxial angles with respect to the socket.
F16B 39/28 - Locking of screws, bolts, or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
A system for single tunnel, double bundle anterior cruciate ligament reconstruction includes implant constructs and instruments. The implant constructs provide a combination of cortical fixation and bone tunnel aperture fixation. The implant constructs separate a graft into distinct bundles. The instruments are used to prepare shaped bone tunnels to receive the implant constructs and graft bundles. Methods for reconstructing the antero-medial and postero-lateral bundles of the anterior cruciate ligament may rely on single femoral and tibial tunnels and a single strand of graft.
A61B 17/04 - Surgical instruments, devices or methods for closing wounds or holding wounds closedAccessories for use therewith for suturing woundsHolders or packages for needles or suture materials
A61B 17/16 - Instruments for performing osteoclasisDrills or chisels for bonesTrepans
A surgical rasping and/or shaving system functions in multiple orthopedic applications, including but not limited to shoulder, knee, hip, wrist, ankle, spinal, or other joint procedures. The system may comprise a tissue removal member with a rasping and/or shaving head which may be low profile and offer a flat cutting/rasping/shaving surface, or with a cutting head with at least one cutting edge. The tissue removal member is configured to be driven by an attached hub that translates a rotational movement into a reciprocating motion. Suction for removal of bone fragments or other tissues is provided through an opening spaced apart from or adjacent to the rasping surface. A radiofrequency ablation (RF) electrode may be carried on the system to provide ablation or coagulation of soft tissues.
A61M 1/00 - Suction or pumping devices for medical purposesDevices for carrying-off, for treatment of, or for carrying-over, body-liquidsDrainage systems
A61B 18/00 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
A61B 18/18 - Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
Tissue fixation members interact with a housing to hold tissue relative to the housing and allow the orientation and position of the grasped tissue to be manipulated with improved efficacy. The tissue fixation members can be easily and quickly moved between deployed and retracted positions to reversibly grasp and release tissue.
Tissue fixation members 18 interact with a housing 12 to hold tissue relative to the housing and allow the orientation and position of the grasped tissue to be manipulated with improved efficacy. The tissue fixation members can be easily and quickly moved between deployed and retracted positions to reversibly grasp and release tissue.
A joint prosthesis system, specifically a shoulder prosthesis, for shoulder replacement, revision and repair. The implants provide fixation into the best bone available to a surgeon. The implants are used in a superior-inferior and anterior-posterior construct forming a type of cross or X-shape. The implants allow for interchangeability of the articulating component as well as rotational orientation. The systems will allow for augments to accommodate bone loss. The implants may allow for additional security using screws or anchors inserted into the scapula.
A joint prosthesis system, specifically a shoulder prosthesis, for shoulder replacement, revision and repair. The implants provide fixation into the best bone available to a surgeon. The implants are used in a superior-inferior and anterior-posterior construct forming a type of cross or X-shape. The implants allow for interchangeability of the articulating component as well as rotational orientation. The systems will allow for augments to accommodate bone loss. The implants may allow for additional security using screws or anchors inserted into the scapula.
A joint prosthesis system, specifically a shoulder prosthesis, for shoulder replacement, revision and repair. The implants provide fixation into the best bone available to a surgeon. The implants are used in a superior-inferior and anterior-posterior construct forming a type of cross or X-shape. The implants allow for interchangeability of the articulating component as well as rotational orientation. The systems will allow for augments to accommodate bone loss. The implants may allow for additional security using screws or anchors inserted into the scapula.
Devices for sacroiliac joint fusion may be implanted from an anterior, posterior, or lateral approach. Multiple devices may be used in a single fusion procedure. Some examples include blade anchors which extend from a central beam, pin, cage, or body.