In aspects, methods and apparatus are provided for the generation of haptic command signals to cause haptic effect outputs at one or more haptic output devices. The haptic command signals may be generated based on haptic media, supplementary media, and/or haptic device capability. Generating the haptic command signals may include creation or modification of haptic effects, distribution of haptic effects, and/or warping of haptic signals. The methods and apparatus may operate according to combinations of developer provided rules and system enabled inferences. Numerous other aspects are provided.
H04N 13/117 - Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation the virtual viewpoint locations being selected by the viewers or determined by viewer tracking
2.
Methods and systems for distributing and/or generating a haptic effect associated with video content and/or audio content
In aspects, methods and apparatus are provided for the generation of haptic command signals to cause haptic effect outputs at one or more haptic output devices. The haptic command signals may be generated based on haptic media, supplementary media, and/or haptic device capability. Generating the haptic command signals may include creation or modification of haptic effects, distribution of haptic effects, and/or warping of haptic signals. The methods and apparatus may operate according to combinations of developer provided rules and system enabled inferences. Numerous other aspects are provided.
In aspects, zoned haptic effects are provided by assigning a plurality of zones corresponding to each of a plurality of zone actuators for providing haptic effects. A desired haptic response is provided for zones selected for actuation, and the response by the zone actuators is detected. Adjacent and non-adjacent zones are assigned for the detected zones as being driven by any of the plurality of zone actuators. Vibration on the adjacent and non-adjacent zone is suppressed in accordance with control parameters associated with the respective adjacent and non-adjacent zones. If a duration of the provided haptic effect has not passed, the suppression of vibration in the adjacent and non-adjacent zones is maintained and if the duration has passed, the suppression of vibration is terminated. Numerous other aspects are provided.
Apparatus and methods for localizing one or more effects in a haptic interface with a user interface having a primary zone and at least one secondary zone are provided. When a desired haptic effect is generated within the primary zone, unwanted resultant haptic effects in the at least one secondary zone may be suppressed. A primary actuator is located in the primary zone, and at least one secondary actuator is located in the at least one secondary zone. At least one controller selectively and controllably generates the haptic effect produced by the primary actuator in the primary zone, and selectively and controllably actuates the at least one secondary actuator within the at least one secondary zone to generate a suppression effect therein. The at least one secondary actuator can be used to localize and/or amplify the haptic effect through constructive and/or destructive interference. Numerous other aspects are provided.
Providing haptic feedback includes identifying a three-dimensional (3D) area around a user. The 3D area is divided into a plurality of 3D sectors. At least one haptic effect is determined based on content displayed relative to the 3D area. At least one haptic effect is modulated by determining, for each of the 3D sectors, at least one weighted haptic effect. A modified haptic effect is generated for each of the 3D sectors based on a sum of the at least one weighted haptic effect. The haptic feedback is provided in response to a haptic control signal including instructions to playback a basic haptic pattern, the basic haptic pattern being transcoded from the modulated haptic effect. Numerous other aspects are provided.
In aspects, methods and apparatus are provided for generating a haptic effect for a three-dimensional (3D) environment that is experienced virtually by a user. The methods may be performed by a processor, and includes receiving media data that describes the 3D environment, wherein the media data includes haptic data which describes a haptic characteristic associated with at least one object, structure, or event in the 3D environment. The method further includes performing a haptic decoding operation and a haptic rendering operation. The decoding operation may include extracting the haptic data from the media data. The haptic rendering operation may include generating a drive signal and communicating the drive signal to a haptic output device to cause the haptic output device to generate a haptic effect at a user peripheral device. Numerous other aspects are provided.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G06T 19/00 - Manipulating 3D models or images for computer graphics
In aspects, methods and apparatus are provided for generating a haptic effect for a three-dimensional (3D) environment that is experienced virtually by a user. The methods may be performed by a processor, and includes receiving media data that describes the 3D environment, wherein the media data includes haptic data which describes a haptic characteristic associated with at least one object, structure, or event in the 3D environment. The method further includes performing a haptic decoding operation and a haptic rendering operation. The decoding operation may include extracting the haptic data from the media data. The haptic rendering operation may include generating a drive signal and communicating the drive signal to a haptic output device to cause the haptic output device to generate a haptic effect at a user peripheral device. Numerous other aspects are provided.
Systems, methods, and devices for control of actuators are provided. In aspects, the systems, methods, and devices provided herein enable the generation of sharp cutoff haptic effects of both limited and extended duration. The systems, methods, and devices use open loop braking signals to generate the sharp cutoff haptic effects. The braking signals are determined based on predictions of system response made according to driving signals used to cause the haptic effects in the actuators. Numerous other aspects are provided.
Systems, methods, and devices for control of actuators are provided. In aspects, the systems, methods, and devices provided herein enable the generation of sharp cutoff haptic effects of both limited and extended duration. The systems, methods, and devices use open loop braking signals to generate the sharp cutoff haptic effects. The braking signals are determined based on predictions of system response made according to driving signals used to cause the haptic effects in the actuators. Numerous other aspects are provided.
The embodiments of the present invention enable novel methods, non-transitory mediums, and systems for encoding and generating haptic effects. According to the various embodiments, a media object is retrieved. The media object is analyzed to determine one or more time periods for rendering haptic effects. The haptic effects for rendering during the time periods are determined. The haptic effects are encoded as a haptic effect pattern that identifies a start time and duration for each of the haptic effects.
G06F 9/50 - Allocation of resources, e.g. of the central processing unit [CPU]
G06F 3/00 - Input arrangements for transferring data to be processed into a form capable of being handled by the computerOutput arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
H04N 21/432 - Content retrieval operation from a local storage medium, e.g. hard-disk
H04N 21/2387 - Stream processing in response to a playback request from an end-user, e.g. for trick-play
H04N 21/8547 - Content authoring involving timestamps for synchronizing content
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
11.
SYSTEMS, DEVICES, AND METHODS FOR PROVIDING LOCALIZED HAPTIC EFFECTS
Systems, methods, and devices include at least one actuator positioned within proximity of a user interface (UI) region of an interactive surface. The UI region outputs information to a user and receives input from the user. The at least one actuator provides a haptic effect to the user when interacting with the UI region. The system also includes at least one isolation element positioned adjacent to the at least one actuator. The at least one isolation element suppresses transmission of the haptic effect to an additional UI region of the interactive surface.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
12.
FLEXURAL SUSPENSION FOR DELIVERING HAPTIC FEEDBACK TO INTERACTIVE DEVICES
A support structure includes a fixed frame portion configured to provide a fixed connection point for the support structure. The support structure also includes a suspended frame portion configured to support the interactive device and configured to oscillate in a direction of motion relative to the fixed frame portion due to a force applied to at least one of the fixed frame portion or the suspended frame portion by an actuator configured to provide a haptic effect to the interactive device. Further, the support structure includes one or more support members coupled between the fixed frame portion and the suspended frame portion. The direction of motion is defined by the one or more support members. The one or more support members provide a restoring force that causes the suspended frame portion to undergo harmonic oscillation in the direction of motion in response to the force applied by the actuator.
Providing haptic feedback includes identifying a three-dimensional (3D) area around a user. The 3D area is divided into a plurality of 3D sectors. At least one haptic effect is determined based on content displayed relative to the 3D area. At least one haptic effect is modulated by determining, for each of the 3D sectors, at least one weighted haptic effect. A modified haptic effect is generated for each of the 3D sectors based on a sum of the at least one weighted haptic effect. The haptic feedback is provided in response to a haptic control signal including instructions to playback a basic haptic pattern, the basic haptic pattern being transcoded from the modulated haptic effect. Numerous other aspects are provided.
A haptic-enabled system, non-transitory computer-readable medium, and method for controlling a haptic actuator are presented. The haptic-enabled system comprises the haptic actuator, a movement sensor, and a control circuit. The control circuit is configured to: generate a driving portion of a drive signal; apply the driving portion of the drive signal to the haptic actuator to generate movement of one or more portions of the haptic-enabled system; determine (e.g., measure) the movement of the one or more portions of the haptic-enabled system; determine a time-varying correction signal for reducing the movement; generate a braking portion of the drive signal based on a combination of the time-varying correction signal and a defined offset; and apply the braking portion of the drive signal to the haptic actuator. Numerous other aspects are provided.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
H01L 41/09 - Piezo-electric or electrostrictive elements with electrical input and mechanical output
H02N 2/02 - Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuatorsLinear positioners
15.
Systems and methods for generating a drive signal having a braking portion
A haptic-enabled system, non-transitory computer-readable medium, and method for controlling a haptic actuator are presented. The haptic-enabled system comprises the haptic actuator, a movement sensor, and a control circuit. The control circuit is configured to: generate a driving portion of a drive signal; apply the driving portion of the drive signal to the haptic actuator to generate movement of one or more portions of the haptic-enabled system; determine (e.g., measure) the movement of the one or more portions of the haptic-enabled system; determine a time-varying correction signal for reducing the movement; generate a braking portion of the drive signal based on a combination of the time-varying correction signal and a defined offset; and apply the braking portion of the drive signal to the haptic actuator. Numerous other aspects are provided.
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
B06B 1/06 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
B60Q 9/00 - Arrangement or adaptation of signal devices not provided for in one of main groups
16.
Systems, devices, and methods for encoding haptic tracks
Systems, devices, and methods for encoding haptic tracks are provided. A method includes receiving the haptic track, and identifying, within the haptic track, at least one of first portions of the haptic track that are representative of haptic silences or second portions that are representative of haptic effects. The method includes segmenting the haptic track into haptic silence chunks associated with one or more of the first portions that are sequentially positioned in the haptic track and haptic effects chunks associated with one or more of the second portions that are sequentially positioned in the haptic track. The method includes generating an encoded haptic track comprising at least one of a haptic silence block or a haptic effect block. The method includes outputting the encoded haptic track for playback. Numerous other aspects are provided.
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
H04N 21/43 - Processing of content or additional data, e.g. demultiplexing additional data from a digital video streamElementary client operations, e.g. monitoring of home network or synchronizing decoder's clockClient middleware
17.
Systems and methods for providing haptic effects with airflow and thermal stimulation
Systems and methods for providing haptic effects with airflow and thermal stimulation are disclosed. One illustrative system described herein includes a haptic output device comprising a thermal actuator and a processor communicatively coupled to the haptic output device and configured to: receive a sensor signal from at least one sensor, determine a heat flux property based in part on the display signal or a predefined parameter, determine a haptic effect based in part on the heat flux property and the sensor signal, the heat flux property being representative of a rate of change of temperature, and transmit a haptic signal associated with the haptic effect to the haptic output device.
Systems and methods for providing haptic effects with airflow and thermal stimulation are disclosed. One illustrative system described herein includes a haptic output device comprising a thermal actuator and a processor communicatively coupled to the haptic output device and configured to: receive a sensor signal from at least one sensor, determine a heat flux property based in part on the display signal or a predefined parameter, determine a haptic effect based in part on the heat flux property and the sensor signal, the heat flux property being representative of a rate of change of temperature, and transmit a haptic signal associated with the haptic effect to the haptic output device.
Systems and methods for an Interaction Proxy are disclosed. One disclosed device includes a structure capable of defining at least a first shape at a first location and a second shape at a second location, the second shape configured to act as an interaction proxy; an actuator coupled to the structure and in communication with a processor, the actuator configured to receive a transition signal from the processor and, in response, transition the structure from the first shape to the second shape. The device also includes a sensor configured to sense an interaction with the structure and generate a sensor signal associated with the interaction and to transmit the sensor signal to the processor.
Single actuator audio haptic systems for producing haptic effects and audio effects are provided. Single actuator audio haptic systems may include flat form factor actuators including a resonant substrate, an actuator, and optionally, a suspension to tune the response of the actuator and resonant substrate. Single actuator audio haptic systems may be employed in mobile devices and/or as wearable devices.
A haptically enabled device including a digital-analog hybrid control circuit is provided. The digital-analog control circuit includes an analog control circuit and at least one processor and is configured to control a vibration actuator to produce a limited duration haptic effect. The digital-analog control circuit receives a motion characteristic feedback signal from a sensor and uses the motion characteristic feedback signal to provide continuous adjustment to a command signal that controls the vibration actuator.
A method and a device for providing information for haptic effects is provided. The device obtains an audio signal including audio data and control information, the audio signal including one or more audio segments and the control information including one or more haptic effect tags indicating at least one of (1) whether to generate a haptic effect for the one or more audio segments, and (2) at least one parameter of an algorithm for converting the one or more audio segments into the haptic effect. The device provides the audio data to render audio via an audio output system based on the one or more audio segments. The device converts the audio data into a haptic signal to generate one or more haptic effects based on the one or more haptic effect tags and provides the haptic signal to generate the one or more haptic effects via a haptic device.
A haptic device includes a display configured to display an image, a haptic output device configured to generate a haptic effect to a user when the user interacts with the display, and a processor configured to receive information related to the image displayed on the display. The processor is also configured to create a friction based haptic effect map associated with the image displayed on the display, and generate a signal to the haptic output device to output the haptic effect when the user interacts with the display when the image is displayed on the display, the haptic effect being configured to simulate a feel of the image in three dimensions.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
24.
Systems and methods for multi-user shared virtual and augmented reality-based haptics
Systems and methods for multi-user shared virtual and augmented reality-based haptics are disclosed. One illustrative method for multi-user shared virtual and augmented reality-based haptics includes determining a position of an object; determining a viewpoint of at least one observer with respect to the object; determining a haptic effect to be output based at least in part on the position and the viewpoint; and outputting the haptic effect.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06T 19/00 - Manipulating 3D models or images for computer graphics
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
G06F 3/0481 - Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
25.
Systems, devices, and methods for providing limited duration haptic effects
Systems, devices, and methods for providing limited duration haptic effects are disclosed. Systems for providing limited duration haptic effects include sensors, control circuits, and vibration actuators configured closed loop feedback control of the vibration actuators. The sensors are configured to measure motion characteristics induced by the vibration actuators. The control circuits are configured to receive motion characteristic information from the sensors and provide closed loop feedback control of the vibration actuators. Closed loop feedback control permits precise control of vibration actuator output during limited duration haptic effects.
A system is provided to process a source signal and generate one or more haptic effects for various haptic devices based on the source signal. The system operates to convert the source signal to meet different architectures of respective haptic devices and enables haptic effect designers to create haptic data without being concerned about low level details of different haptic devices.
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
G08B 25/10 - Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
Interactive devices configured for producing haptic effects through structural modification are provided. The interactive devices include a modifiable structure configured with one or more actuators to generate internal forces within the modifiable structure. The generated internal forces provide haptic effects to a user through the modifiable structure, including expansion and compression effects, resistance and assistance effects, vibration effects, and kinesthetic effects. The interactive devices are further configured to receive user inputs applied to the interactive device through tensile or compressive forces.
A63F 13/25 - Output arrangements for video game devices
A63F 13/28 - Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/03 - Arrangements for converting the position or the displacement of a member into a coded form
28.
SYSTEMS AND METHODS FOR INTEGRATING ENVIRONMENTAL HAPTICS IN VIRTUAL REALITY
Systems and methods for integrating environmental haptic effects in virtual reality are disclosed. One illustrative system described herein includes a sensor for detecting an environmental condition, the environmental condition associated with an environmental haptic effect, and generating a sensor signal. The system also includes a virtual reality display configured to output a virtual reality effect. The system also includes a processor coupled to the sensor and a virtual reality display, the processor configured to: receive the sensor signal, determine a modification to the virtual reality effect based in part on the sensor signal, and transmit a display signal associated with the modification to the virtual reality display. Another illustrative system includes a sensor for detecting an environmental condition, the environmental condition associated with an environmental haptic effect, and generating a sensor signal, and a virtual reality display configured to output a virtual reality effect. The system also includes a processor coupled to the sensor and a virtual reality display, the processor configured to: receive the sensor signal, determine a generated haptic effect based at least in part of the sensor signal that when combined with the environmental haptic effect produces the desired haptic effect, and transmit a haptic signal associated with the generated haptic effect to a haptic output device.
A system includes a first electronic device and a second electronic device. The first electronic device includes a sensor configured to sense or property experienced by the first electronic device, and a transmitter configured to transmit a signal based on output from the sensor. The second electronic device is in signal communication with the first electronic device. The second electronic device includes a receiver configured to receive the transmitted signal, a detector configured to determine an object that a user of the second device is focusing on, a processor configured to generate a haptic signal representative of the transmitted signal if it is determined that the object the user is focusing on corresponds with a location of the first electronic device, and a haptic output device configured to receive the haptic signal and generate a haptic effect to the user.
Systems and methods for integrating environmental haptic effects in virtual reality are disclosed. One illustrative system described herein includes a sensor for detecting an environmental condition, the environmental condition associated with an environmental haptic effect, and generating a sensor signal. The system also includes a virtual reality display configured to output a virtual reality effect. The system also includes a processor coupled to the sensor and a virtual reality display, the processor configured to: receive the sensor signal, determine a modification to the virtual reality effect based in part on the sensor signal, and transmit a display signal associated with the modification to the virtual reality display. Another illustrative system includes a sensor for detecting an environmental condition, the environmental condition associated with an environmental haptic effect, and generating a sensor signal, and a virtual reality display configured to output a virtual reality effect. The system also includes a processor coupled to the sensor and a virtual reality display, the processor configured to: receive the sensor signal, determine a generated haptic effect based at least in part of the sensor signal that when combined with the environmental haptic effect produces the desired haptic effect, and transmit a haptic signal associated with the generated haptic effect to a haptic output device.
Devices and methods for providing localized haptic effects are provided. The devices include a haptically enabled display device having one or more haptic actuators. The one or more haptic actuators are located in a non-viewing area of a display screen of a haptically enabled display device and cause localized haptic effects in a viewing area of the display screen. The haptically enabled display device includes a processor configured to determine haptic control signals for activating the haptic actuators. The haptic control signal activates the one or more haptic actuators to provide a localized haptic effect at a target location in the viewing area, remote from the non-viewing area location of the one or more haptic actuators.
A system provides haptic feedback based on media content. The system processes the media content into components including a first component and a second component. The system further determines a first priority value related to the first component and a second priority value related to the second component. The system further compares the first priority value with the second priority value. The system further generates a first control signal and a second control signal based on the comparison, where the first control signal is configured to cause a first haptic feedback to be output and the second control signal is configured to cause a second haptic feedback to be output that is the same or different than the first haptic feedback.
Systems and methods for multi-level closed loop control of haptic effects are disclosed. One illustrative system for multi-level closed loop control of haptic effects includes a haptic output device configured to output a haptic effect, a sensor configured to sense the output of the haptic output device and generate a sensor signal, and a processor in communication with the sensor. The processor is configured to: receive a reference signal, receive the sensor signal, determine an error based at least in part on the reference signal and the sensor signal, generate a haptic signal based at least in part on the reference signal and the error, and transmit the haptic signal to a haptic output device configured to output a haptic effect based on the haptic signal.
The disclosure relates to systems and methods of providing haptic feedback based on media content and one or more external parameters used to customize the haptic feedback. The system may modify or otherwise alter haptic feedback that is determined using the media content alone. In other words, the system may use both the media content and the external parameters to determine haptic feedback that should be output to the user or others. The external parameters may include, for example, sensor information, customization information, and/or other external parameters that may be used to customize the haptic feedback.
One illustrative system disclosed herein includes a computing device that comprises a memory and a processor in communication with the memory. The processor can generate content that can be provided to a user. The processor can obtain data indicating various haptic tracks associated with various content elements in the content. The processor can determine a selection of a haptic track of the various haptic tracks associated with a particular content element of the various content elements. The processor can determine a characteristic of the haptic track and then transmit a haptic signal associated with the haptic track to a haptic output device, which can receive the haptic signal and output the haptic track.
Rendering haptics in a haptically-enabled headphone system includes generating a haptic signal at the haptically-enabled headphone system based on non-audio data and rendering a haptic effect specified in the haptic signal using a haptic output device within the haptically-enabled headphone system.
One illustrative system disclosed herein includes a processor configured to receive a sensor signal from a neural interface configured to detect an electrical signal associated with a nervous system. The processor is also configured to determine an interaction in with a virtual object in a virtual environment based on the sensor signal. The processor is also configured to determine a haptic effect based at least in part on the interaction with the virtual object in the virtual environment. The processor is also configured to transmit a haptic signal associated with the haptic effect. The illustrative system further includes a haptic output device configured to receive the haptic signal and output the haptic effect.
A system provides haptic surround functionality. The system determines a location of a virtual event in a virtual environment. The system also determines a location of a first virtual body area of a virtual user in the virtual environment based on a location of a first body area of a user, where the first body area corresponds to the first virtual body area. The system then determines a first haptic effect based on the virtual event, the location of the virtual event in the virtual environment, and the location of the first virtual body area of the virtual user in the virtual environment. The system outputs the first haptic effect by a first haptic output device to the first body area of the user.
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/211 - Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
A63F 13/212 - Input arrangements for video game devices characterised by their sensors, purposes or types using sensors worn by the player, e.g. for measuring heart beat or leg activity
A63F 13/213 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
A63F 13/25 - Output arrangements for video game devices
A63F 13/5255 - Changing parameters of virtual cameras according to dedicated instructions from a player, e.g. using a secondary joystick to rotate the camera around a player's character
G06T 19/00 - Manipulating 3D models or images for computer graphics
40.
Systems and methods for integrating haptics overlay in augmented reality
Systems and methods for integrating haptics overlay in augmented reality are disclosed. One illustrative system described herein includes a haptic output device. The system also includes a display configured to output a visual effect. The system also includes a sensor for tracking a position of a proxy object. The system also includes a processor configured to: determine a modified visual effect based in part on data received from the sensor, determine a haptic effect based in part on data received from the sensor, transmit a display signal associated with the modified visual effect to the display, transmit a haptic signal associated with the haptic effect to the haptic output device; and output the haptic effect using the haptic output device.
Systems, methods, and instructions for driving an actuator using an open-loop drive circuit that generate, at a processor, a reference input signal according to a predetermined or predicted command signal, supply the reference input signal to an amplifier to generate a command signal, and supply the command signal to the haptic output device to render a haptic effect.
A kinesthetically enabled glove for providing kinesthetic feedback to a user are provided. The kinesthetically enabled glove incorporates various actuators configured to provide resistance to movement and/or to provide movement. Kinesthetic actuators employed include electroadhesive actuators, electromagnetic actuators, air-jamming actuators, and inertial mass actuators. The kinesthetic actuators are arranged in various portions of the kinesthetically enabled glove to provide force feedback at different locations. The kinesthetic glove may be employed during interaction with a computer system, providing a user with a more immersive experience.
Systems and methods for multi-level closed loop control of haptic effects are disclosed. One illustrative system for multi-level closed loop control of haptic effects includes a haptic output device configured to output a haptic effect, a sensor configured to sense the output of the haptic output device and generate a sensor signal, and a processor in communication with the sensor. The processor is configured to: receive a reference signal, receive the sensor signal, determine an error based at least in part on the reference signal and the sensor signal, generate a haptic signal based at least in part on the reference signal and the error, and transmit the haptic signal to a haptic output device configured to output a haptic effect based on the haptic signal.
Systems and methods for differential optical position sensing for a haptic actuator are disclosed. In one embodiment, a system includes: an actuator configured to receive a drive signal and move an object to output a haptic effect; a first sensor configured to monitor a position of the object and output a first position signal; a second sensor configured to monitor the position of the object and output a second position signal different from the first position signal; a circuit configured to receive the first position signal and the second position signal and output a difference signal; and a processor configured to receive the difference signal and output a control signal to the actuator based on the difference signal.
An apparatus and method for damping haptic vibrations. A haptic output device is positioned within a device housing. The haptic output device has a haptic actuator and a haptic mass, the haptic mass being movable relative to the housing. A damper is positioned within the device housing. A controller is programmed to generate and deliver a haptic signal to the haptic actuator at a first time, and to generate and deliver a damping signal to the damper at a second time, the second time occurring after the first time. The method comprises moving a haptic mass, the haptic mass position in a housing; vibrating the housing in response to moving the haptic mass; damping movement of the haptic mass after a period of time; and substantially eliminating vibration of the housing in response to damping movement of the haptic mass.
Devices and methods for providing localized haptic effects are provided. The devices include a haptically enabled display device having one or more haptic actuators. The one or more haptic actuators are located in a non-viewing area of a display screen of a haptically enabled display device and cause localized haptic effects in a viewing area of the display screen. The haptically enabled display device includes a processor configured to determine haptic control signals for activating the haptic actuators. The haptic control signal activates the one or more haptic actuators to provide a localized haptic effect at a target location in the viewing area, remote from the non-viewing area location of the one or more haptic actuators.
A method of generating haptic effects on a haptic-enabled device having a control unit and a haptic output device is provided. The method comprises receiving a haptic track that describes a time-varying magnitude envelope for driving the haptic output device to generate a haptic effect. The method further comprises generating a periodic drive signal with a time-varying frequency that is based on magnitude values of the time-varying magnitude envelope described in the haptic track. The method further comprises outputting the periodic drive signal to the haptic output device, to cause the haptic output device to generate the haptic effect based on the periodic drive signal.
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
B06B 1/02 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of electrical energy
B06B 1/16 - Processes or apparatus for generating mechanical vibrations of infrasonic, sonic or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
48.
Cross-platform dynamic haptic effect design tool for augmented or virtual reality environments
One illustrative system disclosed herein includes a computing device that comprises a memory and a processor in communication with the memory. The processor generates an interactive user interface and obtains an input parameter and a haptic parameter via the interactive user interface. The processor maps the input parameter to the haptic parameter using a mapping algorithm and designs a dynamic haptic effect based at least in part on mapping the input parameter to the haptic parameter. The processor can then generate a plurality of dynamic haptic effects for a plurality of user devices based at least in part on the designed dynamic haptic effect.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
49.
KINESTHETIC HAPTIC FEEDBACK FOR HAPTICALLY-ENABLED SURFACES
A haptic system and a method of manufacturing a haptic system are provided. The haptic system includes a substrate and a haptic actuator. The substrate includes a region having a residual stress. The haptic actuator is coupled to the substrate on or near the region and is configured to generate a haptic effect in response to receiving a haptic effect signal. The haptic effect generated by the haptic actuator is amplified by the residual stress associated with the region. The method of manufacturing the haptic system includes deforming an substrate into a deformed shape, applying an epoxy to the substrate, affixing a haptic actuator to the epoxy and curing the epoxy while holding the substrate in the deformed shape, and, after curing, releasing the substrate to create the region having the residual stress.
Systems, devices, methods, non-transitory computer readable mediums for generating one or more haptic effects are provided. For example, a device includes a substrate including a plurality of haptic regions, and a plurality of haptic output devices, each haptic output device being coupled to a respective haptic region, and each haptic output device being configured to generate a haptic effect in response to receiving a haptic drive signal, as described herein. The haptic effect is perceptible to a user within one cycle of the haptic drive signal.
One illustrative system disclosed herein includes a computing device in communication with a display device and a sensor. The display device is configured to display a plurality of content and the sensor is configured to detect a field of view of a user of the computing device relative to the display device. The sensor can transmit a signal associated with the field of view to a processor in communication with the sensor. The processor is configured to determine a direction of the field of view of the user based on the signal. The processor is also configured to determine that a content displayed by the display device and associated with a haptic effect is within the field of view of the user. The processor is also configured to determine a haptic effect associated with the content and transmit a haptic signal associated with the haptic effect. The illustrative system also includes a haptic output device configured to receive the haptic signal and output the haptic effect.
A method is provided for adjusting the playback rate of haptic effects to a desired playback rate. A desired playback rate is determined. A portion of a haptic signal based on the desired playback rate is generated. The portion of the haptic signal is sent to a haptic output device, causing the haptic output device to output haptic effects at a playback rate corresponding to the desired playback rate.
Systems and methods for controlling power and/or current consumption for multiple haptic output devices are provided. Various features of the haptic output device may be described within a data structure. In response to a haptic instruction, a power budget for the haptic output device may be determined in accordance with its operational characteristics. A drive signal may then be applied to the haptic output device to produce the haptic effect in accordance with the calculated power budget. The calculated power budget may be configured to limit the current or power drawn by the haptic output device.
G06F 3/038 - Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
G06F 1/3234 - Power saving characterised by the action undertaken
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/23 - Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
54.
Haptically enhanced interactivity with interactive content
Interactive content may be presented to a user that is manipulating a peripheral. One or more state parameters that are related to the position of the peripheral may be determined. The peripheral may be identified from a plurality of possible peripherals. The interactive content may be adjusted based at least in part on the one or more position parameters and/or the identification of the peripheral. Haptic feedback to be provided to the user may be determined based at least in part on the one or more position parameters and/or the identification of the peripheral.
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
A63F 13/28 - Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
G06F 3/0483 - Interaction with page-structured environments, e.g. book metaphor
Systems and methods long-range interactions for virtual reality are disclosed. One disclosed system includes: a handheld interface device; a sensor configured to detect movement of the handheld interface device and transmit a sensor signal associated with the movement; a processor coupled to the sensor and configured to: determine a haptic signal based in part on the sensor signal; and control, based on the haptic signal, an electromagnetic source remote from the handheld interface device to output a magnetic field to apply a force to magnetic material in the handheld interface device to output a haptic effect to a user of the handheld interface device.
G09G 5/00 - Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
A63F 13/20 - Input arrangements for video game devices
56.
Method and device for performing actuator control based on an actuator model
A user interface device having a haptic actuator, a sensor, a storage device, and a control circuit is presented. The sensor is configured to measure movement output by the haptic actuator. The control circuit is configured to apply a first drive signal to the haptic actuator to generate a first haptic effect, and to receive a sensor measurement that describes movement of the haptic actuator in response to the first drive signal, and to generate or update, based on the measurement, an actuator model that describes how the haptic actuator moves in response to drive signals. The control circuit is further configured to generate a second drive signal based on a desired movement for a second haptic effect and based on the actuator model, and to control the haptic actuator to generate the second haptic effect by applying the second drive signal to the haptic actuator.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
57.
Systems and methods for multi-pressure interaction on touch-sensitive surfaces
Systems and methods for multi-pressure interaction on touch-sensitive surfaces are disclosed. One disclosed embodiment of a method comprises receiving a first sensor signal from a touch-sensitive input device in response to a first contact of a first object on the touch-sensitive input device, the first sensor signal comprising a first location and a first pressure of the first contact, receiving a second sensor signal from the touch-sensitive input device in response to a second contact of a second object on the touch-sensitive input device substantially simultaneously with the first contact, the second sensor signal comprising a second location of the second contact and a second pressure of the second contact, generating a signal based at least in part on the first sensor signal and the second sensor signal, the signal configured to cause a haptic effect, and outputting the signal.
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
58.
Method and device for enabling pitch control for a haptic effect
A method of generating haptic effects on a haptic-enabled device having a control unit and a haptic output device is provided. The method comprises receiving a haptic track that describes a time-varying magnitude envelope for driving the haptic output device to generate a haptic effect. The method further comprises generating a periodic drive signal with a time-varying frequency that is based on magnitude values of the time-varying magnitude envelope described in the haptic track. The method further comprises outputting the periodic drive signal to the haptic output device, to cause the haptic output device to generate the haptic effect based on the periodic drive signal.
A system having a haptic control unit, a haptic delivery cluster, and an electric field generator, magnetic field generator, or pneumatic actuator is presented. The haptic delivery cluster comprises a plurality of haptic delivery nodes, wherein each haptic delivery node of the plurality of haptic delivery nodes is separate from other haptic delivery nodes of the plurality of haptic delivery nodes, is at least one of a wireless communication device, a sensor, or a computing device, and has a dimension that is less than or equal to 5 mm. The electric field generator, magnetic field generator, or pneumatic actuator is in communication with the haptic control unit and is configured, when activated, to generate an electric field or a magnetic field in a physical environment in which the haptic delivery cluster is located, or to output a pulse of air in the physical environment.
One illustrative system of the present disclosure includes a sensor configured to detect a gesture that includes a movement through multiple positions in real space. The multiple positions can include a first position that is distant from a touch sensitive surface and a second position that is closer to the touch sensitive surface than the first position. The system also includes a processor in communication with the sensor. The processor can output a graphical user interface (GUI) that includes multiple available user interface levels. During the gesture, the processor can activate a sequence of user interface levels, where each user interface level in the sequence is selected from among the multiple available user interface levels and is activated at a respective position among the multiple positions in the gesture. The processor can also cause a haptic output device to provide haptic feedback associated with each user interface level.
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 1/16 - Constructional details or arrangements
61.
Systems and methods for shape input and output for a haptically-enabled deformable surface
One illustrative computing device disclosed herein includes a first sensor configured to detect a position associated with a deformable surface and transmit a sensor signal associated with the position; and a processor in communication with the sensor, the processor configured to: receive the sensor signal; determine a haptic effect based at least in part on the sensor signal; and transmit a haptic signal associated with the haptic effect. The illustrative computing device also includes a haptic output device in communication with the processor, the haptic output device configured to receive the haptic signal and output the haptic effect.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0487 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/038 - Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
H04N 21/422 - Input-only peripherals, e.g. global positioning system [GPS]
H04M 1/02 - Constructional features of telephone sets
62.
Systems and methods for haptically-enabled interactions with objects
One illustrative computing device disclosed herein includes a sensor configured to detect a user interaction with a physical object and transmit a sensor signal associated with the user interaction. The illustrative computing device also includes a processor in communication with the sensor, the processor configured to: receive the sensor signal; determine a characteristic of the physical object based on the sensor signal; and determine a function based at least in part on the user interaction and the characteristic. The processor is also configured to determine a haptic effect associated with the function; and transmit a haptic signal associated with the haptic effect. The illustrative computing device further includes a haptic output device in communication with the processor, the haptic output device configured to receive the haptic signal and output the haptic effect.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0338 - Pointing devices displaced or positioned by the userAccessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
G06F 3/042 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
A non-transitory computer-readable medium for generating a haptic effect is provided. The computer-readable-medium has computer-executable code that causes a processor to receive a desired haptic effect waveform for the haptic effect, to receive sensor information that indicates at least one of speed, acceleration, and position of the haptic output device, and to generate a control signal for the haptic effect based on the desired haptic effect waveform and the at least one of the speed, acceleration, and position of the haptic output device, wherein the control signal causes a profile of the haptic effect to substantially match the desired haptic effect waveform, such that matching between the profile of the haptic effect and the desired haptic effect waveform is made more similar by basing the control signal on the at least one of the speed, acceleration, and position of the haptic output device.
A haptic effect enabled device for simulating a tactile sensation on a surface. In some cases, the haptic effect enabled device may be a user interface device, and the tactile sensation may be simulated on a surface of the user interface device. The interface device may include a haptic output device configured to generate a haptic effect, such as a periodic haptic effect, at the surface. The interface device may include a drive module configured to generate a periodic drive signal based on a touch input at the surface of the interface device and based on the tactile sensation to be simulated at the surface. The interface device may include a drive circuit operatively coupled to the drive module and the haptic output device and configured to apply the periodic drive signal to the haptic output device. In some cases, the surface may be separate from the device.
Systems and methods for shifting haptic feedback function between passive and active modes are disclosed. For example, one disclosed method includes receiving a first signal from a sensor, the first signal associated with a mode of interaction with a graphical user interface; receiving a second signal associated with an interaction with the graphical user interface; determining a haptic feedback effect based at least in part on the mode of interaction with the graphical user interface and the interaction with the graphical user interface; and generating a haptic signal configured to output the haptic feedback effect.
H04W 4/21 - Services signallingAuxiliary data signalling, i.e. transmitting data via a non-traffic channel for social networking applications
G06F 1/16 - Constructional details or arrangements
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
H04M 19/04 - Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
A system is provided that modifies a haptic effect experienced at a user input element. The system sends a haptic instruction and a haptic effect definition to a peripheral device. The system further receives user input data including a position of the user input element, or a force applied to the user input element. The system further modifies the haptic effect definition based on the received user input data. The system further sends a new haptic instruction and the modified haptic effect definition to the peripheral device. The system further causes a haptic output device to modify a haptic effect based on the modified haptic effect definition at the user input element of the peripheral device in response to the new haptic instruction.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/24 - Constructional details thereof, e.g. game controllers with detachable joystick handles
A63F 13/22 - Setup operations, e.g. calibration, key configuration or button assignment
A63F 13/28 - Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
A haptic effect enabled flexible device is presented that includes a flexible frame, a processor, a flexible display and an actuator system. The processor is configured to receive a data stream where the data stream contains visual content. The flexible display is connected to the flexible frame and is designed to display the visual content from the data stream. The actuator system is also connected to the flexible frame and receives drive commands from the processor as a result of the processor executing a plurality of haptic instructions. The drive commands direct the actuator system to deform the flexible device. Execution of the plurality of haptic instructions is synchronized with the display of the visual content on the flexible display device.
A method includes receiving digital content data including audio data and/or video data, generating haptic data using at least some of the received digital content data, encoding the haptic data for efficient transmission over a communication network, multiplexing the encoded haptic data with the received digital content data, embedding information for decoding the encoded haptic data in metadata of the multiplexed data stream, and sending the multiplexed data stream over the communication network. The method may include analyzing the haptic data to determine at least one characteristic of the haptic data, and the encoding the haptic data may include encoding, based on the determined characteristic, the haptic data to meet a pre-defined criteria.
G08B 21/00 - Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
H04N 21/6379 - Control signals issued by the client directed to the server or network components directed to server directed to encoder
H04N 21/2343 - Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
H04N 21/236 - Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator ] into a video stream, multiplexing software data into a video streamRemultiplexing of multiplex streamsInsertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rateAssembling of a packetised elementary stream
H04N 21/6336 - Control signals issued by server directed to the network components or client directed to client directed to decoder
H04N 21/658 - Transmission by the client directed to the server
H04N 21/45 - Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies or resolving scheduling conflicts
A63F 13/25 - Output arrangements for video game devices
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/215 - Input arrangements for video game devices characterised by their sensors, purposes or types comprising means for detecting acoustic signals, e.g. using a microphone
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
H04N 19/44 - Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
H04N 19/46 - Embedding additional information in the video signal during the compression process
H04L 29/06 - Communication control; Communication processing characterised by a protocol
H04N 21/233 - Processing of audio elementary streams
H04N 21/438 - Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
H04N 21/4385 - Multiplex stream processing, e.g. multiplex stream decrypting
H04N 21/845 - Structuring of content, e.g. decomposing content into time segments
A system produces haptic effects. The system receives input data associated with an event, identifies an element of the event in the input data, generates the haptic effects based on the element of the event, and produces the haptic effects via a haptic output device. In one embodiment, the haptic effects are generated by haptifying the element of the event. In one embodiment, the haptic effects are designed haptic effects and are adjusted based on the element of the event. In one embodiment, the input data is associated with a crowd that attends the event, and the element of the event is caused by the crowd. In one embodiment, the input data includes haptic data collected by one or more personal devices associated with the crowd. In one embodiment, the input data is indicative of a location of the one or more personal devices associated with the crowd.
A haptically enabled system is provided. The system receives a haptic effect primitive including a plurality of input parameters that define a haptic effect. The system also receives an input from a sensor that varies over a time duration. The system generates a dynamic haptic effect signal based on the haptic effect primitive and the input, which includes generating a plurality of output parameters including an amplitude of the dynamic haptic effect signal, and varying the amplitude of the dynamic haptic effect signal continuously over the time duration using frequency modulation. The system then applies the dynamic haptic effect signal to an actuator to generate the haptic effect.
Rendering haptics in a haptically-enabled headphone system includes generating a haptic signal at the haptically-enabled headphone system based on non-audio data and rendering a haptic effect specified in the haptic signal using a haptic output device within the haptically-enabled headphone system.
A method or system that receives input media including at least video data in which a video event within the video data is detected. Related data that is associated with the detected video event is collected and one or more feature parameters are configured based on the collected related data. The type of video event is determining and a set of feature parameters is selected based on the type of video event. A haptic effect is then automatically generated based on the selected set of feature parameters.
Disclosed are systems and methods for converting a control track designed for use with a number and/or type of haptic output devices to be used with other numbers and/or types of haptic output devices. For example, a computing device may convert the control track into another control track that can be applied to other types and/or numbers of haptic output devices. The converted control track may be compatible for use with a smartphone or other system that includes a different number and/or type of haptic feedback devices than the system for which the haptic track was originally designed. In this manner, the user of the smartphone or other system may experience haptic feedback using a device that is different from another haptic feedback system for which the control track was originally designed for use. The conversion may occur locally at the smartphone or other system and/or remotely at another device.
Systems and methods for authoring and encoding haptic effects are provided for space-dependent content, such as 360-degree videos, three-dimensional videos, or virtual or augmented reality contents. The systems and methods can generate one or more haptic layers for encoding or modifying haptic effects for the content.
H04N 21/8547 - Content authoring involving timestamps for synchronizing content
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06K 9/46 - Extraction of features or characteristics of the image
H04N 21/218 - Source of audio or video content, e.g. local disk arrays
H04N 21/422 - Input-only peripherals, e.g. global positioning system [GPS]
H04N 21/43 - Processing of content or additional data, e.g. demultiplexing additional data from a digital video streamElementary client operations, e.g. monitoring of home network or synchronizing decoder's clockClient middleware
A system and method of generating a set of preferred haptic settings for a user based on haptic settings chosen by other similar users is presented. The method includes maintaining a database of haptic software applications with associated haptic configuration settings. When a user loads a haptic software application such as a computer game or video, a server receives a communication identifying the particular computer game or video and the identity of the user. The server searches the database for other users of the computer game or video where the other users have similar setting preferences as the user. The server calculates a preferred set of configuration settings and sends those settings to the user where a haptic output device produces haptic effects based on the preferred set of configuration settings. A system that generates haptic setting based on similar users is also presented.
The present disclosure is generally directed to systems and methods for providing haptic effects based on information complementary to multimedia content. For example, one disclosed method includes the steps of receiving multimedia data comprising multimedia content and complementary data, wherein the complementary data describes the multimedia content, determining a haptic effect based at least in part on the complementary data, and outputting the haptic effect while playing the multimedia content.
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
H04N 21/84 - Generation or processing of descriptive data, e.g. content descriptors
H04N 21/432 - Content retrieval operation from a local storage medium, e.g. hard-disk
H04N 21/434 - Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams or extraction of additional data from a video streamRemultiplexing of multiplex streamsExtraction or processing of SIDisassembling of packetised elementary stream
A haptic conversion system is provided that analyzes an audio signal, generates a plurality of haptic signals based on the analysis of the audio signal, and plays the generated plurality of haptic signals through a plurality of actuators to produce one or more haptic effects. The haptic conversion system maps the generated plurality of haptic signals to the plurality of actuators based on one or more audio characteristics of the audio signal. Each generated haptic signal includes one or more haptic parameters, and is played at its mapped actuator to generate the one or more haptic effects.
Systems and methods for rendering a haptic effect at a user input element associated with a haptic output device are provided. A primary range and a secondary range of positions are defined for the user input element associated with the haptic output device. In addition, a boundary range of positions is defined for the user input element associated with the haptic output device, the boundary range partially overlapping each of the primary and secondary ranges. A position of the user input element is monitored, and the haptic effect rendered in response to an entry of the user input element to positions within the boundary range.
A63F 13/00 - Video games, i.e. games using an electronically generated display having two or more dimensions
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/23 - Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
A63F 13/42 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
A63F 13/218 - Input arrangements for video game devices characterised by their sensors, purposes or types using pressure sensors, e.g. generating a signal proportional to the pressure applied by the player
79.
Systems and methods for deformation-based haptic effects
One illustrative system disclosed herein includes a deformation sensor configured to detect a deformation of a deformable surface and transmit a first sensor signal associated with the deformation. The system also includes a sensor configured to detect a user interaction with a user input device and transmit a second sensor signal associated with the user interaction. The system further includes a processor configured to: receive the first sensor signal; receive the second sensor signal; execute a function based at least in part on the first sensor signal and the second sensor signal. The processor is also configured to: determine a haptic effect based at least in part on the first sensor signal or the second sensor signal; and transmit a haptic signal associated with the haptic effect to a haptic output device configured to receive the haptic signal and output the haptic effect.
A63F 13/2145 - Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads the surface being also a display device, e.g. touch screens
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/0338 - Pointing devices displaced or positioned by the userAccessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
G06F 3/0487 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
H04M 1/02 - Constructional features of telephone sets
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/42 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
G06F 1/16 - Constructional details or arrangements
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
A haptic effect enabled system generates a haptic effect using an electric potential responsive fluid. A haptic enabled apparatus includes a fluid and a substrate. The fluid is responsive to an electric field. The substrate is at least partially flexible and defines a channel. The fluid is positioned within at least a portion of the channel. A portion of the substrate proximal to the fluid is stiffer than a portion of the substrate spaced from the fluid, thereby creating a haptic effect.
A haptic conversion system is provided that intercepts frames of audio data, such as a digital audio signal, converts the frames into a haptic signal, and plays the created haptic signal through an actuator to produce haptic effects. The haptic signal is based on a maximum value of each audio data frame, which defines a magnitude of the haptic signal. The haptic signal is applied to the actuator configured to receive the haptic signal, where the actuator utilizes the haptic signal to generate the one or more haptic effects.
The disclosure relates to systems and methods of providing haptic feedback based on media content and one or more external parameters used to customize the haptic feedback. The system may modify or otherwise alter haptic feedback that is determined using the media content alone. In other words, the system may use both the media content and the external parameters to determine haptic feedback that should be output to the user or others. The external parameters may include, for example, sensor information, customization information, and/or other external parameters that may be used to customize the haptic feedback.
Interactive content may be presented to a user that is manipulating a peripheral. One or more state parameters that are related to the position of the peripheral may be determined. The peripheral may be identified from a plurality of possible peripherals. The interactive content may be adjusted based at least in part on the one or more position parameters and/or the identification of the peripheral. Haptic feedback to be provided to the user may be determined based at least in part on the one or more position parameters and/or the identification of the peripheral.
G06F 3/00 - Input arrangements for transferring data to be processed into a form capable of being handled by the computerOutput arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
G06F 3/048 - Interaction techniques based on graphical user interfaces [GUI]
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 3/0483 - Interaction with page-structured environments, e.g. book metaphor
A63F 13/28 - Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
84.
Haptic enabled device with multi-image capturing abilities
A haptic effect enabled system that includes a first image sensor, a second image sensor, a haptic output device and a processor coupled to the image sensors and haptic output device. The first image sensor generates a first digital image and the second image sensor generates a second digital image. The processor receives notification of an image event relating to the first or second digital image. The processor determines a haptic effect corresponding to the image event and applies the haptic effect with the haptic output device.
A touch-enabled device can simulate one or more features in a touch area. Features may include, but are not limited to, changes in texture and/or simulation of boundaries, obstacles, or other discontinuities in the touch surface that can be perceived through use of an object in contact with the surface. Systems include a sensor configured to detect a touch in a touch area when an object contacts a touch surface, an actuator, and one or more processors. The processor can determine a position of the touch using the sensor and select a haptic effect to generate based at least in part on the position, the haptic effect selected to simulate the presence of a feature at or near the determined position. Some features are simulated by varying the coefficient of friction of the touch surface.
G06F 3/0346 - Pointing devices displaced or positioned by the userAccessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G08B 6/00 - Tactile signalling systems, e.g. personal calling systems
86.
Haptic broadcast with select haptic metadata based on haptic playback capability
Broadcasting select haptic metadata includes broadcasting a broadcast signal to haptic-enabled devices. In response, haptic playback capability information is received at a host source from a haptic-enabled device when original haptic metadata in the broadcast signal encodes haptic information incompatible with the haptic playback capability information. The select haptic metadata, which is customized for the haptic playback capability information, is generated and sent from the host source to the haptic-enabled device.
One illustrative computing device disclosed herein includes a sensor configured to detect a user interaction with a physical object and transmit a sensor signal associated with the user interaction. The illustrative computing device also includes a processor in communication with the sensor, the processor configured to: receive the sensor signal; determine a characteristic of the physical object based on the sensor signal; determine a haptic effect associated with the characteristic; and transmit a haptic signal associated with the haptic effect. The illustrative computing device further includes a haptic output device in communication with the processor, the haptic output device configured to receive the haptic signal and output the haptic effect.
The embodiments are directed toward techniques for isolating a user input signal at a haptic output device. A signal originating from a user input element associated with the haptic output device is received. The received signal is separated into a first component including the user input signal, and a second component including a haptic feedback signal. While the first component is processed, the second component can be discarded or otherwise ignored.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
A63F 13/285 - Generating tactile feedback signals via the game input device, e.g. force feedback
A63F 13/23 - Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
A63F 13/42 - Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
A63F 13/218 - Input arrangements for video game devices characterised by their sensors, purposes or types using pressure sensors, e.g. generating a signal proportional to the pressure applied by the player
89.
Systems and methods for position-based haptic effects
One illustrative system disclosed herein includes a sensor configured to detect a gesture and transmit an associated sensor signal. The gesture includes a first position at a distance from a surface and a second position contacting the surface. The system also includes a processor in communication with the sensor and configured to: receive the sensor signal from the sensor, and determine one or more haptic effects based at least in part on the sensor signal. The one or more haptic effects are configured to provide substantially continuous haptic feedback throughout the gesture. The processor is also configured to generate one or more haptic signals based at least in part on the one or more haptic effects, and transmit the one or more haptic signals. The system includes a haptic output device for receiving the one or more haptic signals and outputting the one or more haptic effects.
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06F 1/16 - Constructional details or arrangements
90.
Systems and methods for converting sensory data to haptic effects
A system includes a sensor, a processor configured to receive a signal output by the sensor, determine a position and descriptor of the sensor, determine a scene selection of a video, and create a haptic signal based on the selected scene, the signal output by the sensor, and the position and descriptor of the sensor, and a haptic output device configured to receive the haptic signal and generate a haptic effect based on the haptic signal. A system includes a sensor, a processor configured to receive a signal from the sensor, determine a type of event and activity associated with the sensor, and generate a haptic signal based on the signal from the sensor and the type of event and activity associated with the sensor, and a haptic output device configured to generate a haptic effect based on the haptic signal.
G09G 5/18 - Timing circuits for raster scan displays
H04N 21/422 - Input-only peripherals, e.g. global positioning system [GPS]
H04N 21/442 - Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed or the storage space available from the internal hard disk
A system is provided that encodes one or more dynamic haptic effects. The system defines a dynamic haptic effect as including a plurality of key frames, where each key frame includes an interpolant value and a corresponding haptic effect. An interpolant value is a value that specifies where an interpolation occurs. The system generates a haptic effect file, and stores the dynamic haptic effect within the haptic effect file.
A system for providing affective haptic touch. The system displays an image on a first device and receives on a touchscreen a gesture on the image. The system then, based on a location of the gesture and a type of the gesture, causes a corresponding haptic effect to be generated on a second device remote from the first device.
Systems and methods for virtual affective touch are disclosed. One illustrative system described herein includes: a touch screen display; a haptic output device; and a processor configured to: display a visual representation of a receiving user on the touch screen display; receive from the touch screen display a sensor signal associated with a gesture by a sending user; transmit a signal associated with the gesture and the visual representation to a receiving device; determine a haptic effect based in part on the gesture and the visual representation of the receiving user; and transmit a haptic signal associated with the haptic effect to the haptic output device configured to output the haptic effect.
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
A keyless entry device is provided. The keyless entry device includes a transceiver, a drive circuit coupled to a haptic actuator, and a processor coupled to the transceiver and the drive circuit. The transceiver is configured to communicate, over a communication channel, with an apparatus operated by a user. The processor is configured to send a command to the apparatus, receive a response, including a control signal, from the apparatus, determine proximity information between the keyless entry device and the apparatus, and output the control signal to the drive circuit, based on the proximity information, to cause the haptic actuator to periodically or continuously generate a haptic effect.
Systems and methods for generating haptic effects associated with audio signals are disclosed. One disclosed system for outputting haptic effects includes a processor configured to: receive an audio signal; determine a haptic effect based in part on the audio signal by: identifying one or more components in the audio signal; and determining a haptic effect associated with the one or more components; and output a haptic signal associated with the haptic effect.
Systems and methods that dynamically render etching inputs are provided, and include a touch surface having a sensor and configured to detect user input, and a non-transitory memory, wherein the non-transitory memory includes instructions for capturing an etching input that is applied to an image or video file, determining a haptic effect that corresponds to the etching input, the haptic effect depending on a type of etching input, and transmitting a modified image or modified video file that includes the etching input and the haptic effect.
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 3/044 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
A method for synchronizing haptic effects with at least one media component in a media transport stream includes identifying a series of video frames containing imaging information and/or a series of audio frames containing sound information in the media transport stream; identifying a series of haptic frames containing force feedback information in the media transport stream; and synchronizing the force feedback information in response to the imaging information and/or sound information.
G06F 3/01 - Input arrangements or combined input and output arrangements for interaction between user and computer
G06F 15/16 - Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
A flexible haptic actuator and corresponding method. The flexible haptic actuator comprises a core formed with a flexible material. The core defines a volume and is bendable. An electrical conductor is coiled around the core and is bendable. A casing surrounds the electrical conductor and at least a part of the core. The casing includes a plurality of flexible sections and a plurality of stiff sections. The casing is bendable. A haptic mass is suspended in the volume, the haptic mass being at least partially formed with a magnetic material. The haptic mass is movable in the volume in response to the electrical conductor generating a magnetic field.
This disclosure relates to wearable articles, including wearable suits, etc., for providing haptic feedback to a user. The wearable articles suitably include adjustable interaction elements that can be fluidly connected to a liquid or gas supply, and can also include a haptic actuator. The wearable articles are useful in combination with various devices, including gaming systems and virtual or augmented reality systems.
One illustrative system disclosed herein includes a computing device in communication with a display device and a sensor. The display device is configured to display a plurality of content and the sensor is configured to detect a field of view of a user of the computing device relative to the display device. The sensor can transmit a signal associated with the field of view to a processor in communication with the sensor. The processor is configured to determine a direction of the field of view of the user based on the signal. The processor is also configured to determine that a content displayed by the display device and associated with a haptic effect is within the field of view of the user. The processor is also configured to determine a haptic effect associated with the content and transmit a haptic signal associated with the haptic effect. The illustrative system also includes a haptic output device configured to receive the haptic signal and output the haptic effect.