A master inductor circuit is connected to an alternating current power source and a passive inductor circuit are assembled as a separable split inductor assembly to form at least one pair of a master heating inductor and a passive heating inductor where the master and passive inductor circuits are electromagnetically coupled without physical connection. A bearing component can be brought into the presence of the magnetic flux field created by the master and passive heating inductors to simultaneously induction heat one or more bearing features on the bearing component with subsequent quenching down austenitized bearing features on the bearing component.
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
A master inductor circuit is connected to an alternating current power source and a passive inductor circuit are assembled as a separable split inductor assembly to form at least one pair of a master heating inductor and a passive heating inductor where the master and passive inductor circuits are electromagnetically coupled without physical connection. A bearing component can be brought into the presence of the magnetic flux field created by the master and passive heating inductors to simultaneously induction heat one or more bearing features on the bearing component with subsequent quenching down austenitized bearing features on the bearing component.
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
A master inductor circuit is connected to an alternating current power source and a passive inductor circuit are assembled as a separable split inductor assembly to form at least one pair of a master heating inductor and a passive heating inductor where the master and passive inductor circuits are electromagnetically coupled without physical connection. A bearing component can be brought into the presence of the magnetic flux field created by the master and passive heating inductors to simultaneously induction heat one or more bearing features on the bearing component with subsequent quenching down austenitized bearing features on the bearing component.
H05B 6/44 - Coil arrangements having more than one coil or coil segment
H05B 6/10 - Induction heating apparatus, other than furnaces, for specific applications
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
A coil spring electric induction heat treatment system and method of metallurgical heat treatment of coil springs within a heat treatment region formed by a channel inductor with a spring support structure is provided. The spring support structure is alternatively a planar surface or a series of continuously moving slats positioned below the heat treatment region that rotate the coil springs during the heat treatment process.
A double-sided flat inductor assembly is provided for simultaneous induction heating of two separate workpieces positioned on opposing sides of the double-sided flat inductor assembly. An extraction assembly is provided for rapid removal of the inductor assembly after completion of the simultaneous induction heating of the two separate workpieces which eliminates the necessity of using flexible electrical cables and allows improved performance of an induction system including increased reliability.
A railless billet electric induction heating apparatus and method is provided where billets are continuously or statically heated by induction by moving the billets without billet support rails through an induction coil supplied with alternating current power when the billets are in direct sliding contact with the interior surface of a clay graphite billet slider disposed within the induction coil. The clay graphite billet slider can also provide thermal insulation between the induction coil and the clay graphite billet slider to eliminate the requirement for a separate induction coil refractory.
F27B 9/20 - Furnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatmentFurnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path
F27D 99/00 - Subject matter not provided for in other groups of this subclass
F27B 9/06 - Furnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and chargeFurnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity electrically heated
7.
RAILLESS SUPPORT OF BILLETS WITHIN ELECTRIC INDUCTION HEATING COILS
A railless billet electric induction heating apparatus and method is provided where billets are continuously or statically heated by induction by moving the billets without billet support rails through an induction coil supplied with alternating current power when the billets are in direct sliding contact with the interior surface of a clay graphite billet slider disposed within the induction coil. The clay graphite billet slider can also provide thermal insulation between the induction coil and the clay graphite billet slider to eliminate the requirement for a separate induction coil refractory.
F27B 9/20 - Furnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatmentFurnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path
F27B 9/06 - Furnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and chargeFurnaces through which the charge is moved mechanically, e.g. of tunnel type Similar furnaces in which the charge moves by gravity electrically heated
F27D 99/00 - Subject matter not provided for in other groups of this subclass
8.
Railless support of billets within electric induction heating coils
A railless billet electric induction heating apparatus and method is provided where billets are continuously or statically heated by induction by moving the billets without billet support rails through an induction coil supplied with alternating current power when the billets are in direct sliding contact with the interior surface of a clay graphite billet slider disposed within the induction coil. The clay graphite billet slider can also provide thermal insulation between the induction coil and the clay graphite billet slider to eliminate the requirement for a separate induction coil refractory.
09 - Scientific and electric apparatus and instruments
Goods & Services
industrial and commercial electric induction power supplies for inductively heating, melting, metallurgical hardening, tempering and stress relieving of workpieces and materials; inverters and electrical inverter controllers sold as component parts of industrial and commercial electric induction power supplies
Apparatus is provided for inductively heat treating a circular surface of annular workpieces where at least one inductor pair is used to perform a scan induction heat treatment of the circular surface. Controlled movement of the inductors and application of quenchant is provided particularly at the initial and final heat treatment locations on the circular surface to enhance metallurgical uniformity of the annular workpiece at these locations. In combination with controlled movement of the inductors, a simultaneous power-frequency control scheme can be applied to the inductors during the heat treatment process with the apparatus.
C21D 9/08 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for tubular bodies or pipes
C21D 1/10 - Surface hardening by direct application of electrical or wave energySurface hardening by particle radiation by electric induction
C21D 1/667 - Quenching devices for spray quenching
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
A double-sided flat inductor assembly is provided for simultaneous induction heating of two separate workpieces positioned on opposing sides of the double-sided flat inductor assembly. A double-sided flat inductor extraction assembly is provided for rapid removal of the inductor assembly after completion of the simultaneous induction heating of the two separate workpieces eliminating a necessity of using flexible electrical cables and allowing improved performance of an induction system including increased reliability.
A double sided flat inductor assembly is provided for simultaneous induction heating of two separate workpieces positioned on opposing sides of the double sided flat inductor assembly. A double sided flat inductor extraction assembly is provided for rapid removal of the inductor assembly after completion of the simultaneous induction heating of the two separate workpieces eliminating a necessity of using flexible electrical cables and allowing improved performance of an induction system including increased reliability.
Single shot inductor for heat treatment of closely spaced multiple eccentric cylindrical components arranged along the longitudinal axis of a workpiece
A single shot inductor is provided to induction heat treat closely spaced multiple eccentric cylindrical components arranged along the longitudinal axis of a workpiece. The single shot inductor has multiple planar arcuate single turn coil sections separated from each other by an axial coil section so that each of the multiple planar arcuate single turn coil sections sequentially heat treats the closely spaced multiple eccentric cylindrical components inserted within the single shot inductor.
H05B 6/10 - Induction heating apparatus, other than furnaces, for specific applications
C21D 9/30 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for crankshaftsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for camshafts
C21D 1/10 - Surface hardening by direct application of electrical or wave energySurface hardening by particle radiation by electric induction
F01L 13/00 - Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
14.
SINGLE SHOT INDUCTOR FOR HEAT TREATMENT OF CLOSELY SPACED MULTIPLE ECCENTRIC CYLINDRICAL COMPONENTS ARRANGED ALONG THE LONGITUDINAL AXIS OF A WORKPIECE
A single shot inductor is provided to induction heat treat closely spaced multiple eccentric cylindrical components arranged along the longitudinal axis of a workpiece. The single shot inductor has multiple planar arcuate single turn coil sections separated from each other by an axial coil section so that each of the multiple planar arcuate single turn coil sections sequentially heat treats the closely spaced multiple eccentric cylindrical components inserted within the single shot inductor.
H05B 3/40 - Heating elements having the shape of rods or tubes
15.
SINGLE SHOT INDUCTOR FOR HEAT TREATMENT OF CLOSELY SPACED MULTIPLE ECCENTRIC CYLINDRICAL COMPONENTS ARRANGED ALONG THE LONGITUDINAL AXIS OF A WORKPIECE
A single shot inductor is provided to induction heat treat closely spaced multiple eccentric cylindrical components arranged along the longitudinal axis of a workpiece. The single shot inductor has multiple planar arcuate single turn coil sections separated from each other by an axial coil section so that each of the multiple planar arcuate single turn coil sections sequentially heat treats the closely spaced multiple eccentric cylindrical components inserted within the single shot inductor.
A single-shot inductor is provided to induction heat treat a complex workpiece that has an at least partially cylindrical component with its central axis coincident with the central axis of a circular component and connected at one end to the circular component with a diameter larger than the diameter of the at least partially cylindrical component. The single-shot inductor has a single crossover inductor section connected to the first ends of two longitudinal leg inductor sections with the second ends of the two longitudinal leg inductor sections connected to a collar inductor section that surrounds the entire circumference of the at least partially cylindrical component when the complex workpiece is loaded in the single-shot one-turn inductor for an induction heating application. Alternatively the single-shot inductor may have two collar inductor sections interconnected between two longitudinal leg inductor sections where one of the leg sections can accept a supply of alternating current.
A single shot inductor is provided to induction heat treat a complex workpiece that has an at least partially cylindrical component with its central axis coincident with the central axis of a circular component and connected at one end to the circular component with a diameter larger than the diameter of the at least partially cylindrical component. The single shot inductor has a single crossover inductor section connected to the first ends of two longitudinal leg inductor sections with the second ends of the two longitudinal leg inductor sections connected to a collar inductor section that surrounds the entire circumference of the at least partially cylindrical component when the complex workpiece is loaded in the single shot one turn inductor for an induction heating application. Alternatively the single shot inductor may have two collar inductor sections interconnected between two longitudinal leg inductor sections where one of the leg sections can accept a supply of alternating current.
C21D 9/08 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for tubular bodies or pipes
C21D 1/09 - Surface hardening by direct application of electrical or wave energySurface hardening by particle radiation
18.
INDUCTOR FOR SINGLE-SHOT INDUCTION HEATING OF COMPLEX WORKPIECES
A single shot inductor is provided to induction heat treat a complex workpiece that has an at least partially cylindrical component with its central axis coincident with the central axis of a circular component and connected at one end to the circular component with a diameter larger than the diameter of the at least partially cylindrical component. The single shot inductor has a single crossover inductor section connected to the first ends of two longitudinal leg inductor sections with the second ends of the two longitudinal leg inductor sections connected to a collar inductor section that surrounds the entire circumference of the at least partially cylindrical component when the complex workpiece is loaded in the single shot one turn inductor for an induction heating application. Alternatively the single shot inductor may have two collar inductor sections interconnected between two longitudinal leg inductor sections where one of the leg sections can accept a supply of alternating current.
C21D 9/08 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for tubular bodies or pipes
C21D 1/09 - Surface hardening by direct application of electrical or wave energySurface hardening by particle radiation
19.
FORGING OF AN ANNULAR ARTICLE WITH ELECTRIC INDUCTION HEATING
Roll forging of an annular article of manufacture is accomplished with electric induction heating of the workpiece simultaneously during the roll forging process as required to keep the workpiece at optimum forging temperature during the roll forging process.
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
Apparatus and method are provided for inductively heat treating a circular surface of annular workpieces where at least one inductor pair is used to perform a scan induction heat treatment of the circular surface. Controlled movement of the inductors and application of quenchant is provided particularly at the initial and final heat treatment locations on the circular surface to enhance metallurgical uniformity of the annular workpiece at these locations. In combination with controlled movement of the inductors, a simultaneous power frequency control scheme can be applied to the inductors during the heat treatment process.
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
Apparatus and method are provided for inductively heat treating a circular surface of annular workpieces where at least one inductor pair is used to perform a scan induction heat treatment of the circular surface. Controlled movement of the inductors and application of quenchant is provided particularly at the initial and final heat treatment locations on the circular surface to enhance metallurgical uniformity of the annular workpiece at these locations. In combination with controlled movement of the inductors, a simultaneous power-frequency control scheme can be applied to the inductors during the heat treatment process.
H05B 6/10 - Induction heating apparatus, other than furnaces, for specific applications
C21D 1/10 - Surface hardening by direct application of electrical or wave energySurface hardening by particle radiation by electric induction
C21D 1/667 - Quenching devices for spray quenching
C21D 9/40 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for ringsHeat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for bearing races
22.
ELECTRIC INDUCTION HEAT TREATMENT OF WORKPIECES HAVING CIRCULAR COMPONENTS
A cylindrical workpiece is mounted between opposing friction and non-friction guide rails and pushed through an induction coil arrangement by a pusher element positioned relative to the workpiece so that the pusher element introduces a force that moves the workpiece linearly forward within the induction coil arrangement between the two guide rails and rotationally by kinetic friction of the workpiece with the friction rail.
APPLICATION OF ELECTRIC INDUCTION ENERGY FOR MANUFACTURE OF IRREGULARLY SHAPED SHAFTS WITH CYLINDRICAL COMPONENTS INCLUDING NON-UNITARILY FORGED CRANKSHAFTS AND CAMSHAFTS
Large, non-unitarily forged shaft workpieces such as a crankshaft have successive shaft features inductively heated and forged without cool down between each sectional forging process. The temperature profile along the axial length of the next section of the shaft workpiece to be inductively heated and forged is measured prior to heating, and the induced heat energy along the axial length of the next section is dynamically adjusted responsive to the measured temperature profile to achieve a required pre-forge temperature distribution along the axial length of the next section prior to forging.
B21K 1/08 - Making machine elements axles or shafts crankshafts
B21K 1/06 - Making machine elements axles or shafts
B21K 1/10 - Making machine elements axles or shafts of cylindrical form
B21J 1/06 - Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
24.
Application of electric induction energy for manufacture of irregularly shaped shafts with cylindrical components including non-unitarily forged crankshafts and camshafts
Large, non-unitarily forged shaft workpieces such as a crankshaft have successive shaft features inductively heated and forged without cool down between each sectional forging process. The temperature profile along the axial length of the next section of the shaft workpiece to be inductively heated and forged is measured prior to heating, and the induced heat energy along the axial length of the next section is dynamically adjusted responsive to the measured temperature profile to achieve a required pre-forge temperature distribution along the axial length of the next section prior to forging.
Apparatus and method are provided for induction heating of one or more components of a complex-shaped workpiece. The component is positioned within an opening formed by opposing pairs of arcuate coil structures formed in opposing inductor segments. One inductor segment is formed from electrically isolated inner and outer active inductor segments connected to one or more power supplies, while the other inductor segment is formed from electrically isolated inner and outer passive inductor segments that are magnetically coupled with respective inner and outer active inductor segments. Changing the output electrical parameters of the one or more power supplies controls the induction hardening along the transverse width of the workpiece with optional flux concentrators between opposing pairs of arcuate coil structures.
Apparatus and method are provided for induction heating of one or more components of a complex shaped workpiece. The component is positioned within an opening formed by opposing pairs of arcuate coil structures formed in opposing inductor segments. One inductor segment is formed from electrically isolated inner and outer active inductor segments connected to one or more power supplies while the other inductor segment is formed from electrically isolated inner and outer passive inductor segments that are magnetically coupled with respective inner and outer active inductor segments. Changing the output electrical parameters of the one or more power supplies controls the induction hardening along the transverse width of the workpiece with optional flux concentrators between opposing pairs of arcuate coil structures.
Apparatus and method are provided for induction heating of one or more components of a complex shaped workpiece. The component is positioned within an opening formed by opposing pairs of arcuate coil structures formed in opposing inductor segments. One inductor segment is formed from electrically isolated inner and outer active inductor segments connected to one or more power supplies while the other inductor segment is formed from electrically isolated inner and outer passive inductor segments that are magnetically coupled with respective inner and outer active inductor segments. Changing the output electrical parameters of the one or more power supplies controls the induction hardening along the transverse width of the workpiece with optional flux concentrators between opposing pairs of arcuate coil structures.
Apparatus and method are provided for inductively heating workpiece's with varying characteristics in the same induction coil while selectively controlling the induced heat temperature distribution profile of each workpiece with one or more flux compensator's inserted into the induction coil along with the workpiece to be inductively heated.
Apparatus and method are provided for inductively heating workpiece's with varying characteristics in the same induction coil while selectively controlling the induced heat temperature distribution profile of each workpiece with one or more flux compensator's inserted into the induction coil along with the workpiece to be inductively heated.
Apparatus and method are provided for inductively heating workpieces with varying characteristics in the same induction coil while selectively controlling the induced heat temperature distribution profile of each workpiece with one or more flux compensators inserted into the induction coil along with the workpiece to be inductively heated.
An induction coil with inner and outer coil segments joined together by a transition segment is arranged so that the outer coil segment generally inductively heat treats an annular outer region of a workpiece positioned under the coil, the inner coil segment generally inductively heat treats an annular inner region of the workpiece, and the transition segment traverses at least a portion of the width of the overall annular region of the workpiece to be heat treated. Relative arrangement of inner, outer and transition coil segments pro-vides for controlled induction heat treatment across the over-all annular region such as the gear teeth region of an intersect-ing axes or non intersecting and non parallel axes gear.
C21D 9/32 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for gear wheels, worm wheels, or the like
An induction coil with inner and outer coil segments joined together by a transition segment is arranged so that the outer coil segment generally inductively heat treats an annular outer region of a workpiece positioned under the coil, the inner coil segment generally inductively heat treats an annular inner region of the workpiece, and the transition segment traverses at least a portion of the width of the overall annular region of the workpiece to be heat treated. Relative arrangement of inner, outer and transition coil segments provides for controlled induction heat treatment across the overall annular region such as the gear teeth region of an intersecting axes or non intersecting and non parallel axes gear.
C21D 9/32 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for gear wheels, worm wheels, or the like
An induction coil with inner and outer coil segments joined together by a transition segment is arranged so that the outer coil segment generally inductively heat treats an annular outer region of a workpiece positioned under the coil, the inner coil segment generally inductively heat treats an annular inner region of the workpiece, and the transition segment traverses at least a portion of the width of the overall annular region of the workpiece to be heat treated. Relative arrangement of inner, outer and transition coil segments provides for controlled induction heat treatment across the overall annular region such as the gear teeth region of an intersecting axes or non-intersecting and non-parallel axes gear.
C21D 9/32 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for gear wheels, worm wheels, or the like
C21D 1/18 - HardeningQuenching with or without subsequent tempering
34.
Electric induction heat treatment of an end of tubular material
A magnetic flux concentrator is used to control the end heating of a tubular material in an electric induction heat treatment process. The magnetic flux concentrator may consist of fixed elements, or a combination of fixed and moveable elements to accommodate end heating of tubular materials having different dimensions or material properties.
A magnetic flux concentrator is used to control the end heating of a tubular material in an electric induction heat treatment process. The magnetic flux concentrator may consist of fixed elements, or a combination of fixed and moveable elements to accommodate end heating of tubular materials having different dimensions or material properties.
H05B 6/10 - Induction heating apparatus, other than furnaces, for specific applications
C21D 9/08 - Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articlesFurnaces therefor for tubular bodies or pipes
36.
ELECTRIC INDUCTION HEAT TREATMENT OF AN END OF TUBULAR MATERIAL
A magnetic flux concentrator is used to control the end heating of a tubular material in an electric induction heat treatment process. The magnetic flux concentrator may consist of fixed elements, or a combination of fixed and moveable elements to accommodate end heating of tubular materials having different dimensions or material properties.
A magnetic flux concentrator is used to control the end heating of a tubular material in an electric induction heat treatment process. The magnetic flux concentrator may consist of fixed elements, or a combination of fixed and moveable elements to accommodate end heating of tubular materials having different dimensions or material properties.
Induction heat treatment equipment utilising an electric induction coil and flux concentrators to temper, stress relieve, anneal or harden a wide variety of manufactured goods.
Induction heat-treating units, namely, induction heat treatment equipment utilizing an electric induction coil and flux concentrators to temper, stress relieve, anneal or harden a wide variety of manufactured goods
induction heat-treating units, namely, induction heat treatment equipment utilizing a scanning inductor to harden or temper a wide variety of manufactured goods
09 - Scientific and electric apparatus and instruments
11 - Environmental control apparatus
Goods & Services
electrical power supplies for induction heating of metals and metal objects in forging operations; and heating power controllers for forging of metal and metal objects induction heating equipment, namely load matching stations, heating coils for forging of metal and metal objects