Disclosed are a drug delivery system, a drug delivery device, a controller and a number of techniques to personalize the delivery of a bolus dosage. In an example, a drug delivery system may include a processor and a memory. The memory may be operable to store instructions that, when executed by the processor, cause the processor to receive a request to deliver a bolus dosage, retrieve a history of glucose measurement values, extract features from the history of glucose measurement values, assign a value to extracted features and calculate a personalized factor, and based on the personalized factor or factors, modify a calculation for an amount of a medicament to deliver. Additionally or alternatively, the personalized factor may be used to modify parameter settings of a medicament delivery algorithm. The described systems may track a user's personalized factor over a period of time.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
Disclosed are a drug delivery system, a drug delivery device, a controller and a number of techniques to personalize the delivery of a bolus dosage. In an example, a drug delivery system may include a processor and a memory. The memory may be operable to store instructions that, when executed by the processor, cause the processor to receive a request to deliver a bolus dosage, retrieve a history of glucose measurement values, extract features from the history of glucose measurement values, assign a value to extracted features and calculate a personalized factor, and based on the personalized factor or factors, modify a calculation for an amount of a medicament to deliver. Additionally or alternatively, the personalized factor may be used to modify parameter settings of a medicament delivery algorithm. The described systems may track a user's personalized factor over a period of time.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
3.
AUTOMATICALLY OR MANUALLY INITIATED MEAL BOLUS DELIVERY WITH SUBSEQUENT AUTOMATIC SAFETY CONSTRAINT RELAXATION
The exemplary embodiments may provide a drug delivery device that receives glucose level values for a user (e.g., a diabetic patient) and based on the glucose level values, determines when the user has consumed a meal. In some embodiments, the drug delivery device may calculate an appropriate bolus dose and automatically deliver the drug bolus to the user. In some embodiments, instead of detecting the meal, the user may announce the meal, such as by activating an element on the drug delivery device or on a management device for the drug delivery device. Responsive to the meal announcement, the drug delivery device may calculate the drug bolus dose and deliver the drug bolus. In conjunction with the delivery of the drug bolus, the drug delivery device may relax one or more safety constraints for a relaxation period following the drug bolus delivery so that additional basal drug may be delivered, if needed, under relaxed constraints.
Disclosed are a system, methods and computer-readable medium products that provide safety constraints for an insulin-delivery management program. Various examples provide safety constraints for a control algorithm-based drug delivery system that provides automatic delivery of a drug based on sensor input. Glucose measurement values may be received at regular time intervals from a sensor. A processor may predict future glucose values based on prior glucose measurement values. The safety constraints assist in safe operation of the drug delivery system during various operational scenarios. In some examples, predicted future glucose values may be used to implement safety constraints that mitigate under-delivery or over-delivery of the drug while not overly burdening the user of the drug delivery system and without sacrificing performance of the drug delivery system. Other safety constraints are also disclosed.
In an aspect, a medicament delivery system (100B) is presented. The medicament delivery system includes a housing (150). The housing includes a medicament delivery device and an injection system (180). The injection system includes a set of rails (104A, 104B, 104C). The medicament delivery system includes a first sliding member (116) operable to move on the set of rails and a second sliding member (124) operable to move on the set of rails. The medicament delivery system includes a positioning element (108) configured to move the first sliding member in a first direction guided by the set of rails and move the second sliding member in a second direction guided by the set of rails.
Exemplary embodiments calculate a user's progress towards maximum adapted system performance when utilizing a drug delivery device such as an insulin pump and display this progress to the user. Further embodiments calculate potential changes to a particular user's interaction with the system given a history of glucose and insulin deliveries and provide guidance to that user. This can be used, for example, to change how the user splits up their basal and bolus doses to improve metrics such as time-in-range, incidences of hyper- or hypo-glycemia, time in hyper- or hypo-glycemia, mean glucose, etc. It may also be used to speed the above-described adaptation process by suggesting changes that the user can make to achieve stability more quickly.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
In an aspect, a medicament delivery system is presented. The medicament delivery system includes a housing. The housing includes a medicament delivery device and an injection system. The injection system includes a set of rails. The medicament delivery system includes a first sliding member operable to move on the set of rails and a second sliding member operable to move on the set of rails. The medicament delivery system includes a position element configured to move the first sliding member in a first direction guided by the set of rails and move the second sliding member in a second direction guided by the set of rails.
Exemplary embodiments calculate a user's progress towards maximum adapted system performance when utilizing a drug delivery device such as an insulin pump and display this progress to the user. Further embodiments calculate potential changes to a particular user's interaction with the system given a history of glucose and insulin deliveries and provide guidance to that user. This can be used, for example, to change how the user splits up their basal and bolus doses to improve metrics such as time-in-range, incidences of hyper- or hypo-glycemia, time in hyper- or hypo-glycemia, mean glucose, etc. It may also be used to speed the above-described adaptation process by suggesting changes that the user can make to achieve stability more quickly.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
Some embodiments of an infusion pump assembly may be equipped with one or more components to facilitate wireless operation of an infusion pump via a user-operated mobile device. In some embodiments, the mobile device and/or the infusion pump may prompt the user to confirm acceptance of a wirelessly communicated command to prevent an operation by the infusion pump (e.g., a dispensation of medicine) that is not desired by the user.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16Z 99/00 - Subject matter not provided for in other main groups of this subclass
In an aspect, a system for determining a liquid level in a drug delivery device is presented. The system includes a first spring and a second spring positioned adjacent the first spring. The system includes a rod configured to compress at least the first spring and contact the second spring. The system includes a sensing element in communication with the first spring and the second spring. The sensing element is configured to detect a difference in voltage of at least the first spring. A difference in voltage of at least the first spring corresponds to an amount of liquid drug of the drug delivery device.
G01D 5/165 - Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact and a resistive track
A61M 5/315 - Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod; Appliances on the rod for facilitating dosing
G16H 20/13 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered from dispensers
In an aspect, a system for determining a liquid level in a drug delivery device is presented. The system includes a first spring and a second spring positioned adjacent the first spring. The system includes a rod configured to compress at least the first spring and contact the second spring. The system includes a sensing element in communication with the first spring and the second spring. The sensing element is configured to detect a difference in voltage of at least the first spring. A difference in voltage of at least the first spring corresponds to an amount of liquid drug of the drug delivery device.
A drug delivery system including a memory storing programming code operable to control delivery of a drug, a user interface operable to accept an input indicating a perceived glucose state of a user, and a processor operable to execute the programming code. When executed, the programming code causes the processor to: receive a perceived state signal from the user interface indicating the perceived glucose state of the user, evaluate the perceived glucose state of the user indicated by the perceived state signal using a glucose measurement value corresponding in time to when the perceived state signal was received, determine an adjustment to a drug delivery algorithm, and utilize the adjustment in a determination of a drug delivery dosage to be administered to a user.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
13.
PREDICTION OF MEAL AND/OR EXERCISE EVENTS BASED ON PERSISTENT RESIDUALS
Exemplary embodiments provide an approach to predicting meal and/or exercise events for an insulin delivery system that otherwise does not otherwise identify such events. The insulin delivery system may use a model of glucose insulin interactions that projects estimated future glucose values based on the history of glucose values and insulin deliveries for the user. The predictions of meal events and/or exercise events may be based on residuals between actual glucose values and predicted glucose values. The exemplary embodiments may calculate a rate of change of the residuals over a period of time and compare the rate of change to thresholds to determine whether there likely has been a meal event or an exercise event. The insulin delivery system may then take measures to account for the meal or exercise by the user.
A system for utilizing wireless communication tags with wearable medical devices is presented. The system includes a user device. The system includes at least a wireless communication tag. The at least a wireless communication tag is configured to communicate physiology affecting information to the user device. The user device is configured to modify a mode of operation of a wearable medical device, such as a wearable injection device, as a function of the physiology affecting information.
G16H 20/10 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
15.
DUAL HORMONE DELIVERY SYSTEM FOR REDUCING IMPENDING HYPOGLYCEMIA AND/OR HYPERGLYCEMIA RISK
The exemplary embodiments attempt to identify impending hypoglycemia and/or hyperglycemia and take measures to prevent the hypoglycemia or hyperglycemia. Exemplary embodiments may provide a drug delivery system for delivering insulin and glucagon as needed by a user of the drug delivery system. The drug delivery system may deploy a control system that controls the automated delivery of insulin and glucagon to a patient by the drug delivery system. The control system seeks among other goals to avoid the user experiencing hypoglycemia or hyperglycemia. The control system may employ a clinical decision support algorithm as is described below to control delivery of insulin and glucagon to reduce the risk of hypoglycemia or hyperglycemia and to provide alerts to the user when needed. The control system assesses whether the drug delivery system can respond enough to avoid hypoglycemia or hyperglycemia and generates alerts when manual action is needed to avoid hypoglycemia or hyperglycemia.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
Some embodiments of an infusion pump system may be configured to wirelessly communicate with other devices using near field communication (NFC). In particular embodiments, by incorporating near field communication capabilities into the infusion pump system, user communications with the infusion pump system can be enhanced and simplified.
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16Z 99/00 - Subject matter not provided for in other main groups of this subclass
17.
ADHESIVE PAD WITH FEATURES TO AID APPLICATION AND HANDLING OF A MEDICAL DEVICE
Described herein are adhesive drug delivery application devices and related systems, methods, and kits useful for applying a medical device (such as a drug delivery device or a transcutaneous or subcutaneous sensor) to an adhesion site on the skin of a user. A medical device application system may include a needle cap, an adhesive platform, and a temporary backing. The temporary backing may, for example, include a first wing and a second wing. The temporary backing may also include a tab. In other examples, the adhesive platform may include a first bridge and a second bridge, a temporary loop, and/or a first sticker and a second sticker.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A multi-modal medicine delivery system in which some embodiments can be configured to control dispensation of medicine according to any of a plurality of delivery modes, such as by closed-loop delivery modes and open-loop delivery modes, and according to a secondary feedback loop to determine user-specific settings related to dosage delivery.
A61M 5/145 - Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. by means of pistons
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
19.
INITIAL TOTAL DAILY INSULIN SETTING FOR USER ONBOARDING
Disclosed are techniques to establish initial settings for an automatic insulin delivery device. An adjusted total daily insulin (TDI) factor usable to calculate a TDI dosage may be determined. The adjusted TDI factor may be a TDI per unit of a physical characteristic of the user (e.g., weight) times a reduction factor. The adjusted TDI factor may be compared to a maximum algorithm delivery threshold. Based on the comparison result, the application or algorithm may set a TDI dosage and output a control signal. Blood glucose measurement values may be collected from a sensor over a period of time. A level of glycated hemoglobin of the blood may be determined based on the obtained blood glucose measurement values. In response to the level of glycated hemoglobin, the set TDI dosage may be modified. A subsequent control signal including the modified TDI dosage may be output to actuate delivery of insulin.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 10/40 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/60 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16H 50/70 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Disclosed herein is a system and method providing an improvement to a medical device such as a wearable CGM as part of an automated drug delivery system. The improvement provides optical energy to the wound site caused by the insertion of a sensing element into the skin of the user to hasten the healing of the wound, resulting in an improvement in the accuracy of readings for the CGM in a timelier manner. This tends to lessen the effect of the warm-up period of the CGM and improves the response of the automated drug delivery system to better manage the user's blood glucose levels.
Disclosed herein is a system and method providing an improvement to a medical device such as a wearable CGM as part of an automated drug delivery system. The improvement provides optical energy to the wound site caused by the insertion of a sensing element into the skin of the user to hasten the healing of the wound, resulting in an improvement in the accuracy of readings for the CGM in a timelier manner. This tends to lessen the effect of the warm-up period of the CGM and improves the response of the automated drug delivery system to better manage the user's blood glucose levels.
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61B 5/1455 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using optical sensors, e.g. spectral photometrical oximeters
Disclosed are examples for a system for drug delivery and components thereof. The system may include an on-body pump device and a secondary unit. The on-body pump device may include a reservoir and a fluid pathway. The reservoir may be configured to hold a liquid drug. The secondary unit may be removably coupled to the on-body pump device. The secondary unit may be configured to receive a prefilled cartridge containing a liquid drug, expel the liquid drug from the prefilled cartridge, and deliver the liquid drug to the reservoir of the on-body pump device via the fluid pathway. Examples of variations to the secondary unit are also disclosed.
A method of insulin delivery, the method may include obtaining one or more blood glucose readings of a user, and, based on the blood glucose readings, generating a set of insulin delivery actions that may include delivery of a baseline basal rate or predefined variations of the baseline basal rate. The method may also include monitoring previous insulin delivery actions to the user to determine whether the previous insulin delivery actions include insulin beyond a threshold amount, where the previous insulin delivery actions may include delivery of the baseline basal rate or predefined variations of the baseline basal rate, and, based on the previous insulin delivery actions including insulin beyond the threshold amount, adjusting the set of insulin delivery actions.
A61M 5/00 - Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm rests
A61M 5/315 - Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod; Appliances on the rod for facilitating dosing
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
24.
DEVICES AND METHODS FOR INITIALIZATION OF DRUG DELIVERY DEVICES USING MEASURED ANALYTE SENSOR INFORMATION
Disclosed are processes and techniques implementable by a drug delivery system to maintain optimal drug delivery for a patient according to a treatment plan. The disclosed techniques enable a new drug delivery device that is exchanged for a previous drug delivery device to operate using analyte-based drug delivery control immediately during initialization instead of having to wait for a warm-up period. For example, a drug delivery device may include a processor and a memory storing instructions that, when executed by the processor, operate the drug delivery device to receive a present analyte measurement value from an analyte sensor during an initialization of the drug delivery device, receive backfill values measured by the analyte sensor prior to the initialization, calculate a dosage of a drug using the present analyte measurement value and the backfill values, and deliver the dosage of the drug. Other embodiments are described.
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
A wearable drug delivery device, techniques, and computer-readable media that provide an application that implements a diabetes treatment plan for a user are described. The drug delivery device may include a controller operable to direct operation of the wearable drug delivery device. The controller may provide a selectable activity mode of operation for the user. Operation of the drug delivery device in the activity mode of operation may reduce a likelihood of hypoglycemia during times of increased insulin sensitivity for the user and may reduce a likelihood of hyperglycemia during times of increased insulin requirements for the user. The activity mode of operation may be manually activated by the user or may be activated automatically by the controller. The controller may automatically activate the activity mode of operation based on a detected activity level of the user and/or a detected location of the user.
Disclosed are a device, system, methods and computer-readable medium products that provide an updated insulin-to-carbohydrate ratio and an updated total daily insulin. The described processes may be used for periodic updating of the insulin-to-carbohydrate ratio and the total daily insulin. The insulin-to-carbohydrate ratio and/or the total may be used in the calculation of new doses of insulin that a drug delivery device may be commanded to deliver to a user.
G01N 33/49 - Physical analysis of biological material of liquid biological material blood
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 20/60 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
G16H 40/40 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
G16H 50/70 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
27.
Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation
The exemplary embodiments may provide a drug delivery device that receives glucose level values for a user (e.g., a diabetic patient) and based on the glucose level values, determines when the user has consumed a meal. In some embodiments, the drug delivery device may calculate an appropriate bolus dose and automatically deliver the drug bolus to the user. In some embodiments, instead of detecting the meal, the user may announce the meal, such as by activating an element on the drug delivery device or on a management device for the drug delivery device. Responsive to the meal announcement, the drug delivery device may calculate the drug bolus dose and deliver the drug bolus. In conjunction with the delivery of the drug bolus, the drug delivery device may relax one or more safety constraints for a relaxation period following the drug bolus delivery so that additional basal drug may be delivered, if needed, under relaxed constraints.
Exemplary embodiments may terminate application of an electric pulse to a shape memory alloy (SMA) element that causes actuation of a medicament pump based on resistance values unlike conventional approaches that rely on a mechanical mechanisms to trigger termination of the application of the electric pulse. The magnitude of the resistance values, the rate of change (RoC) of the resistance values, the temperature of the SMA element, the time that has passed since initial application of the electric pulse to the SMA element, or combinations thereof may be used to trigger the termination of the application of the electric pulse to the SMA element in exemplary embodiments. The monitoring of the resistance of an unactuated SMA element may be used to determine when to initiate and when to terminate application of an electrical pulse to the other SMA element.
The exemplary embodiments may provide a drug delivery device that receives glucose level values for a user (e.g., a diabetic patient) and based on the glucose level values, determines when the user has consumed a meal. In some embodiments, the drug delivery device may calculate an appropriate bolus dose and automatically deliver the drug bolus to the user. In some embodiments, instead of detecting the meal, the user may announce the meal, such as by activating an element on the drug delivery device or on a management device for the drug delivery device. Responsive to the meal announcement, the drug delivery device may calculate the drug bolus dose and deliver the drug bolus. In conjunction with the delivery of the drug bolus, the drug delivery device may relax one or more safety constraints for a relaxation period following the drug bolus delivery so that additional basal drug may be delivered, if needed, under relaxed constraints.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
A drug delivery drive mechanism including a ratchet wheel including a plurality of teeth, a ratchet arm including a first prong and a second prong, wherein the first prong is operable interact with a tooth of the plurality of teeth to rotate the ratchet wheel in a circular direction, and the second prong is operable to interact with another tooth of the plurality of teeth to further rotate the ratchet wheel in the circular direction.
Some embodiments an infusion pump system can be configured to modify alarm limit parameters as the user's insulin load increases or decreases. Moreover, in particular embodiments, the infusion pump system can be configured to provide a “missed bolus” or “missed meal” alarm in response to the user's blood glucose characteristics, the user's insulin load information, or the like.
A61M 5/145 - Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. by means of pistons
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
Disclosed are techniques for managing the application of a force by a drive mechanism in a drug delivery device as well as devices for implementing the disclosed techniques. One or more driving arms may be operable to drive a respective ratchet wheel and one or more sensor contacts may be positioned to determine when a respective driving arm is to be controlled to no longer drive the respective ratchet wheel thereby saving electrical power. The disclosed techniques and devices may be incorporated in a drug delivery device, such as those carried by a person or affixed to the skin of a person.
Exemplary embodiments provide methods, apparatuses, and supporting structures for deploying a flexible, slender element (such as a conduit or subcutaneous sensor) into a user's tissue (such as skin tissue). A first embodiment leverages rotary motion to deploy the element while constraining the element to prevent buckling. A second embodiment leverages linear motion to deploy the flexible, slender element with the assistance of an introducer element to provide support. Other embodiments provide support features; for instance, a sacrificial sleeve may impermanently hold or embrace the slender element to temporarily increase the structural stiffness of the slender element. Another support structure may provide for tensioning the user's tissue, such as by causing the skin to bulge in an area where deployment of a slender element is facilitated. The cannula or sensor itself may also be structured or configured to support deployment.
Exemplary embodiments provide methods, apparatuses, and supporting structures for deploying a flexible, slender element (such as a conduit or subcutaneous sensor) into a user's tissue (such as skin tissue). A first embodiment leverages rotary motion to deploy the element while constraining the element to prevent buckling. A second embodiment leverages linear motion to deploy the flexible, slender element with the assistance of an introducer element to provide support. Other embodiments provide support features; for instance, a sacrificial sleeve may impermanently hold or embrace the slender element to temporarily increase the structural stiffness of the slender element. Another support structure may provide for tensioning the user's tissue, such as by causing the skin to bulge in an area where deployment of a slender element is facilitated. The cannula or sensor itself may also be structured or configured to support deployment.
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61B 5/1473 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
Disclosed are techniques, devices and systems that implement and utilize a voice control application and sound chip circuitry to control operation of a wearable drug delivery device. In addition, a wearable drug delivery device equipped with the sound chip circuitry may be operable to play audio clips that may include content for assisting a user with an initial set up of the wearable drug delivery device, providing messages of encouragement, lullabies for pediatric users, and the like. In addition, the voice control application enables users to control delivery of liquid drugs via a wearable drug delivery device hands-free using voice commands and voice confirmations of actions to be taken by an automated insulin delivery application.
Disclosed are techniques for managing the application of a force by a drive mechanism in a drug delivery device as well as devices for implementing the disclosed techniques. One or more driving arms may be operable to drive a respective ratchet wheel and one or more sensor contacts may be positioned to determine when a respective driving arm is to be controlled to no longer drive the respective ratchet wheel thereby saving electrical power. The disclosed techniques and devices may be incorporated in a drug delivery device, such as those carried by a person or affixed to the skin of a person.
Compensation may be provided for the varying accuracy levels of a sensor over time. As a result of the compensation, the medicament delivery device may perform better. The sensor may provide input to a medicament delivery device, and the input may be used to determine a dose of medicament to be delivered to a user by the medicament delivery device. A degree of inaccuracy of sensor values may be determined based on when in the lifetime a sensor value is generated. Glucose level values read by a glucose monitor, such as a CGM, may be directly modified before being used by an automated insulin delivery (AID) control of an insulin delivery device. The compensation for the inaccuracy of the glucose level values from the glucose monitor instead may be achieved by modifying a weight coefficient of a glucose cost component of a cost function in one example.
The exemplary embodiments may provide and approach to shutting off the alarm of a medicament delivery device without harming the internal printed circuit board assembly (PCBA) of the medicament delivery device. As a result, the PCBA of the medicament delivery device may not be damaged and can be harvested for reuse. Some exemplary embodiments may provide a displaceable component that may be displaced to open an electrical circuit that powers an alarm of the medicament delivery device. In other exemplary embodiments, a user may break the electrically conductive element, such as by applying sufficient force with a tool. In still other exemplary embodiments, the alarm may be shut off by mechanical manipulation of the medicament delivery device.
G08B 7/06 - Signalling systems according to more than one of groups ; Personal calling systems according to more than one of groups using electric transmission
Disclosed are techniques, devices and systems that provide a compact reservoir and plunger arrangement. In the disclosed examples, a reservoir may include a housing, a plunger, a lead screw and an elastic sleeve. The housing may have a first end and a second end. The plunger may be configured to fit within the housing. The leadscrew may be coupled to the plunger. The elastic sleeve may surround the leadscrew and be coupled to a surface of the plunger and to a surface of the second end of the housing. The elastic sleeve is leakproof.
Disclosed are systems, processes and techniques implementable in and by medical devices that utilize the subcutaneous region of the skin. In the disclosed examples, an insertion mechanism is provided that inserts a cannula or sensing element into the subcutaneous region of the skin a first distance and retracts the inserted cannula or sensing element a second distance that is smaller than the first distance to create a cavity below the inserted cannula or sensing element. The retracted cannula or sensing element remains inserted in the subcutaneous region of the skin. The cavity provides an area for the effects of a wound response to occur and thereby mitigates possibility of occlusion and/or encapsulation of the inserted cannula or sensing element.
Disclosed are a device, a computer-readable medium, and techniques that provide an onboarding process and an adaptivity process for a drug delivery device. A processor executing an onboarding process determines whether a history of delivered insulin to a user meets certain sufficiency requirements. The onboarding process enables a processor to cause the drug delivery device to administer doses of insulin to a user according to an initial total daily insulin dose calculation that is determined based on the sufficiency of the insulin delivery history. The initial total daily insulin may be adapted according to the adaptivity process as new insulin delivery is collected. The insulin delivery history, when sufficient, may be used to set total daily insulin dosages that enable automated insulin delivery upon replacement of a drug delivery device. The adaptivity process may be implemented to modify an initial insulin delivery doses to provide adapted insulin delivery doses.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
42.
ADAPTABLE ASYMMETRIC MEDICAMENT COST COMPONENT IN A CONTROL SYSTEM FOR MEDICAMENT DELIVERY
The exemplary embodiments provide medicament delivery devices that use cost functions in their control systems to determine medicament dosages. The cost function may have a medicament cost component and a performance cost component. The exemplary embodiments may use cost functions having medicament cost components that scale asymmetrically for different ranges of inputs (i.e., different candidate medicament dosages). The variance in scaling for different input ranges provides added flexibility to tailor the medicament cost component to the user and thus provide better management of medicament delivery to the user and better conformance to a performance target. The exemplary embodiments may use a cost function that has a medicament cost component (such as an insulin cost component) of zero for candidate dosages for a range of candidate dosages (e.g., below a reference dosage).
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
43.
USE OF NON-INVASIVE GLUCOSE SENSORS AND GLUCOSE RATE OF CHANGE DATA IN AN INSULIN DELIVERY SYSTEM
Invasive glucose sensors and noninvasive glucose sensors may be used in conjunction to improve glucose management for a user. The rate of change (ROC) of glucose levels from a noninvasive glucose sensor may be used rather than or in conjunction with a glucose level of the user from a CGM. A basal insulin delivery rate to the user may be adjusted responsive to the ROC glucose level data from the noninvasive sensor. The glucose level ROC from a noninvasive glucose sensor may be used to predict future glucose level ROCs of the user between operational cycles of an insulin delivery device and/or to identify possible hypoglycemic or hyperglycemic events. These predicted future glucose level ROCs may be used in a cost function of the control system of the insulin delivery device to select basal insulin delivery doses. Glucose level readings may be used to calibrate a noninvasive glucose level sensor.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
44.
MAXIMUM SUBCUTANEOUS INSULIN ABSORPTION RATES TO CALCULATE EFFECTIVE INSULIN-ON-BOARD IN AUTOMATED INSULIN DELIVERY SYSTEMS
A drug delivery system including a memory storing programming code operable to enable delivery of insulin and a processor operable to execute the programming code. When executed, the programming code causes the processor to: calculate a first aggregate insulin-on-board amount for a user based on a plurality of individual insulin-on-board estimates made over a first period of time, determine that the first aggregate insulin-on-board amount is greater than a maximum depot formation threshold amount, determine a first residual amount of insulin remaining in the first aggregate insulin-on-board amount, increase a subsequent calculation of an individual insulin-on-board estimate based on the first residual amount of insulin, and utilize the subsequent calculation of the individual insulin-on-board estimate in a calculation of a second aggregate insulin-on-board amount over a second period of time.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
45.
USE OF NON-INVASIVE GLUCOSE SENSORS AND GLUCOSE RATE OF CHANGE DATA IN AN INSULIN DELIVERY SYSTEM
Invasive glucose sensors and noninvasive glucose sensors may be used in conjunction to improve glucose management for a user. The rate of change (ROC) of glucose levels from a noninvasive glucose sensor may be used rather than or in conjunction with a glucose level of the user from a CGM. A basal insulin delivery rate to the user may be adjusted responsive to the ROC glucose level data from the noninvasive sensor. The glucose level ROC from a noninvasive glucose sensor may be used to predict future glucose level ROCs of the user between operational cycles of an insulin delivery device and/or to identify possible hypoglycemic or hyperglycemic events. These predicted future glucose level ROCs may be used in a cost function of the control system of the insulin delivery device to select basal insulin delivery doses. Glucose level readings may be used to calibrate a noninvasive glucose level sensor.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
46.
PROGRAMMATIC MEDICAMENT TITRATION WITH A MEDICAMENT DELIVERY DEVICE
Exemplary embodiments may provide an on-body medicament delivery system that provides basal delivery of a medicament to a type 2 diabetes patient and that automatically performs medicament titration for the patient. The medicament delivery system performs medicament titration based on glucose level readings for the patient. These glucose levels may be provided wirelessly from a glucose sensor, such as a continuous glucose monitor, or may be entered manually by the patient into a management device, such as a smartphone running an application that provides a user interface for the patient to enter the glucose level readings. The medicament delivery system adjusts the basal medicament delivery rate/dose based on the glucose level readings for the patient. The adjustments may be performed by a programmatic mechanism, such as by computer programming instructions executing on a processor.
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
47.
PROGRAMMATIC MEDICAMENT TITRATION WITH A MEDICAMENT DELIVERY DEVICE
Exemplary embodiments may provide an on-body medicament delivery system that provides basal delivery of a medicament to a type 2 diabetes patient and that automatically performs medicament titration for the patient. The medicament delivery system performs medicament titration based on glucose level readings for the patient. These glucose levels may be provided wirelessly from a glucose sensor, such as a continuous glucose monitor, or may be entered manually by the patient into a management device, such as a smartphone running an application that provides a user interface for the patient to enter the glucose level readings. The medicament delivery system adjusts the basal medicament delivery rate/dose based on the glucose level readings for the patient. The adjustments may be performed by a programmatic mechanism, such as by computer programming instructions executing on a processor.
Some embodiments of an infusion pump system can be used to determine a user's total insulin load (TIL) that provides an accurate indication of the insulin previously delivered to the user's body which has not yet acted. In particular embodiments, the TIL can account for both the bolus deliveries and the basal deliveries that have occurred over a period of time. Such information may be useful, for example, when the infusion pump is operated in conjunction with a continuous glucose monitoring device.
A61M 5/145 - Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. by means of pistons
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A drug delivery drive mechanism including a ratchet wheel including a plurality of teeth, a ratchet arm including a first prong and a second prong, wherein the first prong is operable interact with a tooth of the plurality of teeth to rotate the ratchet wheel in a circular direction, and the second prong is operable to interact with another tooth of the plurality of teeth to further rotate the ratchet wheel in the circular direction.
Termination of application of an electric pulse to a shape memory alloy (SMA) element that causes actuation of a medicament pump based on resistance values. The magnitude of the resistance values, the rate of change of the resistance values, the temperature of the SMA element, the time that has passed since initial the application of the electric pulse to the SMA element, or combinations thereof may be used to trigger the termination of the application of the electric pulse to the SMA element.
A method may include displaying to a user an interface at which the user inputs a fear of hypoglycemia index (FHI), the FHI corresponding to an acceptable probability of a blood glucose level being below a threshold blood glucose level. The method may also include receiving blood glucose data for a person with diabetes (PWD). The method may additionally include calculating a probability of the PWD having a blood glucose level below the threshold blood glucose level based on the variability of the received blood glucose data. The method may also include setting one or more target blood glucose levels to align the probability of the PWD having a blood glucose level below the threshold blood glucose level with the acceptable probability associated with the user input FHI. The method may additionally include delivering insulin, using the insulin delivery device, based on the target blood glucose level.
A61M 5/145 - Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. by means of pistons
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/60 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
A method includes receiving up-to-date blood glucose data for a PWD, determining basal insulin dosages for the PWD based on a baseline basal rate, delivering the basal insulin dosages to the PWD, modifying a target blood glucose level based on variability of blood glucose data for the PWD, receiving a temporary override indicating a user preference to reduce the likelihood that the PWD has a hypoglycemic event or a user preference to reduce the likelihood that the PWD has a hyperglycemic event, determining a temporary target blood glucose level based on the input—greater than the modified blood glucose level if the preference is to reduce the likelihood of a hypoglycemic event—lower than the modified target blood glucose level if the preference is to reduce the likelihood that of a hyperglycemic event. The method includes delivering basal insulin for the temporary period of time based on the temporary target.
A61M 5/145 - Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. by means of pistons
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/60 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
Disclosed herein is a system and method for calculating an expected peak blood glucose level of user during a post-prandial period, based on a quantity of carbohydrates to be ingested. The user's expected peak blood glucose levels for slow, medium and fast acting carbohydrates are calculated. The results are presented to the user to allow the user to make an informed decision regarding the type of meal to be ingested.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
55.
SYSTEM AND METHOD FOR DETERMINING THE EFFECT OF INGESTION OF MEALS OF VARYING CARBOHYDRATE CONTENT
Disclosed herein is a system and method for calculating an expected peak blood glucose level of a user during a post-prandial period, based on a quantity of carbohydrates to be ingested. The user's expected peak blood glucose levels for slow, medium and fast acting carbohydrates are calculated. The results are presented to the user to allow the user to make an informed decision regarding the type of meal to be ingested.
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
In one implementation, an insulin delivery system using an on-body network includes an insulin delivery device that is adapted to administer dosages of insulin to a patient; a controller that is adapted to control operation of the insulin delivery device, to establish a first network connection in which the controller acts in a central role, and to establish a second network connection in which the controller acts in a peripheral role; one or more peripheral devices that are adapted to generate patient data related to blood glucose levels and to transmit the patient data wirelessly over the first network connection, the peripheral devices acting in a peripheral role over the first network connection; and a mobile application installed on a mobile computing device that is programmed to communicate with the controller over the second network connection, the mobile application communicating in a central role over the second network connection.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
A drug delivery device drive mechanism including a first ratchet wheel having a first ratchet gear coupled to a first spur gear, a second ratchet wheel having a second ratchet gear coupled to a second spur gear, wherein the first ratchet wheel and the second ratchet wheel are coplanar and gear teeth of the first spur gear mesh with gear teeth the second spur gear, and an actuation mechanism including a pusher interface coupled to an actuator, the pusher interface having at least one pusher tab operable to physically contact the first ratchet gear.
A drug delivery device drive mechanism including a first ratchet wheel having a first ratchet gear coupled to a first spur gear, a second ratchet wheel having a second ratchet gear coupled to a second spur gear, wherein the first ratchet wheel and the second ratchet wheel are coplanar and gear teeth of the first spur gear mesh with gear teeth the second spur gear, and an actuation mechanism including a pusher interface coupled to an actuator, the pusher interface having at least one pusher tab operable to physically contact the first ratchet gear.
Disclosed are techniques, devices and systems that provide adjustments to parameter settings of an insulin delivery algorithm based on inputs from a number of generic sensor devices. A majority of the generic sensor devices provide sensor readings that are unused as inputs to a drug deliver algorithm. The generic sensor devices may be operable to detect characteristics, such as changes in a state of a user. A processor may evaluate a sensor reading provided by a particular sensor with respect to a sensor baseline reading for the particular sensor. Using the result of the evaluation, the processor may calculate an adjustment to a parameter setting or settings of a medication delivery algorithm. A dosage of medication may be modified based on the adjustment of the parameter setting or settings.
Disclosed herein are various embodiments of clutching mechanisms applicable to a dual reservoir pumping mechanism for a drug delivery device, the clutching mechanisms serving to allow translation of one of the reservoirs during the filling process and thereafter connecting the reservoirs together such that one can be driven relative to the other one by means of a leadscrew or other driving mechanism.
Disclosed are techniques, devices and systems that provide adjustments to parameter settings of an insulin delivery algorithm based on inputs from a number of generic sensor devices. A majority of the generic sensor devices provide sensor readings that are unused as inputs to a drug deliver algorithm. The generic sensor devices may be operable to detect characteristics, such as changes in a state of a user. A processor may evaluate a sensor reading provided by a particular sensor with respect to a sensor baseline reading for the particular sensor. Using the result of the evaluation, the processor may calculate an adjustment to a parameter setting or settings of a medication delivery algorithm. A dosage of medication may be modified based on the adjustment of the parameter setting or settings.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
63.
MECHANISM PROVIDING VARIABLE FILL CAPABILITY FOR A LIQUID RESERVOIR AND PUMP
Disclosed herein are various embodiments of clutching mechanisms applicable to a dual reservoir pumping mechanism for a drug delivery device, the clutching mechanisms serving to allow translation of one of the reservoirs during the filling process and thereafter connecting the reservoirs together such that one can be driven relative to the other one by means of a leadscrew or other driving mechanism.
Safety and accuracy measures may be provided in a medicament delivery device. The medicament delivery device may be able to identify the inadvertent delivery of duplicate medicament boluses by a user. The exemplary embodiments may set limits for maximum allowable medicament bolus doses and maximum cumulative bolus doses over an interval. The exemplary embodiments may provide automatic meal detection and may use detection of meals in determining whether a user-requested medicament bolus dose should be adjusted or rejected. The exemplary embodiments may facilitate delivery of partial boluses and the delivery of remainders of the boluses contingent on acceptable glucose level trends of the user. The exemplary embodiments may resolve potential conflicts among multiple medicament delivery devices via a broker or by providing a single actor, such as a medicament delivery controller, that has sole control of dosing and delivery of medicament boluses.
A61M 5/315 - Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod; Appliances on the rod for facilitating dosing
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
65.
USE OF LOGARITHMIC TRANSFORM/FILTER TO IMPROVE OPERATION OF MEDICAMENT DELIVERY DEVICE
Exemplary embodiments may apply a transform or filter to analyte level values of the users to make the analyte level values conform with a normal distribution that is symmetric relative to the mean. The transformed or filtered analyte level values may be used by the control system of a medicament delivery device in determining medicament delivery doses. In some embodiments, the medicament is insulin, and the analyte level is a glucose level of a user. In such instances, a logarithmic filter or transform may be applied to the glucose level readings of the user.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
66.
METHOD FOR DETECTING OCCLUSIONS IN A FLUID PATH USING BLOOD GLUCOSE READINGS
Disclosed herein is a system and method implementing a software-based method for detecting or confirming the detection of occlusions in the fluid path of an automatic drug delivery system. The invention uses real time glucose readings from a continuous glucose monitor in collaboration with past insulin delivery history and user indications of ingestion of carbohydrates, to determine cases where the user's glucose concentration is not being sufficiently impacted by the expected insulin delivery, which may indicate a significant pump site issue.
G05B 13/04 - Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
67.
SYSTEM AND METHOD FOR ADJUSTING INSULIN DELIVERY TO ACCOUNT FOR INSULIN RESISTANCE
Disclosed herein is a method, implemented in an automatic drug delivery system, for determining insulin resistance of a user and adjusting parameters of the medication delivery algorithm of the automatic drug delivery system based on the determined insulin resistance. A self-guided test is administered similar to the Kraft test which determines if the quantity of insulin delivered during a post-prandial period after ingestion of a quantity of fast-acting carbohydrates is sufficient to lower the user's blood glucose level to a baseline level.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
Disclosed are techniques, devices and systems that modify an insulin delivery schedule based on how sensitive a diabetic user may to fluctuations in their total daily insulin or fluctuations in their blood glucose measurement values. As a control algorithm calculates how to adapt the calculation of the user's total daily insulin, a rate of adaptivity function may be used in the calculation. The rate of adaptivity may depend on a number of factors and the disclosed techniques, devices and systems enable calculation of the rate of adaptivity to provide effective implementation or modification of a diabetic treatment plan.
Safety and accuracy measures may be provided in a medicament delivery device. The medicament delivery device may be able to identify the inadvertent delivery of duplicate medicament boluses by a user. The exemplary embodiments may set limits for maximum allowable medicament bolus doses and maximum cumulative bolus doses over an interval. The exemplary embodiments may provide automatic meal detection and may use detection of meals in determining whether a user-requested medicament bolus dose should be adjusted or rejected. The exemplary embodiments may facilitate delivery of partial boluses and the delivery of remainders of the boluses contingent on acceptable glucose level trends of the user. The exemplary embodiments may resolve potential conflicts among multiple medicament delivery devices via a broker or by providing a single actor, such as a medicament delivery controller, that has sole control of dosing and delivery of medicament boluses.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
70.
USE OF LOGARITHMIC TRANSFORM/FILTER TO IMPROVE OPERATION OF MEDICAMENT DELIVERY DEVICE
Exemplary embodiments may apply a transform or filter to analyte level values of the users to make the analyte level values conform with a normal distribution that is symmetric relative to the mean. The transformed or filtered analyte level values may be used by the control system of a medicament delivery device in determining medicament delivery doses. In some embodiments, the medicament is insulin, and the analyte level is a glucose level of a user. In such instances, a logarithmic filter or transform may be applied to the glucose level readings of the user.
In exemplary embodiments, an on-body medical device has an adhesive layer with adhesives of two or more strengths. In some of the exemplary embodiments, a stronger adhesive is positioned on the adhesive layer where additional strength is needed, such as around the perimeter of the adhesive layer to prevent premature peeling. A weaker adhesive is positioned on other portions of the adhesive layer where there is no need for the strength of the stronger adhesive. In other exemplary embodiments, three strengths of adhesives are used on the adhesive layer. An intermediate strength adhesive is used along with a stronger adhesive and a weaker adhesive. The intermediate strength adhesive may be used in areas where the weaker adhesive does not provide enough strength but the full strength of the stronger adhesive is not needed.
Disclosed are a device, system, methods and computer-readable medium products that provide techniques to implement functionality to receive blood glucose measurements over a period of time. An average of missing blood glucose measurement values may be maintained over a predetermined time period. A count of a number of missing blood glucose measurement values over a period of time may be established. A controller may calculate a divergence of the number of missing blood glucose measurement values over the period of time from the average of missing blood glucose measurements over the predetermined time period. Based on a value of the divergence, a determination that a safety constraint for delivery of insulin is to be reduced. The safety constraint may be reduced by a predetermined percentage. An instruction to deliver an insulin dosage may be generated according to the reduced safety constraint may be forwarded to a wearable drug delivery device.
Disclosed are techniques, devices and systems that provide a rotary solenoid micro actuator that has a rotary solenoid core with dual magnetic drive coils and magnetic field focusing elements. One or more examples may also include a spring return and other examples may include two sets of drive coils to push and pull on at each magnetic gap. The magnetic field focusing elements are operable to increase the magnetic field. The rotary solenoid micro actuator is configured to cause a liquid drug to be expelled from a drug delivery device.
H02K 33/12 - Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
Disclosed are techniques, devices and systems that provide a rotary solenoid micro actuator that has a rotary solenoid core with dual magnetic drive coils and magnetic field focusing elements. One or more examples may also include a spring return and other examples may include two sets of drive coils to push and pull on at each magnetic gap. The magnetic field focusing elements are operable to increase the magnetic field. The rotary solenoid micro actuator is configured to cause a liquid drug to be expelled from a drug delivery device.
A device for delivering fluid to a user may include a reservoir that holds the fluid and a plunger received in the reservoir. As the plunger is driven into the reservoir, the fluid is driven out; similarly, as the reservoir is filled, the plunger is driven out of the reservoir. The plunger may be moved into or out of the reservoir by the action of a lead screw. The lead screw may include multiple starts.
Disclosed herein is a double reservoir configuration for a pumping mechanism for a drug delivery device wherein one reservoir is rigidly fixed to a housing of the device and the other reservoir moves linearly translates with respect to the fixed reservoir. To avoid having either the input fluid port or the output fluid port moves as the second reservoir linearly translates, one port is in fluid communication with the fixed reservoir and a second fluid port is in communication with the moving reservoir via a hollow tube supporting a static plunger disposed within the moving reservoir. This arrangement provides for the added benefit of allowing air trapped within either of the reservoirs to be almost completely removed as the pump mechanism is filled with the fluid.
Disclosed herein is a double reservoir configuration for a pumping mechanism for a drug delivery device wherein one reservoir is rigidly fixed to a housing of the device and the other reservoir moves linearly translates with respect to the fixed reservoir. To avoid having either the input fluid port or the output fluid port moves as the second reservoir linearly translates, one port is in fluid communication with the fixed reservoir and a second fluid port is in communication with the moving reservoir via a hollow tube supporting a static plunger disposed within the moving reservoir. This arrangement provides for the added benefit of allowing air trapped within either of the reservoirs to be almost completely removed as the pump mechanism is filled with the fluid.
The exemplary embodiments provide thermal weld structures that help prevent tearing of the adhesive layer of an on-body medical device when subject to lateral forces. These thermal weld structures help reduce the tearing by providing sacrificial thermal weld structures that will absorb forces and then potentially fail to thereby diffuse some of the lateral forces. The sacrificial thermal weld structures may take different forms. For instance, the sacrificial thermal weld structures may be gradient thermal weld structures where the amount of material melted in the gradient thermal weld structures decreases as a gradient along a dimension of the structures, such as their length. In some alternative embodiments, the width of the gradient thermal weld structure may vary instead of the height, or in conjunction with the height. In other exemplary embodiments, the sacrificial thermal weld structures may be dot thermal weld structures.
Exemplary embodiments may determine anticipated basal insulin delivery action to a user from an insulin delivery device over a future time window. Indications of the anticipated basal insulin delivery action over the future time window may be output to the user. The exemplary embodiments may determine the anticipated basal insulin delivery action over the future time window based on a rate of change (ROC) of glucose level of the user by the insulin delivery device, a most recent ("current") glucose level for the user and insulin on board (IOB) for the user. The exemplary embodiments may also determine whether the user is likely to experience a undesired high glucose level (e.g., hyperglycemia) and/or an undesired low glucose level (e.g., hypoglycemia) during the future time window. The exemplary embodiments may output recommendations based on the projected glucose levels of the user over the future time window.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
G16H 50/70 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
80.
SYSTEM AND METHOD FOR DETECTING OCCLUSIONS IN A FLUID PATH
Disclosed herein is a system for detecting and handling occlusions in the fluid path of the drug delivery device. The system includes a sensor disposed in-line with the fluid path for determining a change in pressure within the fluid path. The system further includes a machine learning model for analyzing readings from the sensor to detect and classify an occlusion in the fluid path based on the time series of readings from the sensor indicating a change in pressure. The system further takes remedial action to either compensate for the occlusion, clear the occlusion, or inform the user of the existence of the occlusion and recommends a course of action to the user.
A61M 5/168 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
81.
BLOOD GLUCOSE RATE OF CHANGE MODULATION OF MEAL AND CORRECTION INSULIN BOLUS QUANTITY
Disclosed are a system, methods and computer-readable medium products that provide bolus dosage calculations by a control algorithm-based drug delivery system that provides automatic delivery of a drug, such as insulin or the like, based on sensor input. Blood glucose measurement values may be received at regular time intervals from a sensor. Using the blood glucose measurements, the control algorithm may perform various calculations and determinations to provide an appropriate bolus dosage. The appropriate bolus dosage may be used to respond to a trend in a trajectory of blood glucose measurements. In addition, a bolus dosage may also be determined by the disclosed device, system, method and/or computer-readable medium product in response to an indication that a user consumed a meal.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
82.
INFORMING A USER OF ANTICIPATED INSULIN DELIVERY ACTIONS AND PROVIDING RECOMMENDED USER ACTIONS
Exemplary embodiments may determine anticipated basal insulin delivery action to a user from an insulin delivery device over a future time window. Indications of the anticipated basal insulin delivery action over the future time window may be output to the user. The exemplary embodiments may determine the anticipated basal insulin delivery action over the future time window based on a rate of change (ROC) of glucose level of the user by the insulin delivery device, a most recent (“current”) glucose level for the user and insulin on board (IOB) for the user. The exemplary embodiments may also determine whether the user is likely to experience a undesired high glucose level (e.g., hyperglycemia) and/or an undesired low glucose level (e.g., hypoglycemia) during the future time window. The exemplary embodiments may output recommendations based on the projected glucose levels of the user over the future time window.
Disclosed herein is a method, implemented in an automated drug delivery system for determining a risk of a hypoglycemic or hyperglycemic condition based on risk factors calculated each time a new blood glucose reading is received and providing an alert to the user should a risk be determined. The risk factors may include the current CGM reading, the trend of CGM readings, the amount of insulin-on-board of the user and the accuracy of previous alerts provided to the user. The method may be modified to provide the risk of hypoglycemia if the user were to engage in exercise or other physical activities.
Disclosed are systems and processes for an optical monitoring system for monitoring the dispensing of fluid from a fluid delivery device For example, a fluid delivery device may include a reservoir storing a fluid, a pump fluidically coupled to the reservoir, the pump comprising a drive mechanism to force the fluid from the reservoir, and an optical monitoring system. The optical monitoring system may include at least one light source operative to emit light incident on at least one element of the drive mechanism, and at least one sensor configured to receive the light reflecting off of the at least one element, wherein the at least one light source and the at least one sensor are arranged on a same side of the at least one element. Other embodiments are described.
A drug delivery device including a reservoir operable to contain a liquid drug, a fluid outlet including an outlet reservoir opening and an outlet fluid channel, wherein the outlet reservoir opening has a volume and is fluidly coupled to the outlet fluid channel, and an outlet filter plug operable to fill the volume of the outlet reservoir opening and collect particulate material as the liquid drug is expelled from the reservoir.
A drug delivery device including a reservoir operable to contain a liquid drug, a fluid outlet including an outlet reservoir opening and an outlet fluid channel, wherein the outlet reservoir opening has a volume and is fluidly coupled to the outlet fluid channel, and an outlet filter plug operable to fill the volume of the outlet reservoir opening and collect particulate material as the liquid drug is expelled from the reservoir.
Exemplary embodiments may provide for the switching of glucose prediction models responsive to certain conditions. For example, glucose prediction models may be switched responsive to a detected crashing glucose level condition. Exemplary embodiments also may dynamically customize parameters, such as coefficient values, of the glucose prediction model to a user. The exemplary embodiments may customize the glucose prediction model based on the history of glucose levels of the user and the history of insulin deliveries to the user. The exemplary embodiments may determine a set of parameters that provides an improved fit of the parameters to the history of glucose levels and insulin deliveries of the user. The improved fit parameters may be used to adapt the parameter set to the most recent run.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
Disclosed are techniques, devices and systems that obtain a glucose measurement history and a liquid drug delivery history. An expected drug delivery amount may be calculated based on the obtained glucose measurement history and the obtained liquid drug delivery history. A processor may calculate a plurality of respective drug delivery amounts implemented using different advisory mode algorithms. A respective advisory drug delivery amount of the plurality of respective advisory drug delivery amounts may be selected by the processor. A recommendation may be generated based on the selected respective advisory drug delivery amount.
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
91.
TECHNIQUES TO DETERMINE PATTERNS IN BLOOD GLUCOSE MEASUREMENT DATA AND A USER INTERFACE FOR PRESENTATION THEREOF
Disclosed are techniques, devices and computer products in which a processor is operable to access blood glucose measurement values and insulin data from a data warehouse memory. Based on the blood glucose measurement values the processor may be operable to identify high events that exceed an upper target blood glucose set point and low events in which blood glucose measurement values are below a lower target blood glucose set point. Rules may be applied to the high events and low events. Based on a result of the rules, high event patterns may be identified as well as a low event pattern. A respective pattern weight may be applied to each identified high event and each identified low and a graphical user interface may be populated with a number of high event patterns and for a number of low event patterns.
G16H 10/60 - ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
A61M 5/172 - Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters electrical or electronic
92.
TECHNIQUES TO DETERMINE PATTERNS IN BLOOD GLUCOSE MEASUREMENT DATA AND A USER INTERFACE FOR PRESENTATION THEREOF
Disclosed are techniques, devices and computer products in which a processor is operable to access blood glucose measurement values and insulin data from a data memory. Based on the blood glucose measurement values the processor may be operable to identify high events that exceed an upper target blood glucose set point and low events in which blood glucose measurement values are below a lower target blood glucose set point. Rules may be applied to the high events and low events. Based on a result of the rules, high event patterns may be identified as well as a low event pattern. A respective pattern weight may be applied to each identified high event and each identified low and a graphical user interface may be populated with a number of high event patterns and for a number of low event patterns.
G16H 40/67 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
93.
CUSTOMIZATION OF A GLUCOSE PREDICTION MODEL FOR A USER IN AN AUTOMATED INSULIN DELIVERY (AID) DEVICE
The exemplary embodiments may employ a glucose prediction model (GPM) that is tailored to a user to account for insulin sensitivity or insulin insensitivity. The exemplary embodiments may predict future glucose levels based on past glucose levels for the user. Specifically, the GPM in exemplary embodiments may predict the future glucose level of the user as a weighted sum of most recent glucose level readings from the user. The exemplary embodiments may employ linear regression analysis to determine the values of the weights. These weights customize the GPM of the user based on the user's most recent glucose level history. Due to the customization, the GPM may more accurately predict future glucose levels of the user. As a result, the AID may exhibit better glucose level control for the user. The GPM of the exemplary embodiments may be updated on an ongoing basis.
The exemplary embodiments may dynamically adjust an Insulin on Board (JOB) profile for a user of a medicament delivery system to customize the IOB profile to the user based on recent glucose level history and insulin deliveries rather than use the conventional static IOB profiles that are based on population averages. The exemplary embodiments may calculate a Duration of Insulin Action (DIA) for a user from the customized insulin decay curves. The exemplary embodiments may generate and send notifications to the user to help reduce the DIA of the user and/or to keep the DIA of the user from rising. The exemplary embodiments may aim to not overly constrain insulin delivery due to the contribution of insulin boluses to JOB.
G16H 20/10 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
A61B 5/145 - Measuring characteristics of blood in vivo, e.g. gas concentration, pH-value
A61B 5/00 - Measuring for diagnostic purposes ; Identification of persons
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
95.
CUSTOMIZATION OF A GLUCOSE PREDICTION MODEL FOR A USER IN AN AUTOMATED INSULIN DELIVERY (AID) DEVICE
The exemplary embodiments may employ a glucose prediction model (GPM) that is tailored to a user to account for insulin sensitivity or insulin insensitivity. The exemplary embodiments may predict future glucose levels based on past glucose levels for the user. Specifically, the GPM in exemplary embodiments may predict the future glucose level of the user as a weighted sum of most recent glucose level readings from the user. The exemplary embodiments may employ linear regression analysis to determine the values of the weights. These weights customize the GPM of the user based on the user's most recent glucose level history. Due to the customization, the GPM may more accurately predict future glucose levels of the user. As a result, the AID may exhibit better glucose level control for the user. The GPM of the exemplary embodiments may be updated on an ongoing basis.
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
96.
SWITCHING AND CUSTOMIZATION OF GLUCOSE PREDICTION MODELS IN MEDICAMENT DELIVERY DEVICES
Exemplary embodiments may provide for the switching of glucose prediction models responsive to certain conditions. For example, glucose prediction models may be switched responsive to a detected crashing glucose level condition. Exemplary embodiments also may dynamically customize parameters, such as coefficient values, of the glucose prediction model to a user. The exemplary embodiments may customize the glucose prediction model based on the history of glucose levels of the user and the history of insulin deliveries to the user. The exemplary embodiments may determine a set of parameters that provides an improved fit of the parameters to the history of glucose levels and insulin deliveries of the user. The improved fit parameters may be used to adapt the parameter set to the most recent run.
G16H 40/63 - ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
G16H 50/20 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
G16H 50/30 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for individual health risk assessment
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
97.
METHODS AND SYSTEMS FOR DYNAMICALLY CUSTOMIZING INSULIN ON BOARD PROFILES AND PROVIDING RECOMMENDATIONS TO IMPROVE THE DURATION OF INSULIN ACTION
The exemplary embodiments may dynamically adjust an Insulin on Board (IOB) profile for a user of a medicament delivery system to customize the IOB profile to the user based on recent glucose level history and insulin deliveries rather than use the conventional static IOB profiles that are based on population averages. The exemplary embodiments may calculate a Duration of Insulin Action (DIA) for a user from the customized insulin decay curves. The exemplary embodiments may generate and send notifications to the user to help reduce the DIA of the user and/or to keep the DIA of the user from rising. The exemplary embodiments may aim to not overly constrain insulin delivery due to the contribution of insulin boluses to IOB.
G16H 50/50 - ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
G16H 20/17 - ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
98.
INSTRUMENT FOR A MEDICAMENT DELIVERY DEVICE THAT ACTS AS NEEDLE AND CANNULA
Exemplary embodiments may provide a medicament delivery device that includes a single instrument for piercing the skin of the user and for acting as a conduit for delivering medicament to the user subcutaneously. The exemplary embodiments may reduce discomfort caused by a rigid cannula or needle. The exemplary embodiments may provide instruments that are configured to be comfortable to the user when the instruments are in place beneath the skin of the user, such as when a medicament delivery device is delivering medicament to the user.
Disclosed are techniques and devices that are operable to receive one or a number of generalized parameters of an automated insulin delivery algorithm. An input of at least one generalized parameter corresponding to a user may be used to set one or more of the number of specific parameters of the automated insulin delivery algorithm based on the inputted at least one generalized parameter. Physiological condition data related to the user may be collected. The automated insulin delivery algorithm may determine a dosage of insulin to be delivered based on the collected physiological condition. Signals may be output to cause a liquid drug to be delivered to the user based on an output of the automated insulin delivery algorithm related to the determined dosage of insulin.
A low-force, non-displacement, micro/miniature valve and/or pump assembly is provided. A tube component having a first side port coupled to an inlet portion and a second side port coupled to an outlet portion can be selectively moved to alternatively couple the side ports to a first or second piston pump chamber. First and second pistons can be actuated after positioning the tube component to either draw in fluid or push out fluid from either the first or second piston pump chambers during each actuation of the pistons. The fluid can be drawn in from a reservoir and can be expelled to a patient for providing a dose of the fluid to the patient.
F04B 1/047 - Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the outer ends of the cylinders
F04B 7/00 - Piston machines or pumps characterised by having positively-driven valving
F04B 9/06 - Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means including spring- or weight-loaded lost-motion devices
F04B 19/22 - Other positive-displacement pumps of reciprocating-piston type
F04B 23/02 - Pumping installations or systems having reservoirs