In an apparatus and related method, a substrate that has multiple facets is held in a chamber of a plasma reactor that has multiple plasma cavities. The substrate is positioned by a transport arrangement with each plasma cavity of the plasma reactor aligned to a facet of the substrate. A plasma is generated in each plasma cavity, to apply simultaneous plasma processing to multiple facets of the substrate.
H01J 37/147 - Arrangements for directing or deflecting the discharge along a desired path
C23C 16/505 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
In an apparatus and related method, a substrate that has multiple facets is held in a chamber of a plasma reactor that has multiple plasma cavities. The substrate is positioned by a transport arrangement with each plasma cavity of the plasma reactor aligned to a facet of the substrate. A plasma is generated in each plasma cavity, to apply simultaneous plasma processing to multiple facets of the substrate.
A chemical vapor deposition chamber including a vacuum chamber; a power source; a gas conduit coupling the vacuum chamber to a precursor gas source; a filament arrangement energized by the power source to thereby impart thermal energy to molecules of precursor gas flowing from the precursor gas source; a coupling mechanism; wherein the filament arrangement comprises a plurality of filaments and the coupling mechanism electrically coupling the power source only to a subset of the plurality of filaments at any given time, while remaining filaments are not energized.
C23C 16/48 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
C23C 16/52 - Controlling or regulating the coating process
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
A sputtering chamber has a rotating cylindrical sputtering target inside a vacuum enclosure. An anode is positioned next to the target, having an outer copper pipe, a magnetic core axially located within the copper pipe, and liquid cooling channels formed between the magnetic core and the outer copper pipe. A shield is positioned to block line-of-sight from the plasma to the anode, the shield shaped as a half pipe exposing surface of the copper pipe in a direction away from the plasma.
A sputtering chamber has a rotating cylindrical sputtering target inside a vacuum enclosure. An anode is positioned next to the target, having an outer copper pipe, a magnetic core axially located within the copper pipe, and liquid cooling channels formed between the magnetic core and the outer copper pipe. A shield is positioned to block line-of-sight from the plasma to the anode, the shield shaped as a half pipe exposing surface of the copper pipe in a direction away from the plasma.
H01J 37/04 - Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
C23C 14/35 - Sputtering by application of a magnetic field, e.g. magnetron sputtering
Sputtering system having cylindrical target with sputtering material on exterior surface; magnet arrangement inside the cylindrical target, having first set of magnets arranged on straight row, each having first pole facing interior wall of the target and second pole facing away from the interior wall, second set having plurality of magnets arranged in obround shape around the first set, each magnet having first pole facing away from the interior wall and second pole facing the interior wall; a keeper plate between the first set of magnets and the second set of magnets, such that straight line passing through an axis connecting the first pole and the second pole of a magnet from the second set intercepts the keeper plate prior to reaching the interior wall; and a cover.
A coated article comprising: a transparent substrate and a protective coating comprising: an adhesion layer formed over the substrate; a protective layer formed over the adhesion layer and may have refractive index of from 1.6 to 1.8; and an anti-reflective layer formed over the protective layer, the anti-reflective layer comprises a plurality of sublayers, wherein at least one sublayer has a refractive index higher than index of said protective layer and at least one sublayer has a refractive index lower than the index of said protective layer.
C03C 17/22 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with other inorganic material
C03C 3/085 - Glass compositions containing silica with 40% to 90% silica by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
C03C 3/091 - Glass compositions containing silica with 40% to 90% silica by weight containing boron containing aluminium
C23C 14/00 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
A coated article comprising: a transparent substrate and a protective coating comprising: an adhesion layer formed over the substrate; a protective layer formed over the adhesion layer and may have refractive index of from 1.6 to 1.8; and an anti-reflective layer formed over the protective layer, the anti-reflective layer comprises a plurality of sublayers, wherein at least one sublayer has a refractive index higher than index of said protective layer and at least one sublayer has a refractive index lower than the index of said protective layer.
Method for operating a plasma processing system by setting first process recipes for first station specifying initial gas flow rate, a change point, and a subsequent gas flow rate; setting second process recipes for second station specifying second gas flow rate; setting an initial estimate for gas leakage from the first station into the second station through the transport opening; and calculating a gas flow change for the second station using the initial gas flow rate and the subsequent gas flow rate of the first station, and the initial estimate; executing plasma processing simultaneously in the first station and the second station according to the first process recipe, the second process recipe and the gas flow change.
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
H01J 37/34 - Gas-filled discharge tubes operating with cathodic sputtering
10.
CYLINDRICAL CATHODE AND CHAMBER USING SAME FOR SPUTTERING
Sputtering system having cylindrical target with sputtering material on exterior surface; magnet arrangement inside the cylindrical target, having first set of magnets arranged on straight row, each having first pole facing interior wall of the target and second pole facing away from the interior wall, second set having plurality of magnets arranged in obround shape around the first set, each magnet having first pole facing away from the interior wall and second pole facing the interior wall; a keeper plate between the first set of magnets and the second set of magnets, such that straight line passing through an axis connecting the first pole and the second pole of a magnet from the second set intercepts the keeper plate prior to reaching the interior wall; and a cover.
A plasma chamber for physical vapor deposition, having an anode aperture shield that reduces the field of view to the substrate for deposition particles from the sputtering target. The anode aperture shield limits the deposition particles reaching the substrate to selected maximum angles from the vertical, and rejects particles approaching with a larger angle from the vertical. The node aperture shield is grounded and may be constructed of an upper plate and a lower plate spaced apart from the upper plate, wherein the upper plate may include perforations or may incorporate an electron filter.
An anode for a plasma chamber, having an anode block having a front surface to face a plasma and a rear surface to face away from the plasma; a magnet positioned within the anode block and generating magnetic field lines extending outwardly from the front surface of the anode block; and an electron filter bar spaced apart and extending over the front surface of the anode block and intercepting at least part of the magnetic field lines.
Embodiments of a substrate carrier are described. The substrate carrier includes a carrier tray having a deposition surface and a set of pedestal positions on the deposition surface. In some embodiments, the set comprises an N×M array of pedestal positions with N≥1 and M≥1. Each pedestal position is adapted to receive a corresponding substrate pedestal, and each pedestal has a working surface adapted to receive a substrate. One or more adjusters are positioned in a corresponding pedestal position. The adjuster can adjust a distance between the deposition surface and the working surface, an angular orientation of the working surface relative to the deposition surface, or both.
Embodiments of a substrate carrier are described. The substrate carrier includes a carrier tray having a deposition surface and a set of pedestal positions on the deposition surface. In some embodiments, the set comprises an N x M array of pedestal positions with N ≥ 1 and M ≥ 1. Each pedestal position is adapted to receive a corresponding substrate pedestal, and each pedestal has a working surface adapted to receive a substrate. One or more adjusters are positioned in a corresponding pedestal position. The adjuster can adjust a distance between the deposition surface and the working surface, an angular orientation of the working surface relative to the deposition surface, or both.
C23C 16/458 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
C23C 16/52 - Controlling or regulating the coating process
C23C 14/00 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
C23C 16/44 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
15.
STABLE GROUND ANODE APERTURE FOR THIN FILM PROCESSING
A plasma chamber for physical vapor deposition, having an anode aperture shield that reduces the field of view to the substrate for deposition particles from the sputtering target. The anode aperture shield limits the deposition particles reaching the substrate to selected maximum angles from the vertical, and rejects particles approaching with a larger angle from the vertical. The node aperture shield is grounded and may be constructed of an upper plate and a lower plate spaced apart from the upper plate, wherein the upper plate may include perforations or may incorporate an electron filter.
Method for operating a plasma processing system by setting first process recipes for first station specifying initial gas flow rate, a change point, and a subsequent gas flow rate; setting second process recipes for second station specifying second gas flow rate; setting an initial estimate for gas leakage from the first station into the second station through the transport opening; and calculating a gas flow change for the second station using the initial gas flow rate and the subsequent gas flow rate of the first station, and the initial estimate; executing plasma processing simultaneously in the first station and the second station according to the first process recipe, the second process recipe and the gas flow change.
An anode for a plasma chamber, having an anode block having a front surface to face a plasma and a rear surface to face away from the plasma; a magnet positioned within the anode block and generating magnetic field lines extending outwardly from the front surface of the anode block; and an electron filter bar spaced apart and extending over the front surface of the anode block and intercepting at least part of the magnetic field lines.
A linear processing system having an entry loadlock, a first multi-pass processing chamber coupled to the entry loadlock, the first multi-pass processing chamber having a sputtering magnetron arrangement and configured to house a single substrate carrier for performing a multi-pass processing; a single-pass chamber coupled to the first multi-pass processing chamber and having a plurality of magnetron arrangements arranged along a carrier travel direction, the single-pass chamber configured to house multiple carriers arranged serially in a row and configured for a single-pass processing; a second multi-pass processing chamber coupled to the single-pass processing chamber, the second multi-pass processing chamber having a sputtering magnetron arrangement and configured to house a single substrate carrier for performing a multi-pass processing; and an exit loadlock chamber coupled to the second multi-pass processing chamber.
A linear processing system having an entry loadlock, a first multi-pass processing chamber coupled to the entry loadlock, the first multi-pass processing chamber having a sputtering magnetron arrangement and configured to house a single substrate carrier for performing a multi-pass processing; a single-pass chamber coupled to the first multi-pass processing chamber and having a plurality of magnetron arrangements arranged along a carrier travel direction, the single-pass chamber configured to house multiple carriers arranged serially in a row and configured for a single-pass processing; a second multi-pass processing chamber coupled to the single-pass processing chamber, the second multi-pass processing chamber having a sputtering magnetron arrangement and configured to house a single substrate carrier for performing a multi-pass processing; and an exit loadlock chamber coupled to the second multi-pass processing chamber
C23C 14/56 - Apparatus specially adapted for continuous coatingArrangements for maintaining the vacuum, e.g. vacuum locks
C23C 14/54 - Controlling or regulating the coating process
H01L 21/673 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components using specially adapted carriers
C23C 14/35 - Sputtering by application of a magnetic field, e.g. magnetron sputtering
G11B 5/851 - Coating a support with a magnetic layer by sputtering
C23C 14/06 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
20.
SYSTEM AND METHOD FOR SCRATCH AND SCUFF RESISTANT LOW REFLECTIVITY OPTICAL COATINGS
A system method and protective coating for transparent panels, especially beneficial for transparent panels covering digital displays, made by the system and coating. The protective coating includes an adhesion layer formed on a surface of the transparent panel, a stress grading intermediate layer formed over the adhesion layer, a protective layer formed over the stress grading intermediate layer, and an anti-reflective layer formed over the protective layer. Also provided is a sputtering system for fabricating the protective coating.
A protective coating for transparent panels, especially beneficial for transparent panels covering digital displays. The protective coating includes an adhesion layer formed on a surface of the transparent panel, a stress grading intermediate layer formed over the adhesion layer, a protective layer formed over the stress grading intermediate layer, and an antireflective layer formed over the protective layer. Also provided is a sputtering system for fabricating the protective coating.
A system and method for fabricating protective coating for transparent panels, especially beneficial for transparent panels covering digital displays. The protective coating includes an adhesion layer formed on a surface of the transparent panel, a stress grading intermediate layer formed over the adhesion layer, a protective layer formed over the stress grading intermediate layer, and an anti-reflective layer formed over the protective layer. Also provided is a sputtering system for fabricating the protective coating.
An apparatus has a keeper plate with a keeper plate outer perimeter. An annular magnet array with an annular magnet array outer perimeter is coincident with the keeper plater outer perimeter. An inner top magnet is positioned on a centerline of a first side of the keeper plate and an inner bottom magnet is positioned on the centerline of a second side of the keeper plate. The inner top magnet is of a first magnetic orientation and the annular magnet array and the inner bottom magnet have a second magnetic orientation opposite the first magnetic orientation to form a magnetic field environment that provides plasma confinement of ionizing electrons which causes a gas operative as a reactive gas and sputter gas to become ionized and subsequently be directed to a target cathode while simultaneously causing the ionization of sputtered species which are dispersed across a substrate.
A processing system for forming an optical coating on a substrate is provided, wherein the optical coating including an anti-reflective coating and an oleophobic coating, the system comprising: a linear transport processing section configured for processing and transporting substrate carriers individually and one at a time in a linear direction; at least one evaporation processing system positioned in the linear transport processing system, the evaporation processing system configured to form the oleophobic coating; a batch processing section configured to transport substrate carriers in unison about an axis; at least one ion beam assisted deposition processing chamber positioned in the batch processing section, the ion beam assisted deposition processing chamber configured to deposit layer of the anti-reflective coating; a plurality of substrate carriers for mounting substrates; and, means for transferring the substrate carriers between the linear transport processing section and the batch processing section without exposing the substrate carrier to atmosphere.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
C23C 14/54 - Controlling or regulating the coating process
C23C 14/00 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
B05D 5/06 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
G02B 1/111 - Anti-reflection coatings using layers comprising organic materials
G02B 1/116 - Multilayers including electrically conducting layers
An image sensor has a photocathode window assembly, an anode assembly, and a malleable metal seal. The photocathode window assembly has a photocathode layer. The anode assembly includes a silicon substrate that has an electron sensitive surface. The malleable metal seal bonds the photocathode window assembly and the silicon substrate to each other. A vacuum gap separates the photocathode layer from the electron sensitive surface. A first electrical connection and a second electrical connection are for a voltage bias of the photocathode layer relative to the electron sensitive surface.
A method for forming thin film layer having micro-voids therein. The method proceeds by dispersing micro-particles over the surface of a substrate. The micro particles are made of sublimable material. Then the thin film layer is formed over the surface, so as to cover the particles. The thin film is then etched back so as to expose the particles at least partially. The material of the particles is then sublimed, e.g., by heating the substrate, thereby leaving micro-voids inside the thin film layer. The micro voids can be filled or remain exposed to generate textured surface.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
C23C 14/04 - Coating on selected surface areas, e.g. using masks
H04M 1/02 - Constructional features of telephone sets
A processing system is provided, including a vacuum enclosure having a plurality of process windows and a continuous track positioned therein; a plurality of processing chambers attached sidewalls of the vacuum enclosures, each processing chamber about one of the process windows; a loadlock attached at one end of the vacuum enclosure and having a loading track positioned therein; at least one gate valve separating the loadlock from the vacuum enclosure; a plurality of substrate carriers configured to travel on the continuous track and the loading track; at least one track exchanger positioned within the vacuum enclosure, the track exchangers movable between a first position, wherein substrate carriers are made to continuously move on the continuous track, and a second position wherein the substrate carriers are made to transfer between the continuous track and the loading track.
A processing system is provided, including a vacuum enclosure having a plurality of process windows and a continuous track positioned therein; a plurality of processing chambers attached sidewalls of the vacuum enclosures, each processing chamber about one of the process windows; a loadlock attached at one end of the vacuum enclosure and having a loading track positioned therein; at least one gate valve separating the loadlock from the vacuum enclosure; a plurality of substrate carriers configured to travel on the continuous track and the loading track; at least one track exchanger positioned within the vacuum enclosure, the track exchangers movable between a first position, wherein substrate carriers are made to continuously move on the continuous track, and a second position wherein the substrate carriers are made to transfer between the continuous track and the loading track.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
C23C 14/56 - Apparatus specially adapted for continuous coatingArrangements for maintaining the vacuum, e.g. vacuum locks
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
29.
METHOD TO PRODUCE HIGH DENSITY DIAMOND LIKE CARBON THIN FILMS
A method for forming a diamond-like carbon (DLC) coating on an article is provided, comprising: alternatingly performing a deposition process and an ashing process on the article a determined number of times, wherein during the deposition process the method proceeds by forming on the article a layer of DLC which includes graphitic sp2 carbon and tetrahedral sp3 carbon, and during the ashing process the method proceeds by selectively etching the graphitic sp2 carbon, wherein the determine number of time is configured to result in a designated overall thickness of the DLC coating.
A substrate processing system, including a processing module having at least one sputtering source; a first buffer module positioned on a first side of the processing module; a second buffer module positioned on a second side of the processing module directly opposite the first side; a first cooling module attached to the first buffer module; a second cooling module attached to the second buffer module; a transport system transporting substrate carriers in a straight line through the first cooling module, the first buffer module, the processing module, the second buffer module and the second cooling module; wherein the system is arranged linearly in the order: first cooling module, the first buffer module, the processing module, the second buffer module and the second cooling module.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/203 - Deposition of semiconductor materials on a substrate, e.g. epitaxial growth using physical deposition, e.g. vacuum deposition, sputtering
31.
HYBRID SYSTEM ARCHITECTURE FOR THIN FILM DEPOSITION
A processing system is provided, including a vacuum enclosure having a plurality of process windows and a continuous track positioned therein; a plurality of processing chambers attached sidewalls of the vacuum enclosures, each processing chamber about one of the process windows; a loadlock attached at one end of the vacuum enclosure and having a loading track positioned therein; at least one gate valve separating the loadlock from the vacuum enclosure; a plurality of substrate carriers configured to travel on the continuous track and the loading track; at least one track exchanger positioned within the vacuum enclosure, the track exchangers movable between a first position, wherein substrate carriers are made to continuously move on the continuous track, and a second position wherein the substrate carriers are made to transfer between the continuous track and the loading track.
B25J 9/12 - Programme-controlled manipulators characterised by positioning means for manipulator elements electric
B65G 49/07 - Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
32.
Hybrid system architecture for thin film deposition
A processing system is provided, including a vacuum enclosure having a plurality of process windows and a continuous track positioned therein; a plurality of processing chambers attached sidewalls of the vacuum enclosures, each processing chamber about one of the process windows; a loadlock attached at one end of the vacuum enclosure and having a loading track positioned therein; at least one gate valve separating the loadlock from the vacuum enclosure; a plurality of substrate carriers configured to travel on the continuous track and the loading track; at least one track exchanger positioned within the vacuum enclosure, the track exchangers movable between a first position, wherein substrate carriers are made to continuously move on the continuous track, and a second position wherein the substrate carriers are made to transfer between the continuous track and the loading track.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
C23C 14/35 - Sputtering by application of a magnetic field, e.g. magnetron sputtering
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
C23C 14/56 - Apparatus specially adapted for continuous coatingArrangements for maintaining the vacuum, e.g. vacuum locks
A multi-color dielectric coating is formed using interleaved layers of dielectric material, having alternating refractive index, to create reflections at selected wavelengths, thus appearing as different colors. Etching of selected layers at selected locations changes the color appearance of the etched locations, thus generating a coating having multiple colors. The thicknesses of the layers are chosen such that the path-length differences for reflections from different high-index layers are integer multiples of the wavelength for which the coating is designed.
A multi-color dielectric coating is formed using interleaved layers of dielectric material, having alternating refractive index, to create reflections at selected wavelengths, thus appearing as different colors. Etching of selected layers at selected locations changes the color appearance of the etched locations, thus generating a coating having multiple colors. The thicknesses of the layers are chosen such that the path-length differences for reflections from different high-index layers are integer multiples of the wavelength for which the coating is designed.
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G09F 9/00 - Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
09 - Scientific and electric apparatus and instruments
Goods & Services
Protective and decorative chemically coated glass display panel covers and display screen protectors adapted for use with electronic devices in the nature of mobile phones
36.
Multifocal magnetron design for physical vapor deposition processing on a single cathode
An apparatus has a cathode target with a cathode target outer perimeter. An inner magnet array with an inner magnet array inner perimeter is within the cathode target outer perimeter. The inner magnet array includes an inner magnet array base portion and an inner magnet array upper portion. A keeper plate assembly is connected to the inner magnet array upper portion and isolates the inner magnet array upper portion from the inner magnet array base portion. An outer magnet array is connected to a bottom surface of the keeper plate. The outer magnet array has an outer magnet array outer perimeter larger than the inner magnet array inner perimeter. The inner magnet array upper portion has a first magnetic orientation and the outer magnet array and the inner magnet array base portion have a second magnetic orientation opposite the first magnetic orientation.
A novel photocathode employing a conduction band barrier is described. Incorporation of a barrier optimizes a trade-off between photoelectron transport efficiency and photoelectron escape probability. The barrier energy is designed to achieve a net increase in photocathode sensitivity over a specific operational temperature range.
H01J 31/48 - Tubes with amplification of output effected by electron-multiplier arrangements within the vacuum space
H01J 31/49 - Pick-up tubes adapted for an input of electromagnetic radiation other than visible light and having an electric output, e.g. for an input of X-rays, for an input of infrared radiation
A processing system for forming an optical coating on a substrate is provided, wherein the optical coating including an anti-reflective coating and an oleophobic coating, the system comprising: a linear transport processing section configured for processing and transporting substrate carriers individually and one at a time in a linear direction; at least one evaporation processing system positioned in the linear transport processing system, the evaporation processing system configured to form the oleophobic coating; a batch processing section configured to transport substrate carriers in unison about an axis; at least one ion beam assisted deposition processing chamber positioned in the batch processing section, the ion beam assisted deposition processing chamber configured to deposit layer of the anti-reflective coating; a plurality of substrate carriers for mounting substrates; and, means for transferring the substrate carriers between the linear transport processing section and the batch processing section without exposing the substrate carrier to atmosphere.
A system for transporting substrates and precisely align the substrates horizontally and vertically. The system decouples the functions of transporting the substrates, vertically aligning the substrates, and horizontally aligning the substrates. The transport system includes a carriage upon which plurality of chuck assemblies are loosely positioned, each of the chuck assemblies includes a base having vertical alignment wheels to place the substrate in precise vertical alignment. A pedestal is configured to freely slide on the base. The pedestal includes a set of horizontal alignment wheels that precisely align the pedestal in the horizontal direction. An electrostatic chuck is magnetically held to the pedestal.
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
A system for transporting substrates and precisely alignment the substrates to shadow masks. The system decouples the functions of transporting the substrates, vertically aligning the substrates, and horizontally aligning the substrates. The transport system includes a carriage upon which plurality of pedestals are loosely positioned, each of the pedestals includes a base having vertical alignment wheels to place the substrate in precise vertical alignment. Two sidebars are configured to freely slide on the base. Each of the sidebars includes a set of horizontal alignment wheels that precisely align the substrate in the horizontal direction. Substrate support claws are attached to the sidebars in precise alignment to the vertical alignment wheels and the horizontal alignment wheels.
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
A processing system for forming an optical coating on a substrate is provided, wherein the optical coating including an anti-reflective coating and an oleophobic coating, the system comprising: a linear transport processing section configured for processing and transporting substrate carriers individually and one at a time in a linear direction; at least one evaporation processing system positioned in the linear transport processing system, the evaporation processing system configured to form the oleophobic coating; a batch processing section configured to transport substrate carriers in unison about an axis; at least one ion beam assisted deposition processing chamber positioned in the batch processing section, the ion beam assisted deposition processing chamber configured to deposit layer of the anti-reflective coating; a plurality of substrate carriers for mounting substrates; and, means for transferring the substrate carriers between the linear transport processing section and the batch processing section without exposing the substrate carrier to atmosphere.
C23C 14/54 - Controlling or regulating the coating process
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
B05D 5/06 - Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
B32B 17/10 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance of synthetic resin
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
G02B 1/111 - Anti-reflection coatings using layers comprising organic materials
G02B 1/116 - Multilayers including electrically conducting layers
42.
Optical coating having nano-laminate for improved durability
An optical coating, such as anti-reflective coating (ARC) or colored coating for optical devices, suitable especially for mobile devices. The ARC is made up of alternating layers of low refractive index and high refractive index. At least one of the layers, preferably the top layer, is made up of nano-laminate. The nano-laminate is a structure of alternating nano-layers, each nano-layer made out of a material having refractive index similar to the layer it replaces. Optionally, each of the layers are made up of nano-laminates, such that a layer having low refractive index is made up of nano-laminates of nano-layers having low refractive index, while high index layers are made up of nano-lamonate of nano-layers having high refractive index. Each of the nano-layers is of 2-10 nanometer thickness.
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
C03C 17/42 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
B82Y 20/00 - Nanooptics, e.g. quantum optics or photonic crystals
43.
OPTICAL COATING HAVING NANO-LAMINATE FOR IMPROVED DURABILITY
An optical coating, such as anti-reflective coating (ARC) or colored coating for optical devices, suitable especially for mobile devices. The ARC is made up of alternating layers of low refractive index and high refractive index. At least one of the layers, preferably the top layer, is made up of nano-laminate. The nano-laminate is a structure of alternating nano-layers, each nano-layer made out of a material having refractive index similar to the layer it replaces. Optionally, each of the layers are made up of nano-laminates, such that a layer having low refractive index is made up of nano-laminates of nano-layers having low refractive index, while high index layers are made up of nano-lamonate of nano-layers having high refractive index. Each of the nano-layers is of 2-10 nanometer thickness.
G02B 1/14 - Protective coatings, e.g. hard coatings
G02B 1/18 - Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
C03C 17/34 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
Sputtering machines for the application of thin film depositions to glass, plastic and other material substrates for use in the manufacture of touch screens and touch panels; thin film deposition machines for processing glass, plastic and other material substrates for use in the manufacture of touch screens and touch panels; enhanced plasma deposition machines for processing glass, plastic and other material substrates for use in the manufacture of touch screens and touch panels; vacuum plasma chambers for surface processing of glass, plastic and other material substrates; replacement parts for all of the aforesaid goods
An optical arrangement for a head mounted display, having optical surface that can be described by standard mathematical equations. A prism element is used having three optical surfaces, and wherein the reference surface of the three optical surfaces are centered at, and have no tilt, relative to the optical axis. The prism has first surface that faces the display device and comprises a high order polynomial surface with a reference plane orthogonal to the optical axis. All of the surfaces of the prism are described by extended polynomials defined on a Cartesian coordinates having the z-axis coinciding with the optical axis.
Disclosed is a substrate processing system which enables combined static and pass-by processing. Also, a system architecture is provided, which reduces footprint size. The system is constructed such that the substrates are processed therein vertically, and each chamber has a processing source attached to one sidewall thereof, wherein the other sidewall backs to a complementary processing chamber. The chamber system can be milled from a single block of metal, e.g., aluminum, wherein the block is milled from both sides, such that a wall remains and separates each two complementary processing chambers.
A system for fan out chip encapsulation processing is provided, wherein a plurality of microchips are encapsulated in molding compound, the system comprising: an atmospheric loading camber, configured to load substrates onto carriers in atmospheric environment; an entry loadlock arrangement configured to introduce the carriers into vacuum environment of the system; a degas chamber positioned downstream of the loadlock arrangement within the vacuum environment, the degas chamber comprising a heating element and a pumping arrangement to remove gases emitted from the molding compound; an etch chamber positioned downstream of the degas chamber and within the vacuum environment, the etch chamber comprising an ion beam generator and an ion neutralizer; a metal sputtering chamber positioned downstream of the etch chamber and inside the vacuum environment; and, an exit loadlock arrangement configured to remove carriers from the vacuum environment.
C23C 14/22 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
C23C 16/46 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/78 - Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
A system for fan out chip encapsulation processing is provided, wherein a plurality of microchips are encapsulated in molding compound, the system comprising: an atmospheric loading camber, configured to load substrates onto carriers in atmospheric environment; an entry loadlock arrangement configured to introduce the carriers into vacuum environment of the system; a degas chamber positioned downstream of the loadlock arrangement within the vacuum environment, the degas chamber comprising a heating element and a pumping arrangement to remove gases emitted from the molding compound; an etch chamber positioned downstream of the degas chamber and within the vacuum environment, the etch chamber comprising an ion beam generator and an ion neutralizer; a metal sputtering chamber positioned downstream of the etch chamber and inside the vacuum environment; and, an exit loadlock arrangement configured to remove carriers from the vacuum environment.
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/673 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components using specially adapted carriers
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
H01L 21/768 - Applying interconnections to be used for carrying current between separate components within a device
H01L 21/56 - Encapsulations, e.g. encapsulating layers, coatings
Dynamic range of a photosensor is controlled dynamically improving image detail especially in dark and bright areas of the image. At least one reset threshold and one reset value are set. At the end of the frame integration the value of the average pixel and the value of the brightest pixel that was not reset are determined and, based on that, at least one of the reset threshold and the reset value are changed. The change may reduce/increase the reset threshold such that more/less pixels are being reset, may reduce/increase the reset value thereby causing the pixels to be reset to a lower/higher value, or change the timing of the reset. In some embodiments, a calculated value for the reset threshold and the reset value are averaged with calculated values of prior N frames, and the result is applied to the next frame.
H04N 5/30 - Transforming light or analogous information into electric information
H04N 5/363 - Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise
H04N 5/341 - Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled
H04N 5/3745 - Addressed sensors, e.g. MOS or CMOS sensors having additional components embedded within a pixel or connected to a group of pixels within a sensor matrix, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
H04N 3/14 - Scanning details of television systemsCombination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
H04N 5/372 - Charge-coupled device [CCD] sensors; Time delay and integration [TDI] registers or shift registers specially adapted for SSIS
H04N 5/953 - Time-base error compensation by using an analogue memory, e.g. a CCD-shift register, the delay of which is controlled by a voltage controlled oscillator
H04N 9/893 - Time-base error compensation using an analogue memory, e.g. a CCD-shift register, the delay of which is controlled by a voltage controlled oscillator
G06T 5/40 - Image enhancement or restoration using histogram techniques
A compact, lightweight, multi-wavelength display system which can be used for simultaneous viewing with both eyes is provided. The system utilizes a field flattener lens to remove abrasions introduced by the system's lenses. The system also uses a polarization selective optical element that reflects one linear polarization state while transmitting radiation of the orthogonal linear polarization state. The PS element is used in combination with a quarter wave plate and an optical element, the optical element including a partially reflective surface. The optical element may either be a single element or an optical doublet. In the latter configuration, the partially reflective surface is at the interface between the two singlets that comprise the doublet. The system also includes an image source that either alone, or in combination with other optical elements, produces circularly polarized light of the desired rotary sense.
The use of non-mass analyzed ion implanter is advantageous in such application as it generates ion implanting at different depth depending on the ions energy and mass. This allows for gaining advantage from lubricity offered as a result of the very light deposition on the surface, and at the same time the hardness provided by the intercalated ions implanted below it, providing benefits for cover glass, low E enhancement, and other similar materials. In further aspects, ion implantation is used to create other desirable film properties such anti-microbial and corrosion resistance.
C23C 14/06 - Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
C03C 17/36 - Surface treatment of glass, e.g. of devitrified glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
C03C 17/245 - Oxides by deposition from the vapour phase
53.
SMUDGE, SCRATCH AND WEAR RESISTANT GLASS VIA ION IMPLANTATION
Mechanical properties of a cover glass for a touch screen are improved by ion implanting the front surface. The implant process uses non-mass analyzed ions that physically embed in voids between inter-connected molecules of the glass. The embedded ions create compression stress on the molecular structure, thus enhancing the mechanical properties of the glass to avoid scratches. Also, implanting ions containing fluoride enhances the hydrophobic and oleophobis properties of the glass to prevent finger prints.
A magnetic media disk is fabricated by depositing magnetic layers over the disk, then depositing protective later over the magnetic layer, and then performing ion implant process to implant ions into the protective coating. A system for performing the ion implant of the magnetic media disk includes two ion implant chambers. During operation one chamber performs ion implant and one chamber performs chamber cleaning by maintaining inside a plasma of cleaning gas without a disk present inside the chamber.
G11B 7/24 - Record carriers characterised by shape, structure or physical properties, or by the selection of the material
G11B 7/254 - Record carriers characterised by the selection of the material of layers other than recording layers of protective topcoat layers
G11B 5/716 - Record carriers characterised by the selection of the material comprising one or more layers of magnetisable particles homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers
C09K 3/18 - Materials not provided for elsewhere for application to surface to minimize adherence of ice, mist or water theretoThawing or antifreeze materials for application to surfaces
A chuck for wafer processing that counters the deleterious effects of thermal expansion of the wafer. Also, a combination of chuck and shadow mask arrangement that maintains relative alignment between openings in the mask and the wafer in spite of thermal expansion of the wafer. A method for fabricating a solar cell by ion implant, while maintaining relative alignment of the implanted features during thermal expansion of the wafer.
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
H01L 21/66 - Testing or measuring during manufacture or treatment
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
A chuck for wafer processing that counters the deleterious effects of thermal expansion of the wafer. Also, a combination of chuck and shadow mask arrangement that maintains relative alignment between openings in the mask and the wafer in spite of thermal expansion of the wafer. A method for fabricating a solar cell by ion implant, while maintaining relative alignment of the implanted features during thermal expansion of the wafer.
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
57.
Method to produce highly transparent hydrogenated carbon protective coating for transparent substrates
A physical vapor deposition (PVD) chamber for depositing a transparent and clear hydrogenated carbon, e.g., hydrogenated diamond-like carbon, film. A chamber body is configured for maintaining vacuum condition therein, the chamber body having an aperture on its sidewall. A plasma cage having an orifice is attached to the sidewall, such that the orifice overlaps the aperture. Two sputtering targets are situated on cathodes inside the plasma cage and are oriented opposite each other and configured to sustain plasma there-between and confined inside the plasma cage. The plasma inside the cage sputters material from the targets, which then passes through the orifice and aperture and lands on the substrate. The substrate is moved continuously in a pass-by fashion during the process.
A system for processing wafers in a vacuum processing chamber. Carrier comprising a frame having a plurality of openings, each opening configured to accommodate one wafer. A transport mechanism configured to transport the plurality of carriers throughout the system. A plurality of wafer plates configured for supporting wafers. An attachment mechanism for attaching a plurality of wafer plates to each of the carriers, wherein each of the wafer plates is attached to a corresponding position at an underside of a corresponding carrier, such that each of the wafers positioned on one of the wafer carriers is positioned within one of the plurality of opening in the carrier. Mask attached over front side of one of the plurality of opening in the carrier. Alignment stage supports wafer plate under the opening in the carrier. A camera positioned to simultaneously image the mask and the wafer.
B65G 49/07 - Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers
G01B 11/14 - Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
G03F 9/02 - Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically combined with means for automatic focusing
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
59.
IMAGE INTENSIFIER WITH INDEXED COMPLIANT ANODE ASSEMBLY
An image intensifier contains a photocathode assembly (120) including a vacuum window to generate photoelectrons in response to light, a vacuum package (110) and an anode assembly (130) to receive the photoelectrons. The anode assembly is mounted to the vacuum package via a compliant, springy, support structure (160). The anode additionally includes one or more insulating spacers (140) on the surface facing the photocathode so as to precisely index the position of the anode assembly with respect to the photocathode surface. The photocathode and vacuum window assembly is pressed into the vacuum package to generate a sealed leak tight vacuum envelope. During the photocathode assembly to vacuum package assembly pressing operation, the inner surface of the photocathode assembly contacts the insulating spacer/spacers of the anode assembly, thereby compressing the compliant support structure. This structure and assembly method result in a precisely indexed photocathode to anode assembly sealed image intensifier.
A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
H01L 21/425 - Bombardment with radiation with high-energy radiation producing ion implantation
C23C 16/00 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
H01L 31/05 - Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
H01L 21/266 - Bombardment with wave or particle radiation with high-energy radiation producing ion implantation using masks
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
H01L 21/426 - Bombardment with radiation with high-energy radiation producing ion implantation using masks
An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.
H01L 21/223 - Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regionsRedistribution of impurity materials, e.g. without introduction or removal of further dopant using diffusion into, or out of, a solid from or into a gaseous phase
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
Machines for depositing thin films on a variety of substrates made of different materials, namely, glass, stainless steel or silicon, all for use in the thin film industry
System and method to align a substrate under a shadow mask. A substrate holder has alignment mechanism, such as rollers, that is made to abut against an alignment straight edge. The substrate is then aligned with respect to the straight edge and is chucked to the substrate holder. The substrate holder is then transported into a vacuum processing chamber, wherein it is made to abut against a mask straight edge to which the shadow mask is attached and aligned to. Since the substrate was aligned to an alignment straight edge, and since the mask is aligned to the mask straight edge that is precisely aligned to the alignment straight edge, the substrate is perfectly aligned to the mask.
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
64.
COATING FOR GLASS WITH IMPROVED SCRATCH/WEAR RESISTANCE AND OLEOPHOBIC PROPERTIES
A protective coating on a front surface of a glass, by forming a diamond-like coating over the front surface of the glass; performing passive sputtering to form a protective layer directly on the diamond-like coating; performing reactive sputtering to form an adhesion layer directly on the protective layer; forming an anti-finger print layer directly over the adhesion layer.
B32B 17/06 - Layered products essentially comprising sheet glass, or fibres of glass, slag or the like comprising glass as the main or only constituent of a layer, next to another layer of a specific substance
System and method to align a substrate under a shadow mask. A substrate holder has alignment mechanism, such as rollers, that is made to abut against an alignment straight edge. The substrate is then aligned with respect to the straight edge and is chucked to the substrate holder. The substrate holder is then transported into a vacuum processing chamber, wherein it is made to abut against a mask straight edge to which the shadow mask is attached and aligned to. Since the substrate was aligned to an alignment straight edge, and since the mask is aligned to the mask straight edge that is precisely aligned to the alignment straight edge, the substrate is perfectly aligned to the mask.
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
66.
SPUTTERING SYSTEM AND METHOD USING DIRECTION-DEPENDENT SCAN SPEED OR POWER
A sputtering system having a processing chamber with an inlet port and an outlet port, and a sputtering target positioned on a wall of the processing chamber. A movable magnet arrangement is positioned behind the sputtering target and reciprocally slides behind the target. A conveyor continuously transports substrates at a constant speed past the sputtering target, such that at any given time, several substrates face the target between the leading edge and the trailing edge. The movable magnet arrangement slides at a speed that is at least several times faster than the constant speed of the conveyor. A rotating zone is defined behind the leading edge and trailing edge of the target, wherein the magnet arrangement decelerates when it enters the rotating zone and accelerates as it reverses direction of sliding within the rotating zone. Magnet power and/or speed varies as function of direction of magnet travel.
A system for depositing material from a target onto substrates, comprising a processing chamber; a sputtering target having length L and having highly magnetic sputtering material provided on front surface thereof; a magnet assembly operable to reciprocally scan across the length L in close proximity to rear surface of the target; and the magnet assembly comprises: a back plate made of magnetic material; a first group of magnets arranged in a single line central to the back plate and having a first pole positioned to face the rear surface of the target; and, a second group of magnets provided around periphery of the back plate so as to surround the first group of magnets, the second group of magnets having a second pole, opposite the first pole, positioned to face the rear surface of the target.
A system for processing substrates in plasma chambers, such that all substrates transport and loading/unloading operations are performed in atmospheric environment, but processing is performed in vacuum environment. The substrates are transported throughout the system on carriers. The system's chambers are arranged linearly, such that carriers move from one chamber directly to the next. A conveyor, placed above or below the system's chambers, returns the carriers to the system's entry area after processing is completed. The carriers are configured for supporting substrates of different sizes. The carriers are also configured for flipping the substrates such that both surfaces of the substrates may be processed.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
A system for depositing material from a target onto substrates, comprising a processing chamber; a sputtering target having length L and having sputtering material provided on front surface thereof; a magnet operable to reciprocally scan across the length L in close proximity to rear surface of the target; and a counterweight operable to reciprocally scan at same speed but opposite direction of the magnet.
A deposition system is provided, where conductive targets of similar composition are situated opposing each other. The system is aligned parallel with a substrate, which is located outside the resulting plasma that is largely confined between the two cathodes. A "plasma cage" is formed wherein the carbon atoms collide with accelerating electrons and get highly ionized. The electrons are trapped inside the plasma cage, while the ionized carbon atoms are deposited on the surface of the substrate. Since the electrons are confined to the plasma cage, no substrate damage or heating occurs. Additionally, argon atoms, which are used to ignite and sustain the plasma and to sputter carbon atoms from the target, do not reach the substrate, so as to avoid damaging the substrate.
C23C 14/35 - Sputtering by application of a magnetic field, e.g. magnetron sputtering
C23C 8/00 - Solid state diffusion of only non-metal elements into metallic material surfacesChemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.
H01L 21/223 - Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regionsRedistribution of impurity materials, e.g. without introduction or removal of further dopant using diffusion into, or out of, a solid from or into a gaseous phase
H01J 37/317 - Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. ion implantation
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
Disclosed is a substrate processing system with a magnetic conduit configuration to improve the movement of a substrate carrier within the system. The configuration specifically provides for safe, secure movement of a carrier between multiple levels of a substrate processing system by using magnetic conduits to redirect magnetic forces created by a linear motor, permitting the linear motor to be positioned outside of the system and in a location that will not interfere with the movement of the carrier.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
G11B 5/84 - Processes or apparatus specially adapted for manufacturing record carriers
H01L 21/673 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components using specially adapted carriers
73.
SOLAR CELLS HAVING GRADED DOPED REGIONS AND METHODS OF MAKING SOLAR CELLS HAVING GRADED DOPED REGIONS
A photovoltaic cell having a graded doped region such as a graded emitter and methods of making photovoltaic cells having graded doped regions such as a graded emitter are disclosed. Doping is adjusted across a surface to minimize resistive (I2R) power losses. The graded emitters provide a gradual change in sheet resistance over the entire distance between the lines. The graded emitter profile may have a lower sheet resistance near the metal lines and a higher sheet resistance farther from the metal line edges. The sheet resistance is graded such that the sheet resistance is lower where I2R power losses are highest due to current crowding. One advantage of graded emitters over selective emitters is improved efficiency. An additional advantage of graded emitters over selective emitters is improved ease of aligning metallization to the low sheet resistance regions.
A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
H01L 21/425 - Bombardment with radiation with high-energy radiation producing ion implantation
C23C 16/00 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
H01L 21/266 - Bombardment with wave or particle radiation with high-energy radiation producing ion implantation using masks
H01L 31/068 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 21/426 - Bombardment with radiation with high-energy radiation producing ion implantation using masks
A physical vapor deposition (PVD) chamber for depositing a transparent and clear hydrogenated carbon, e.g., hydrogenated diamond-like carbon, film. A chamber body is configured for maintaining vacuum condition therein, the chamber body having an aperture on its sidewall. A plasma cage having an orifice is attached to the sidewall, such that the orifice overlaps the aperture. Two sputtering targets are situated on cathodes inside the plasma cage and are oriented opposite each other and configured to sustain plasma there-between and confined inside the plasma cage. The plasma inside the cage sputters material from the targets, which then passes through the orifice and aperture and lands on the substrate. The substrate is moved continuously in a pass-by fashion during the process.
A system for processing substrates in plasma chambers, such that all substrates transport and loading/unloading operations are performed in atmospheric environment, but processing is performed in vacuum environment. The substrates are transported throughout the system on carriers. The system's chambers are arranged linearly, such that carriers move from one chamber directly to the next. A conveyor, placed above or below the system's chambers, returns the carriers to the system's entry area after processing is completed. Loading and unloading of substrates may be performed at one side of the system, or loading can be done at the entry side and unloading at the exit side.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
78.
Narrow source for physical vapor deposition processing
A narrow sputtering source and target which are designed to be installed in a series on a sputtering chamber. Each of the narrow sputtering source has length sufficient to traverse one direction of the sputtering zone, but is much narrower than the orthogonal direction of the sputtering zone. When the sputtering chamber performs a pass-by sputtering process, each of the narrow sputtering sources is sufficiently long to traverse the sputtering zone in the direction orthogonal to the substrate travel direction, but is much narrower than the sputtering zone in the direction of substrate travel. Several narrow sputtering sources are installed so as to traverse the entire sputtering zone in all directions.
A system for processing substrates in plasma chambers, such that all substrates transport and loading/unloading operations are performed in atmospheric environment, but processing is performed in vacuum environment. The substrates are transported throughout the system on carriers. The system's chambers are arranged linearly, such that carriers move from one chamber directly to the next. A conveyor, placed above or below the system's chambers, returns the carriers to the system's entry area after processing is completed. Loading and unloading of substrates may be performed at one side of the system, or loading can be done at the entry side and unloading at the exit side.
B05D 3/00 - Pretreatment of surfaces to which liquids or other fluent materials are to be appliedAfter-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
80.
NARROW SOURCE FOR PHYSICAL VAPOR DEPOSITION PROCESSING
A narrow sputtering source and target which are designed to be installed in a series on a sputtering chamber. Each of the narrow sputtering source has length sufficient to traverse one direction of the sputtering zone, but is much narrower than the orthogonal direction of the sputtering zone. When the sputtering chamber performs a pass-by sputtering process, each of the narrow sputtering sources is sufficiently long to traverse the sputtering zone in the direction orthogonal to the substrate travel direction, but is much narrower than the sputtering zone in the direction of substrate travel. Several narrow sputtering sources are installed so as to traverse the entire sputtering zone in all directions.
An arrangement for supporting substrates during processing, having a wafer carrier with a susceptor for supporting the substrate and confining the substrate to predetermined position. An inner mask is configured for placing on top of the substrate, the inner mask having an opening pattern to mask unprocessed parts of the substrate, but expose remaining parts of the substrate for processing. An outer mask is configured for placing on top of the inner mask, the outer mask having an opening that exposes the part of the inner mask having the opening pattern, but cover the periphery of the inner mask.
C23C 16/04 - Coating on selected surface areas, e.g. using masks
C23C 16/458 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
H01L 21/673 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components using specially adapted carriers
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
An arrangement for supporting substrates during processing, having a wafer carrier with a susceptor for supporting the substrate and confining the substrate to predetermined position. An inner mask is configured for placing on top of the substrate, the inner mask having an opening pattern to mask unprocessed parts of the substrate, but expose remaining parts of the substrate for processing. An outer mask is configured for placing on top of the inner mask, the outer mask having an opening that exposes the part of the inner mask having the opening pattern, but cover the periphery of the inner mask.
A sputtering system having a processing chamber with an inlet port and an outlet port, and a sputtering target positioned on a wall of the processing chamber. A movable magnet arrangement is positioned behind the sputtering target and reciprocally slides behinds the target. A conveyor continuously transports substrates at a constant speed past the sputtering target, such that at any given time, several substrates face the target between the leading edge and the trailing edge. The movable magnet arrangement slides at a speed that is at least several times faster than the constant speed of the conveyor. A rotating zone is defined behind the leading edge and trailing edge of the target, wherein the magnet arrangement decelerates when it enters the rotating zone and accelerates as it reverses direction of sliding within the rotating zone.
Disclosed is a substrate processing system which enables combined static and pass-by processing. Also, a system architecture is provided, which reduces footprint size. The system is constructed such that the substrates are processed therein vertically, and each chamber has a processing source attached to one sidewall thereof, wherein the other sidewall backs to a complementary processing chamber. The chamber system can be milled from a single block of metal, e.g., aluminum, wherein the block is milled from both sides, such that a wall remains and separates each two complementary processing chambers.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
85.
System architecture for combined static and pass-by processing
Disclosed is a substrate processing system which enables combined static and pass-by processing. Also, a system architecture is provided, which reduces footprint size. The system is constructed such that the substrates are processed therein vertically, and each chamber has a processing source attached to one sidewall thereof, wherein the other sidewall backs to a complementary processing chamber. The chamber system can be milled from a single block of metal, e.g., aluminum, wherein the block is milled from both sides, such that a wall remains and separates each two complementary processing chambers.
A system for transporting substrates from an atmospheric pressure to high vacuum pressure and comprising: a rough vacuum chamber having an entry valve and an exit opening; a high vacuum chamber having an entry opening, the high vacuum chamber coupled to the rough vacuum chamber such that the exit opening and the entry opening are aligned; a valve situated between the exit opening and the entry opening; a first conveyor belt provided in the rough vacuum chamber; a second conveyor provided in the high vacuum chamber; a sensing element provided in the high vacuum chamber to enable detection of broken substrates on the second conveyor; and, a mechanism provided on the second conveyor belt enabling dumping of broken substrates onto the bottom of the high vacuum chamber.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/67 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components
A system for transporting substrates from an atmospheric pressure to high vacuum pressure and comprising: a rough vacuum chamber having an entry valve and an exit opening; a high vacuum chamber having an entry opening, the high vacuum chamber coupled to the rough vacuum chamber such that the exit opening and the entry opening are aligned; a valve situated between the exit opening and the entry opening; a first conveyor belt provided in the rough vacuum chamber; a second conveyor provided in the high vacuum chamber; a sensing element provided in the high vacuum chamber to enable detection of broken substrates on the second conveyor; and, a mechanism provided on the second conveyor belt enabling dumping of broken substrates onto the bottom of the high vacuum chamber.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
A system for processing substrates has a vacuum enclosure and a processing chamber situated to process wafers in a processing zone inside the vacuum enclosure. Two rail assemblies are provided, one on each side of the processing zone. Two chuck arrays ride, each on one of the rail assemblies, such that each is cantilevered on one rail assemblies and support a plurality of chucks. The rail assemblies are coupled to an elevation mechanism that places the rails in upper position for processing and at lower position for returning the chuck assemblies for loading new wafers. A pickup head assembly loads wafers from a conveyor onto the chuck assemblies. The pickup head has plurality of electrostatic chucks that pick up the wafers from the front side of the wafers.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
An electrostatic chuck is disclosed, which is especially suitable for fabrication of substrates at high throughput. The disclosed chuck may be used for fabricating large substrates or several smaller substrates simultaneously. For example, disclosed embodiments can be used for fabrication of multiple solar cells simultaneously, providing high throughput. An electrostatic chuck body is constructed using aluminum body having sufficient thermal mass to control temperature rise of the chuck, and anodizing the top surface of the body. A ceramic frame is provided around the chuck's body to protect it from plasma corrosion. If needed, conductive contacts are provided to apply voltage bias to the wafer. The contacts are exposed through the anodization.
A system for plasma processing of wafers at high throughput, particularly suitable for processing solar cells. A loading station has a loading conveyor, a loading transport mechanism, and a chuck loading station accepting transportable electrostatic chucks, wherein the loading transport mechanism is configured to remove wafers from the conveyor and place them on the transportable electrostatic chucks. The transportable chuck is delivered to at least one processing chamber to perform plasma processing of wafers. An unloading station has an unloading conveyor, an unloading transport mechanism, and a chuck unloading station accepting the transportable electrostatic chucks from the processing chamber, wherein the unloading transport mechanism is configured to remove wafers from the transportable electrostatic chucks and place them on the conveyor. A chuck return module configured for transporting the transportable electrostatic chucks from the chuck unloading station to the chuck loading station.
H01L 21/687 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
A system for processing substrates has a vacuum enclosure and a processing chamber situated to process wafers in a processing zone inside the vacuum enclosure. Two rail assemblies are provided, one on each side of the processing zone. Two chuck arrays ride, each on one of the rail assemblies, such that each is cantilevered on one rail assemblies and support a plurality of chucks. The rail assemblies are coupled to an elevation mechanism that places the rails in upper position for processing and at lower position for returning the chuck assemblies for loading new wafers. A pickup head assembly loads wafers from a conveyor onto the chuck assemblies. The pickup head has plurality of electrostatic chucks that pick up the wafers from the front side of the wafers. Cooling channels in the processing chucks are used to create air cushion to assist in aligning the wafers when delivered by the pickup head.
H01L 21/677 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for conveying, e.g. between different work stations
H01L 21/265 - Bombardment with wave or particle radiation with high-energy radiation producing ion implantation
H01L 21/68 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for positioning, orientation or alignment
H01L 31/18 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
H01L 21/683 - Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereofApparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components for supporting or gripping
92.
BACKSIDE-THINNED IMAGE SENSOR USING A12O3 SURFACE PASSIVATION
A structure and method of manufacture is disclosed for a backside thinned imager that incorporates a conformal, A12O3, low thermal budget, surface passivation. This passivation approach facilitates fabrication of backside thinned, backside illuminated, silicon image sensors with thick silicon absorber layer patterned with vertical trenches that are formed by etching the exposed back surface of a backside-thinned image sensor to control photo-carrier diffusion and optical crosstalk. A method of manufacture employing conformal, A12O3, surface passivation approach is shown to provide high quantum efficiency and low dark current while meeting the thermal budget constraints of a finished standard foundry-produced CMOS imager.
A plasma processing chamber having capacitive and inductive coupling of RF power. An RF power source is connected to an inductive coil and to a top electrode via a variable capacitor to control the ratio of power applied to the coil and electrode. The bottom electrode, which is part of the chuck holding the substrates, is floating, but has parasitive capacitance coupling to ground. No RF bias is applied to the chuck and/or the substrate, but the substrate is chucked using DC power. In a system utilizing the chamber, the chuck is movable and is loaded with substrates outside the chamber, enter the chamber from one side for processing, exit the chamber from an opposite side after the processing, and is unloaded in an unloading chamber. The chuck is then transported back to the loading chamber. Substrates are delivered to and removed from the system using conveyor belts.
A plasma processing chamber having capacitive and inductive coupling of RF power. An RF power source is connected to an inductive coil and to a top electrode via a variable capacitor to control the ratio of power applied to the coil and electrode. The bottom electrode, which is part of the chuck holding the substrates, is floating, but has parasitive capacitance coupling to ground. No RF bias is applied to the chuck and/or the substrate, but the substrate is chucked using DC power. In a system utilizing the chamber, the chuck is movable and is loaded with substrates outside the chamber, enter the chamber from one side for processing, exit the chamber from an opposite side after the processing, and is unloaded in an unloading chamber. The chuck is then transported back to the loading chamber. Substrates are delivered to and removed from the system using conveyor belts.
C23C 16/00 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
C23F 1/00 - Etching metallic material by chemical means
H01J 7/24 - Cooling arrangementsHeating arrangementsMeans for circulating gas or vapour within the discharge space
H05B 31/26 - Influencing the shape of arc discharge by gas blowing devices
A photovoltaic module having non-contacting bus bars and methods of making non-contacting bus bars are disclosed. The fingers are screen printed on the substrate using a paste. The bus bar(s) can be formed over the fingers using a number of techniques that do not dissolve through the passivation layer of the substrate. The bus bar(s) can be screen printed over the fingers using a second paste that is more viscous and/or conductive than the first paste. The bus bar(s) can be a conductive trace that is deposited over the fingers. The bus bar(s) can be a metal wire coated with solder or paste that is positioned on the fingers. Metal plating techniques may also be used to thicken the fingers and/or bus bars. One or more doping steps may be used to form selective emitters under the fingers and bus bar.
H01R 43/00 - Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
96.
METHOD AND APPARATUS FOR MASKING SUBSTRATES FOR DEPOSITION
Disclosed are methods and apparatus for masking of substrates for deposition, and subsequent lifting of the mask with deposited material. Masking materials are utilized that can be used in high temperatures and vacuum environment. The masking material has minimal outgassing once inside a vacuum chamber and withstand the temperatures during deposition process. The mask is inkjeted over the wafers and, after deposition, removed using agitation, such as ultrasonic agitation, or using laser burn off.
A deposition system is provided, where conductive targets of similar composition are situated opposing each other. The system is aligned parallel with a substrate, which is located outside the resulting plasma that is largely confined between the two cathodes. A "plasma cage" is formed wherein the carbon atoms collide with accelerating electrons and get highly ionized. The electrons are trapped inside the plasma cage, while the ionized carbon atoms are deposited on the surface of the substrate. Since the electrons are confined to the plasma cage, no substrate damage or heating occurs. Additionally, argon atoms, which are used to ignite and sustain the plasma and to sputter carbon atoms from the target, do not reach the substrate, so as to avoid damaging the substrate.
An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.
H01L 21/223 - Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regionsRedistribution of impurity materials, e.g. without introduction or removal of further dopant using diffusion into, or out of, a solid from or into a gaseous phase
C23C 14/04 - Coating on selected surface areas, e.g. using masks
A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
H01L 21/223 - Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regionsRedistribution of impurity materials, e.g. without introduction or removal of further dopant using diffusion into, or out of, a solid from or into a gaseous phase
100.
DIRECT CURRENT ION IMPLANTATION FOR SOLID PHASE EPITAXIAL REGROWTH IN SOLAR CELL FABRICATION
An apparatus and methods for ion implantation of solar cells. The disclosure provide enhanced throughput and recued or elimination of defects after SPER anneal step. The substrate is continually implanted using continuous high dose-rate implantation, leading to efficient defect accumulation, i.e., amorphization, while suppressing dynamic self-annealing.