The disclosed invention relates to methods of modifying peptide compositions to increase stability and delivery efficiency. Specifically, the disclosed invention relates to methods to increase the stability and delivery efficiency of protein kinase C (PKC) modulatory peptide compositions. A “therapeutic peptide composition” comprises a “carrier peptide” and a “cargo peptide.” A “carrier peptide” is a peptide or amino acid sequence within a peptide that facilitates the cellular uptake of the therapeutic peptide composition. The “cargo peptide” is a PKC modulatory peptide. Peptide modifications to either the carrier peptide, the cargo peptide, or both, which are described herein increase the stability and delivery efficiency of therapeutic peptide compositions by reducing disulfide bond exchange, physical stability, reducing proteolytic degradation, and increasing efficiency of cellular uptake.
A61K 47/64 - Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
C07K 7/00 - Peptides having 5 to 20 amino acids in a fully defined sequenceDerivatives thereof
Compounds having activity for lowering parathyroid hormone levels are described. In one embodiment, the compounds are comprised of a contiguous sequence of subunits, X1—X2—X3—X4—X5—X6—X7, wherein the X1 subunit comprises a thiol-containing moiety and the distribution of charge on the X2—X7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
A61K 47/60 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
C07K 5/103 - Tetrapeptides the side chain of the first amino acid being acyclic, e.g. Gly, Ala
C07K 7/08 - Linear peptides containing only normal peptide links having 12 to 20 amino acids
3.
Therapeutic agents for reducing parathyroid hormone levels
7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
A61K 47/60 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additivesTargeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
C07K 5/103 - Tetrapeptides the side chain of the first amino acid being acyclic, e.g. Gly, Ala
4.
Modifications of peptide compositions to increase stability and delivery efficiency
The disclosed invention relates to methods of modifying peptide compositions to increase stability and delivery efficiency. Specifically, the disclosed invention relates to methods to increase the stability and delivery efficiency of protein kinase C (PKC) modulatory peptide compositions. A “therapeutic peptide composition” comprises a “carrier peptide” and a “cargo peptide.” A “carrier peptide” is a peptide or amino acid sequence within a peptide that facilitates the cellular uptake of the therapeutic peptide composition. The “cargo peptide” is a PKC modulatory peptide. Peptide modifications to either the carrier peptide, the cargo peptide, or both, which are described herein increase the stability and delivery efficiency of therapeutic peptide compositions by reducing disulfide bond exchange, physical stability, reducing proteolytic degradation, and increasing efficiency of cellular uptake.
A61K 47/64 - Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
5.
Therapeutic agents for reducing parathyroid hormone levels
7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
C07K 7/08 - Linear peptides containing only normal peptide links having 12 to 20 amino acids
C07K 7/06 - Linear peptides containing only normal peptide links having 5 to 11 amino acids
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
C07K 5/103 - Tetrapeptides the side chain of the first amino acid being acyclic, e.g. Gly, Ala
7 subunits. The compound, when administered at selected times to a patient undergoing dialysis, lowers serum phosphorus levels, relative to pre-dosing levels, and achieves a sustained reduced level for a period of time after administration.
7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
Methods for treating subjects suffering from chronic kidney disease-mineral and bone disorder or other disorders resulting in primary or secondary hyperparathyroidism are described. The methods are effective in reducing serum parathyroid hormone (PTH) levels and calcium levels in patients who undergo hemodialysis. The methods described herein are also effective in slowing the progression of kidney disease and preserving kidney function. Compositions used in the described methods are also provided and comprise calcimimetics which function as agonists of the calcium sensing receptor (CaSR).
Methods for treating subjects suffering from chronic kidney disease-mineral and bone disorder or other disorders resulting in primary or secondary hyperparathyroidism are described. The methods are effective in reducing serum parathyroid hormone (PTH) levels and calcium levels in patients who undergo hemodialysis. The methods described herein are also effective in slowing the progression of kidney disease and preserving kidney function. Compositions used in the described methods are also provided and comprise calcimimetics which function as agonists of the calcium sensing receptor (CaSR).
Methods for modulating serum phosphorus levels are described, wherein calcimimetic agents are administered to a subject in need thereof. In one embodiment, the compound is cinacalcet, and in other embodiments the compound is comprised of a contiguous sequence of subunits, X1,- X2 - X3 - X4 - X5 - X6 - X7, wherein the X1 subunit comprises a thiol-containing moiety and the distribution of charge on the X2-X7 subunits. The compound, when administered at selected times to a patient undergoing dialysis, lowers serum phosphorus levels, relative to pre-dosing levels, and achieves a sustained reduced level for a period of time after administration.
Methods for modulating serum phosphorus levels are described, wherein calcimimetic agents are administered to a subject in need thereof. In one embodiment, the compound is cinacalcet, and in other embodiments the compound is comprised of a contiguous sequence of subunits, X1,- X2 - X3 - X4 - X5 - X6 - X7, wherein the X1 subunit comprises a thiol-containing moiety and the distribution of charge on the X2-X7 subunits. The compound, when administered at selected times to a patient undergoing dialysis, lowers serum phosphorus levels, relative to pre-dosing levels, and achieves a sustained reduced level for a period of time after administration.
The disclosed invention relates to methods of modifying peptide compositions to increase stability and delivery efficiency. Specifically, the disclosed invention relates to methods to increase the stability and delivery efficiency of protein kinase C (PKC) modulatory peptide compositions. A “therapeutic peptide composition” comprises a “carrier peptide” and a “cargo peptide.” A “carrier peptide” is a peptide or amino acid sequence within a peptide that facilitates the cellular uptake of the therapeutic peptide composition. The “cargo peptide” is a PKC modulatory peptide. Peptide modifications to either the carrier peptide, the cargo peptide, or both, which are described herein increase the stability and delivery efficiency of therapeutic peptide compositions by reducing disulfide bond exchange, physical stability, reducing proteolytic degradation, and increasing efficiency of cellular uptake.
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
14.
Therapeutic agents for reducing parathyroid hormone levels
7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
Compounds having activity for lowering parathyroid hormone levels are described. In one embodiment, the compounds are comprised of a contiguous sequence of subunits, X1 - X2 - X3 - X4 - X5 - X6 - X7, wherein the X1 subunit comprises a thiol-containing moiety and the distribution of charge on the X2-X7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
Compounds having activity for lowering parathyroid hormone levels are described. In one embodiment, the compounds are comprised of a contiguous sequence of subunits, X1 - X2 - X3 - X4 - X5 - X6 - X7, wherein the X1 subunit comprises a thiol-containing moiety and the distribution of charge on the X2-X7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
7 subunits provides the desired activity. Methods of using the compounds for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders are also described, and in particular, methods for lowering plasma PTH and serum calcium are provided. The compounds can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
A61P 13/12 - Drugs for disorders of the urinary system of the kidneys
A61P 5/18 - Drugs for disorders of the endocrine system of the parathyroid hormones
C07K 7/06 - Linear peptides containing only normal peptide links having 5 to 11 amino acids
C07K 7/08 - Linear peptides containing only normal peptide links having 12 to 20 amino acids
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
C07K 5/103 - Tetrapeptides the side chain of the first amino acid being acyclic, e.g. Gly, Ala
Disclosed herein are methods for transdermal delivery of PKC modulatory peptides. Generally, methods comprise the delivery of an isozyme specific PKC peptide modulator through skin that has been microporated, e.g., with ars array of microneedles. Such methods may be used to administer therapeutically effective amounts of an isozyme selective FKC peptide inhibitor or activator.
A61K 47/48 - Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
A61P 43/00 - Drugs for specific purposes, not provided for in groups
19.
PROTEIN KINASE C-δ INHIBITORS THAT PROTECT AGAINST CELLULAR INJURY AND INFLAMMATION AND PROMOTE ASTROCYTE PROLIFERATION
The invention relates to the use of δPKC inhibitor peptides to treat brain injury, particularly traumatic brain injury (TBI). In one embodiment, peptide that specifically inhibit δPKC are used to protect neurological tissue by promoting astrocyte proliferation.
A01N 37/18 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N, e.g. carboxylic acid amides or imidesThio-analogues thereof
The disclosed invention relates to methods of modifying peptide compositions to increase stability and delivery efficiency. Specifically, the disclosed invention relates to methods to increase the stability and delivery efficiency of protein kinase C (PKC) modulatory peptide compositions. A “therapeutic peptide composition” comprises a “carrier peptide” and a “cargo peptide.” A “carrier peptide” is a peptide or amino acid sequence within a peptide that facilitates the cellular uptake of the therapeutic peptide composition. The “cargo peptide” is a PKC modulatory peptide. Peptide modifications to either the carrier peptide, the cargo peptide, or both, which are described herein increase the stability and delivery efficiency of therapeutic peptide compositions by reducing disulfide bond exchange, physical stability, reducing proteolytic degradation, and increasing efficiency of cellular uptake.
The present invention provides methods and kits for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders. In particular, methods for lowering serum PTH and serum calcium using polycationic calcium modulator peptides are provided. The calcium modulator peptides can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
A61K 38/29 - Parathyroid hormone, i.e. parathormoneParathyroid hormone-related peptides
C07K 14/635 - Parathyroid hormone, i.e. parathormoneParathyroid hormone-related peptides
A61K 38/17 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from animalsPeptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from humans
22.
METHODS OF USE OF GAMMA INHIBITOR COMPOUNDS FOR THE ATTENUATION OF PAIN
The disclosure herein relates to modified γPKC inhibitory peptides, methods of generating such peptides, and method for using γPKC inhibitory peptides for the treatment of pain.
A61K 31/7012 - Compounds having a free or esterified carboxyl group attached, directly or through a carbon chain, to a carbon atom of the saccharide radical, e.g. glucuronic acid, neuraminic acid
A61K 38/17 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from animalsPeptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof from humans
A61K 39/21 - Retroviridae, e.g. equine infectious anemia virus
23.
MODIFICATIONS OF PEPTIDE COMPOSITIONS TO INCREASE STABILITY AND DELIVERY EFFICIENCY
The disclosed invention relates to methods of modifying peptide compositions to increase stability and delivery efficiency. Specifically, the disclosed invention relates to methods to increase the stability and delivery efficiency of protein kinase C (PKC) modulatory peptide compositions. A "therapeutic peptide composition" comprises a "carrier peptide" and a "cargo peptide." A "carrier peptide" is a peptide or amino acid sequence within a peptide that facilitates the cellular uptake of the therapeutic peptide composition. The "cargo peptide" is a PKC modulatory peptide. Peptide modifications to either the carrier peptide, the cargo peptide, or both, which are described herein increase the stability and delivery efficiency of therapeutic peptide compositions by reducing disulfide bond exchange, physical stability, reducing proteolytic degradation, and increasing efficiency of cellular uptake.
A61K 38/16 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof
A61K 47/64 - Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
C07K 1/107 - General processes for the preparation of peptides by chemical modification of precursor peptides
C07K 7/00 - Peptides having 5 to 20 amino acids in a fully defined sequenceDerivatives thereof
The disclosed invention relates to methods of modifying peptide compositions to increase stability and delivery efficiency. Specifically, the disclosed invention relates to methods to increase the stability and delivery efficiency of protein kinase C (PKC) modulatory peptide compositions. A 'therapeutic peptide composition' comprises a 'carrier peptide' and a 'cargo peptide.' A 'carrier peptide' is a peptide or amino acid sequence within a peptide that facilitates the cellular uptake of the therapeutic peptide composition. The 'cargo peptide' is a PKC modulatory peptide. Peptide modifications to either the carrier peptide, the cargo peptide, or both, which are described herein increase the stability and delivery efficiency of therapeutic peptide compositions by reducing disulfide bond exchange, physical stability, reducing proteolytic degradation, and increasing efficiency of cellular uptake.
The present invention relates to a method of preparing a therapeutic peptide composition comprising a carrier peptide and a PKC activity modulating cargo peptide, whereby the resulting therapeutic peptide composition has increased stability and potency relative to an unmodified therapeutic peptide.
A61K 47/64 - Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
C07K 1/107 - General processes for the preparation of peptides by chemical modification of precursor peptides
C07K 7/06 - Linear peptides containing only normal peptide links having 5 to 11 amino acids
C07K 7/08 - Linear peptides containing only normal peptide links having 12 to 20 amino acids
The disclosure herein relates to modified &egr;PKC inhibitory peptides, methods of generating such peptides, and method for using &egr;PKC inhibitory peptides for the treatment of pain.
The present invention provides methods and kits for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders. In particular, methods for lowering serum PTH and serum calcium using polycationic calcium modulator peptides are provided. The calcium modulator peptides can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
C07K 14/00 - Peptides having more than 20 amino acidsGastrinsSomatostatinsMelanotropinsDerivatives thereof
A01N 37/18 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N, e.g. carboxylic acid amides or imidesThio-analogues thereof
The present invention provides methods and kits for treating hyperparathyroidism, bone disease and/or hypercalcemic disorders. In particular, methods for lowering serum PTH and serum calcium using polycationic calcium modulator peptides are provided. The calcium modulator peptides can be used to treat subjects having, for example: primary, secondary or tertiary hyperparathyroidism; hypercalcemia of malignancy; metastatic bone disease; or osteoporosis.
A01N 37/18 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N, e.g. carboxylic acid amides or imidesThio-analogues thereof
A01N 37/18 - Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N, e.g. carboxylic acid amides or imidesThio-analogues thereof
30.
PROTEIN KINASE C PEPTIDE MODULATORS OF ANGIOGENESIS
The present invention provides peptides for inhibiting various protein kinase isozymes. The peptide can be directed to any region of the protein kinase C isozyme, and in one embodiment, is directed to the V5 domain. The peptide can be conjugated to a carrier, in a releasable or non-releasable manner. The peptides can be used to inhibit angiogenesis and/or vascular permeability. The peptides can be used to treat subjects having, for example, cancer, diabetic blindness, macular degeneration, rheumatoid arthritis, or psoriasis.
05 - Pharmaceutical, veterinary and sanitary products
Goods & Services
(1) Pharmaceuticals, namely selective activators and inhibitors of protein kinase isozymes for the treatment of cardiovascular diseases, angiogenesis, and pain; and selective activators and inhibitors of protein kinase isozymes, namely anti-inflammatories.