An antenna includes a radiating structure to radiate electromagnetic waves having a phase along a radiating path extending in an axial direction, and a lens disposed in the radiating path and configured to pass the electromagnetic waves therethrough. The lens includes at least one lamina having a first surface, a second surface, a center axis that is aligned with the axial direction, a lamina thickness between the first surface and the second surface in a direction parallel to the axial direction, and an axial region extending about the center axis. Conductive scattering elements are arranged on the first surface, the second surface or both the first surface and the second surface. The conductive scattering elements are configured to change a first phase of the electromagnetic waves passing through the plurality of conductive scattering elements with respect to a second phase of the electromagnetic waves passing through the axial region.
H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
H01Q 19/06 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
A device for shifting the phase of an electrical signal includes a first microstrip, a second microstrip, and a ground plate. The first microstrip includes an input terminal and the second microstrip includes an output terminal. The second microstrip is spaced apart from the first microstrip such that a microstrip-to-slot transition region is defined between the first microstrip and the second microstrip. The ground plate includes a ground-plate slot that spans the microstrip-to-slot transition region. The ground plate is coupled with the first microstrip and the second microstrip such that at least one of the first microstrip and the second microstrip are movable relative to each other and to the ground plate to adjust a width of the microstrip-to-slot transition region.
H01Q 3/12 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
An antenna assembly has a main body configured to receive an antenna, and an uninterrupted top cap attached to the main body. The uninterrupted top cap has an outer surface. A lifting assembly is attached to at the outer surface of said top cap without penetrating the cap. Accordingly, the uninterrupted cap forms an unbroken whole. The uninterrupted cap is continuous without any through-holes or other perturbances or features that extend through the cap or otherwise might allow fluid to pass through the cap into an interior of the main body.
H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome
H01Q 3/08 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
A repeater has a spherical dielectric lens antenna, a donor feed unit supporting transmission and reception of signals through the lens antenna, a service feed unit supporting transmission and reception of signals through the lens antenna, and at least one interconnecting guided transmission medium providing a radio frequency transmission path between the donor feed unit and the service feed unit.
A repeater has a spherical dielectric lens antenna, a donor feed unit supporting transmission and reception of signals through the lens antenna, a service feed unit supporting transmission and reception of signals through the lens antenna, and at least one interconnecting guided transmission medium providing a radio frequency transmission path between the donor feed unit and the service feed unit.
An antenna assembly has a main body configured to receive an antenna, and an uninterrupted top cap attached to the main body. The uninterrupted top cap has an outer surface. A lifting assembly is attached to at the outer surface of said top cap without penetrating the cap. Accordingly, the uninterrupted cap forms an unbroken whole. The uninterrupted cap is continuous without any through-holes or other perturbances or features that extend through the cap or otherwise might allow fluid to pass through the cap into an interior of the main body.
An Antenna Radiating Element provides 4 simultaneous isolated radiation ports that can be used to increase the orders of MIMO communication for wireless applications. An antenna array that contains a plurality of the Quad-Port Radiating Elements (QPRE). An antenna that contains multiple arrays of the QPRE in single-band or Multi-Band configurations that produces 2x the available polarization states without the need to increase the antenna aperture or reduce the size of the antenna array.
H01Q 1/24 - SupportsMounting means by structural association with other equipment or articles with receiving set
H01Q 1/36 - Structural form of radiating elements, e.g. cone, spiral, umbrella
H01Q 1/52 - Means for reducing coupling between antennas Means for reducing coupling between an antenna and another structure
H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elementsArrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture
H01Q 5/15 - Resonant antennas for operation of centre-fed antennas comprising one or more collinear, substantially straight or elongated active elements
H01Q 5/307 - Individual or coupled radiating elements, each element being fed in an unspecified way
H01Q 9/14 - Length of element or elements adjustable
H01Q 9/16 - Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
H01Q 9/30 - Resonant antennas with feed to end of elongated active element, e.g. unipole
H01Q 21/20 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a curvilinear path
H01Q 21/28 - Combinations of substantially independent non-interacting antenna units or systems
An Antenna Radiating Element provides 4 simultaneous isolated radiation ports that can be used to increase the orders of MIMO communication for wireless applications. An antenna array that contains a plurality of the Quad-Port Radiating Elements (QPRE). An antenna that contains multiple arrays of the QPRE in single-band or Multi-Band configurations that produces 2× the available polarization states without the need to increase the antenna aperture or reduce the size of the antenna array.
An arrangement and method for hybrid beamforming includes a differential phase shifter. The phase shifter has substantially parallel elongate conductive input and output radio frequency transmission lines. A movable transverse planar conductive coupling element configured to provide capacitive coupling between itself and the input and output lines. The coupling element is slideably movable along an axis of the said input and output transmission lines.
H04B 7/06 - Diversity systemsMulti-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
A dielectric loaded sleeve monopole antenna has a dielectric loading within the sleeve enables stable impedance in a dynamic operating environment. The use of a dielectric filling in the sleeve portion of the antenna enables tight control of the input impedance over frequency establishing stable broadband operation in challenging operating environments. The effective dielectric constant inside the sleeve of the antenna is designed to exhibit spatial variability. As a result, the sleeve essentially acts as an impedance transformer enhancing control over the input impedance to the antenna. The spatial variability in the dielectric filling may be realized as arrangements of single or multiple dielectric materials machined to synthesize the desired effective dielectric properties.
A high gain, multi-beam lens antenna system for future fifth generation (5G) wireless networks. The lens antenna includes a spherical dielectric lens fed with a plurality of radiating antenna elements. The elements are arranged around the exterior surface of the lens at a fixed offset with a predetermined angular displacement between each element. The number of beams and crossover levels between adjacent beams are determined by the dielectric properties and electrical size of the lens. The spherical nature of the dielectric lens provides a focal surface allowing the elements to be rotated around the lens with no degradation in performance. The antenna system supports wideband and multiband operation with multiple polarizations making it ideal for future 5G wireless networks.
H01Q 5/30 - Arrangements for providing operation on different wavebands
H01Q 1/24 - SupportsMounting means by structural association with other equipment or articles with receiving set
H01Q 1/52 - Means for reducing coupling between antennas Means for reducing coupling between an antenna and another structure
H01Q 25/00 - Antennas or antenna systems providing at least two radiating patterns
H01Q 3/14 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
H01Q 15/08 - Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
18.
Integrated antenna unit hook, hang eject-inject installation system
An antenna system having a quick release that removably and reliably connects a Remote Radio Unit (RRU) to an Integrated Antenna Unit (IAU), both mechanically and electronically. The RRU has an RRU connector and the antenna has an antenna connector that removably engages with and mates with the RRU connector. The system has a temporary hanging position that enables a user to connect additional electronic connections to the RRU before it is fully coupled with the antenna.
An ultra wideband active antenna platform can be deployed globally. A plug-and-play radio unit is removably attached to an outside of the active antenna. The PAPR can be removably plugged into a docking station to provide different technology or frequency bands specific for customers in different regions without the costly replacement of the whole antenna. In addition, the heat-generating sources (power amplifiers) with heavy heatsink structures are separated from the main antenna body, so that the whole active antenna can be installed separately since the installation weight of the antenna would be reduced.
An ultra wideband active antenna platform can be deployed globally. A plug-and-play radio unit is removably attached to an outside of the active antenna. The PAPR can be removably plugged into a docking station to provide different technology or frequency bands specific for customers in different regions without the costly replacement of the whole antenna. In addition, the heat-generating sources (power amplifiers) with heavy heatsink structures are separated from the main antenna body, so that the whole active antenna can be installed separately since the installation weight of the antenna would be reduced.
An integrated antenna unit, including an extra-wideband antenna, a docking station, and an integrated, field replaceable remote radio unit that electrically couples to the docking station. The docking station may be configured to receive a removable transmission circuit that that electrically couples the remote radio unit and the antenna.
An integrated antenna unit, including an extra-wideband antenna, a docking station, and an integrated, field replaceable remote radio unit that electrically couples to the docking station. The docking station may be configured to receive a removable transmission circuit that that electrically couples the remote radio unit and the antenna.