A method of designing at least an area of a printed image in a security feature is provided. The security feature comprises an array of optical elements overlaying the printed image. The method comprises designing an icon matrix comprising rows and columns of pixels having pixel values representing an icon to be viewed by a user of the security feature; determining a desired gap size to provide a desired magnification of the icon; generating an array of two dimensional matrices of pixels, wherein the array comprises a sequence of repeated sets of matrices, wherein each set comprises a first number of matrices of a first type having a first size and a second number of matrices of a second type having a second size, wherein the matrix of the first type and the matrix of the second type are based on the icon matrix, and wherein the first number, second number, first size, and second size are selected such that, the mean size of each matrix within the set deviates from the modal matrix size by the desired gap size. A printed image for a security feature is also provided.
There is described the use of a transparent film comprising a non-fibrous substrate layer of regenerated cellulose in the manufacture of a security article exhibiting printed information, wherein said transparent film is the material on which printed information and optionally one or more other security feature(s) is disposed, and wherein said transparent film exhibits one or more, and preferably all, of the following properties: haze of no more than 10%, preferably no more than 5%, preferably no more than 4%, preferably no more than 2.5%; birefringence of from about 400 to about 800 nm; a surface energy of at least about 38 dynes, preferably at least about 40 dynes, preferably at least about 42 dynes, and preferably no more than from about 60 dynes; and a water vapour permeability in the range of from about 20 to about 40, preferably from about 25 to about 35, preferably from about 28 to about 32 g/m2/24 hours at 25° C. and 75% relative humidity, and/or in the range of from about 110 to about 130, preferably from about 115 to about 125, preferably from about 118 to about 122 g/m2/24 hours at 38° C. and 90% relative humidity.
There is described a method of manufacturing a security article, said method comprising the steps of: introducing into a printing device a discrete sheet of transparent film comprising a non-fibrous substrate layer of regenerated cellulose; disposing an opacification layer on at least a portion of at least one surface of said film by a first printing step; and disposing printed information on at least a portion of said opacification layer by a second printing step wherein said second printing step is an offset printing step.
There is described a method of manufacturing a security article, said method comprising the steps of: introducing into an offset printing device a transparent film comprising a non-fibrous substrate layer of regenerated cellulose; and disposing printed information on at least a portion of said transparent film by an offset printing step, wherein said transparent film introduced into said offset printing device further comprises an ink-receptive layer on at least one surface of said substrate layer.
There is described a security element (EL) or document (BN), such as a banknote, comprising (i) a substrate (S) with first and second sides (I, II) and exhibiting at least one window region (W) made of a substantially transparent material, (ii) a micro-optical structure (OP) provided on the first side (I) of the substrate (S) and extending over at least a part of the window region (W), and (iii) a printed feature (P1-P3) printed on the second side (II) of the substrate (S) over at least a part of the window region (W), the printed feature (P1-P3) being provided in register with the micro-optical structure (OP) to produce an optically-variable effect (EF) upon looking at the printed feature (P1-P3) from the first side (I) of the substrate (S) through the micro-optical structure (OP) and the window region (W). The security element (EL) or document (BN) further comprises a protective layer (L) acting as printable primer layer and provided on the second side (II) of the substrate (S) over the window region (W) and on top of the printed feature (P1-P3), which protective layer (L) covers the printed feature (P1-P3) when seen from the second side (II) of the substrate (S) and further acts as a contrast-enhancing layer for the optically-variable effect (EF).
There is described the use of a transparent film comprising a non-fibrous substrate layer of regenerated cellulose in the manufacture of a security article exhibiting printed information, wherein said transparent film is the material on which printed information and optionally one or more other security feature(s) is disposed, and wherein said transparent film exhibits one or more, and preferably all, of the following properties: haze of no more than 10%, preferably no more than 5%, preferably no more than 4%, preferably no more than 2.5%; birefringence of from about 400 to about 800 nm; a surface energy of at least about 38 dynes, preferably at least about 40 dynes, preferably at least about 42 dynes, and preferably no more than from about 60 dynes; and a water vapour permeability in the range of from about 20 to about 40, preferably from about 25 to about 35, preferably from about 28 to about 32 g/m2/24hours at 25°C and 75% relative humidity, and/or in the range of from about 110 to about 130, preferably from about 115 to about 125, preferably from about 118 to about 122 g/m2/24hours at 38°C and 90% relative humidity.
There is described a method of manufacturing a security article, said method comprising the steps of: introducing into a printing device a discrete sheet of transparent film comprising a non-fibrous substrate layer of regenerated cellulose; disposing an opacification layer on at least a portion of at least one surface of said film by a first printing step; and disposing printed information on at least a portion of said opacification layer by a second printing step wherein said second printing step is an offset printing step.
There is described a method of manufacturing a security article, said method comprising the steps of: introducing into an offset printing device a transparent film comprising a non-fibrous substrate layer of regenerated cellulose; disposing an opacification layer on at least a portion of at least one surface of said film by a first offset printing step; and disposing printed information on at least a portion of said opacification layer by a second offset printing step.
There is described a method of manufacturing a security article, said method comprising the steps of: introducing into an offset printing device a transparent film comprising a non-fibrous substrate layer of regenerated cellulose; and disposing printed information on at least a portion of said transparent film by an offset printing step, wherein said transparent film introduced into said offset printing device further comprises an ink-receptive layer on at least one surface of said substrate layer.
There is described a printed security element (10; 10*; 10**) comprising a rainbow feature (15; 15*; 15**) exhibiting, at least in part, a gradual transition from a first colour (C1) to a second colour (C2) distinct from the first colour (C1), wherein the rainbow feature (15; 15*; 15**) extends over a colour-gradient area (A) of the printed security element (10; 10*; 10**) where first and second printed patterns (P1, P2) are partly superimposed or juxtaposed, each of the first and second printed patterns (P1, P2) comprising a first, respectively second set of linear or curvilinear elements (20, 30; 20*, 30*), the first and second printed patterns (P1, P2) being printed in register one with the other by means of two distinct printing plates (PP1, PP2) so that the first and second sets of linear or curvilinear elements (20, 30; 20*, 30*) are partly superimposed or juxtaposed in the colour-gradient area (A) and thereby generate the rainbow feature (15; 15*; 15**), the first printed pattern (P1) exhibiting the first colour (C1) and being printed by means of a first printing plate (PP1) and the second printed pattern (P2) exhibiting the second colour (C2) and being printed by means of a second printing plate (PP2), where at least the first or second printed pattern (P1; P2) exhibits, in the colour-gradient area (A), a modulation of line width or line structure such as to cause, when superimposed or juxtaposed with the other printed pattern (P2; P1), a gradual transition from the first colour (C1) to the second colour (C2), wherein, in the colour-gradient area (A), the second printed pattern (P2) is printed on top of the first printed pattern (P1) and wherein the second colour (C2) is darker than the first colour (C1). Also described is a method of producing the aforementioned printed security element.
Inking system for inking an intaglio printing cylinder of an intaglio printing press, intaglio printing press comprising the same, and process of inking such an intaglio printing cylinder
An inking system for inking an intaglio printing cylinder of an intaglio printing press is designed to perform a selective transfer of ink to one or more intaglio printing mediums by way of a selective inking cylinder provided in at least one device. The selective inking cylinder carries a selective inking plate that receives ink supplied by an associated inking unit. The selective inking plate comprises a coating that is selectively structured to exhibit ink-repellent portions and perform selective transfer of ink at locations corresponding to engraved areas of the one or more intaglio printing mediums that are to be inked with the ink supplied by the associated inking unit. The selective transfer of ink is performed indirectly from the selective inking cylinder to the one or more intaglio printing mediums via an ink collecting cylinder and/or via a chablon cylinder carrying a chablon plate.
There is described a printing press (100***; 100****) adapted to carry out printing on a sheet-like or web-like substrate (S), in particular for the production of security documents such as banknotes, comprising a printing unit (2*; 2**; 2***; 2****) designed to print a first side (I) and/or a second side (II) of the substrate (S). The printing press (100***; 100****) further comprises an in-line casting device (80; 80*; 80**; 80***) adapted to apply a layer of material acting as an optical medium on a portion of a first side (I, II) of the substrate (S) and to replicate and form a micro-optical structure (L) in the layer of material acting as optical medium. The printing unit (2*; 2**; 2***; 2****) is furthermore adapted to print at least one printed pattern on the first or second side (I, II) of the substrate (S) in register with the micro-optical structure (L), wherein the printing unit (2*; 2**; 2***; 2****) comprises at least a first printing group (93) being adapted to print at least one printed pattern on the second side (II) of the substrate (S) in register with the micro-optical structure (L) and wherein the in-line casting device (80; 80*; 80**; 80***) comprises at least one embossing cylinder (85), which embossing cylinder (85) also is acting as counter-pressure cylinder and cooperates with a printing cylinder (8) of the at least first printing group (93) and/or whereas the in-line casting device (80; 80*; 80**; 80***) and the at least a first printing group (93) being arranged at the Substrate transport path such way, that in-line casting of the micro-optical structure, on one side of the sheets S, and printing of the associated pattern, on the other side of the sheets S, are performed in a same step, without this involving any sheet transfer operation.
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
b*) located downstream of the printing nip, wherein a number of at least two sheet transfer elements (110, 120, 95) is provided downstream of the printing nip of a first one (200.1; 200.1*) and upstream of the printing nip of a second one (200.2; 200.2*) of the at least two printing units (200.1, 200.2; 200.1*, 200.2*) to transfer the sheets (S).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 7/12 - Rotary lithographic machines for offset printing using two cylinders one of which serves two functions, e.g. as a transfer and impression cylinder in perfecting machines
B41F 9/01 - Rotary intaglio printing presses for indirect printing
B41F 23/04 - Devices for treating the surfaces of sheets, webs or other articles in connection with printing by heat drying, by cooling, by applying powders
B41F 9/02 - Rotary intaglio printing presses for multicolour printing
14.
Printing press with in-line casting device for the replication and formation of a micro-optical structure
There is described a printing press adapted to carry out printing on a sheet-like or web-like substrate, in particular for the production of security documents such as banknotes, comprising a substrate feeding device for feeding the substrate to be treated, at least a printing unit designed to print a first side and/or a second side of the substrate and a delivery unit for receiving the treated substrate. The printing press in the conveying path for the substrate between the feeding device and the delivery unit further comprises an in-line casting device adapted to apply a layer of material acting as an optical medium on a portion of the second side of the substrate and to replicate and form a micro-optical structure in the layer of material acting as optical medium, wherein the printing unit comprises a first printing group comprising a printing cylinder and being adapted to print at least one printed pattern on the first or second side of the substrate in register with the micro-optical structure.
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 19/00 - Apparatus or machines for carrying out printing operations combined with other operations
B41F 19/02 - Apparatus or machines for carrying out printing operations combined with other operations with embossing
B41M 1/24 - Inking and printing with a printer's forme combined with embossing
B41F 21/08 - Combinations of endless conveyors and grippers
15.
Color control pattern for the optical measurement of colors printed on a sheet or web substrate by means of a multicolor printing press and uses thereof
H) are coordinated to actual application of the relevant printing inks in the effective printed region (EF) and are positioned transversely to the direction of transport (T) of the substrate (S) at locations corresponding to actual positions where the relevant printing inks are applied in the effective printed region (EF).
B41F 9/02 - Rotary intaglio printing presses for multicolour printing
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 33/02 - Arrangements of indicating devices, e.g. counters
B41F 33/00 - Indicating, counting, warning, control or safety devices
16.
PRINTED SECURITY ELEMENT COMPRISING A RAINBOW FEATURE AND METHOD OF PRODUCING THE SAME
There is described a printed security element (10; 10*; 10**) comprising a rainbow feature (15; 15*; 15**) exhibiting, at least in part, a gradual transition from a first colour (C1) to a second colour (C2) distinct from the first colour (C1), wherein the rainbow feature (15; 15*; 15**) extends over a colour-gradient area (A) of the printed security element (10; 10*; 10**) where first and second printed patterns (P1, P2) are partly superimposed or juxtaposed, each of the first and second printed patterns (P1, P2) comprising a first, respectively second set of linear or curvilinear elements (20, 30; 20*, 30*), the first and second printed patterns (P1, P2) being printed in register one with the other by means of two distinct printing plates (PP1, PP2) so that the first and second sets of linear or curvilinear elements (20, 30; 20*, 30*) are partly superimposed or juxtaposed in the colour-gradient area (A) and thereby generate the rainbow feature (15; 15*; 15**), the first printed pattern (P1) exhibiting the first colour (C1) and being printed by means of a first printing plate (PP1) and the second printed pattern (P2) exhibiting the second colour (C2) and being printed by means of a second printing plate (PP2), where at least the first or second printed pattern (P1; P2) exhibits, in the colour-gradient area (A), a modulation of line width or line structure such as to cause, when superimposed or juxtaposed with the other printed pattern (P2; P1), a gradual transition from the first colour (C1) to the second colour (C2), wherein, in the colour-gradient area (A), the second printed pattern (P2) is printed on top of the first printed pattern (P1) and wherein the second colour (C2) is darker than the first colour (C1). Also described is a method of producing the aforementioned printed security element.
B41F 7/08 - Rotary lithographic machines for offset printing using one transfer cylinder co-operating with several forme cylinders for printing on sheets or webs, e.g. sampling of colours on one transfer cylinder
B41F 9/02 - Rotary intaglio printing presses for multicolour printing
B41F 11/00 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination
A printed security element comprising a rainbow feature (15) exhibiting, a gradual transition from a first colour (C1) to a second colour (C2), the rainbow feature (15) extends over a colour-gradient area (A) of the printed security element (10) where first and second printed patterns (P1, P2) are partly superimposed, each of the first and second printed patterns (P1, P2), at least the first or second printed pattern (P1; P2) exhibits, in the colour-gradient area (A), a modulation of line width or line structure such as to cause, when superimposed or juxtaposed with the other printed pattern (P2; P1 ), a gradual transition from the first colour (C1) to the second colour (C2), wherein, in the colour-gradient area (A), the second printed pattern (P2) is printed on top of the first printed pattern (P1) and wherein the second colour (C2) is darker than the first colour (C1 ) and provides an enhanced security against counterfeiting.
B41F 7/08 - Rotary lithographic machines for offset printing using one transfer cylinder co-operating with several forme cylinders for printing on sheets or webs, e.g. sampling of colours on one transfer cylinder
B41F 9/02 - Rotary intaglio printing presses for multicolour printing
B41F 11/00 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination
There is described a security element (EL) or document (BN), such as a banknote, comprising (i) a substrate (S) with first and second sides (I, II) and exhibiting at least one window region (W) made of a substantially transparent material, (ii) a micro-optical structure (OP) provided on the first side (I) of the substrate (S) and extending over at least a part of the window region (W), and (iii) a printed feature (P1-P3) printed on the second side (II) of the substrate (S) over at least a part of the window region (W), the printed feature (P1-P3) being provided in register with the micro-optical structure (OP) to produce an optically-variable effect (EF) upon looking at the printed feature (P1-P3) from the first side (I) of the substrate (S) through the micro-optical structure (OP) and the window region (W). The security element (EL) or document (BN) further comprises a protective layer (L) acting as printable primer layer and provided on the second side (II) of the substrate (S) over the window region (W) and on top of the printed feature (P1-P3), which protective layer (L) covers the printed feature (P1-P3) when seen from the second side (II) of the substrate (S) and further acts as a contrast-enhancing layer for the optically- variable effect (EF).
B42D 25/351 - Translucent or partly translucent parts, e.g. windows
19.
INKING SYSTEM FOR INKING AN INTAGLIO PRINTING CYLINDER OF AN INTAGLIO PRINTING PRESS, INTAGLIO PRINTING PRESS COMPRISING THE SAME, AND PROCESS OF INKING SUCH AN INTAGLIO PRINTING CYLINDER
There are described various embodiments of an inking system for inking an intaglio printing cylinder (8) of an intaglio printing press (1I; 1II; 1III; 1IV; 1V), which intaglio printing cylinder carries one or more intaglio printing mediums (8a, 8b, 8c) that are inked by means of a plurality of inking devices (95; 95*; 95**; 905; 905*). The inking system is designed to perform a selective transfer of ink to the one or more intaglio printing mediums by means of a selective inking cylinder (98; 98*; 98**) provided in at least one of the inking devices, preferably in each of the inking devices. More precisely, the selective inking cylinder carries a selective inking plate (90a) receiving ink supplied by an associated inking unit (96/96a/97; 96*/96a*/97*; 96**/96a**; 906/906a/910/915; 906*/906a*/910*/915*), which selective inking plate comprises a coating (900) that is selectively structured to exhibit ink-repellent portions (910) and perform selective transfer of ink at locations (920) corresponding to engraved areas of the one or more intaglio printing mediums that are to be inked with the ink supplied by the associated inking unit. The selective transfer of ink to the one or more intaglio printing mediums is performed indirectly from the selective inking cylinder to the one or more intaglio printing mediums via an ink collecting cylinder (9) and/or via a chablon cylinder (99*; 99**) carrying a chablon plate (99a) comprising relief portions (99A) corresponding to engraved areas of the one or more intaglio printing mediums that are to be inked with the ink supplied by the associated inking unit.
a) distributed about the circumference of the stamping cylinder (21) and designed to hold successive sheets (S) against the circumference of the stamping cylinder (21). The foil application unit (2*) further comprises a plurality of counter-pressure units (25) distributed about a portion of the circumference of the stamping cylinder (21) and designed to press the successive sheets (S) and the foil carrier (FC) against an outer surface of the stamping segments (211 *; 211 **), the foil carrier (FC) being supplied by the foil feeding system (3) between the sheets (S) and the stamping segments (211 *; 211 **). Each counter-pressure unit (25) is designed as a cylinder unit (250, 255) provided with at least one circumferential pressing element (255) positioned to cooperate with the circumferential stamping section (210) of the stamping cylinder
a) distributed about the circumference of the stamping cylinder (21) and designed to hold successive sheets (S) against the circumference of the stamping cylinder (21). The foil application unit (2*) further comprises a plurality of counter-pressure units (25) distributed about a portion of the circumference of the stamping cylinder (21) and designed to press the successive sheets (S) and the foil carrier (FC) against an outer surface of the stamping segments (211*; 211**), the foil carrier (FC) being supplied by the foil feeding system (3) between the sheets (S) and the stamping segments (211*; 211**). Each counter-pressure unit (25) is designed as a cylinder unit (250, 255) provided with at least one circumferential pressing element (255) positioned to cooperate with the circumferential stamping section (210) of the stamping cylinder (21), and the counter-pressure units (25) are driven into rotation by means of at least one dedicated drive (26).
B41F 19/06 - Printing and embossing between a negative and a positive forme after inking and wiping the negative formePrinting from an ink band treated with colour or "gold"
There is described a sheet-fed printing press (1000; 1000*) comprising at least two printing units (200; 200.1, 200.2; 200.1 *, 200.2*) located one after the other, each printing unit (200; 200.1, 200.2; 200.1 *, 200.2*) being adapted to carry out simultaneous recto- verso printing of the sheets (S) and including two printing cylinders (105, 106) cooperating with one another and forming a printing nip, the two printing cylinders (105, 106) each collecting ink patterns from at least two associated plate cylinders (15A, 15B, 16A, 16B) wherein the two printing cylinders (105, 106) are located one above the other such that the sheets (S) travel laterally through each printing unit (200; 200.1, 200.2; 200.1 *, 200.2*) from a first lateral side (201 a; 201 a*) located upstream of the printing nip to a second lateral side (201 b; 201 b*) located downstream of the printing nip, wherein a number of at least two sheet transfer elements (110, 120, 95) is provided downstream of the printing nip of a first one (200.1; 200.1 *) and upstream of the printing nip of a second one (200.2; 200.2*) of the at least two printing units (200.1, 200.2; 200.1 *, 200.2*) to transfer the sheets (S).
B41F 7/12 - Rotary lithographic machines for offset printing using two cylinders one of which serves two functions, e.g. as a transfer and impression cylinder in perfecting machines
There is described a hot-stamping press (10; 10″; 10′″) comprising a foil application unit (2; 2*) designed to allow transfer or lamination of foil material (FM) by hot-stamping onto a substrate (S) supplied in the form of successive sheets or successive portions of a continuous web, which foil material (FM) is fed to the foil application unit (2; 2*) in the form of a foil carrier (FC) supplied by means of a foil feeding system (3). The hot-stamping press (10; 10″; 10′″) further comprises at least one UV-curing unit (61; 62; 63) located along a path (A) of the substrate (S) downstream of the foil application unit (2; 2*) to subject the foil material (FM) transferred or laminated onto the substrate (S) to a UV-curing operation. The foil material (FM) is provided with an adhesive intended to ensure adhesion of the foil material (FM) onto the substrate (S), which adhesive comprises a combination of hot-melt compounds reacting to the application of heat produced by the foil application unit (2; 2*) and UV-curing compounds reacting to the application of ultraviolet radiation produced by the UV-curing unit (61; 62; 63).
B32B 15/04 - Layered products essentially comprising metal comprising metal as the main or only constituent of a layer, next to another layer of a specific substance
B32B 37/08 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
B32B 37/10 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using direct action of vacuum or fluid pressure
B32B 37/12 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
24.
SHEET-FED PRINTING PRESS FOR SIMULTANEOUS RECTO-VERSO PRINTING OF SHEETS, IN PARTICULAR FOR THE PRODUCTION OF SECURITY DOCUMENTS
There is described a sheet-fed printing press (1000; 1000*) comprising at least two printing units (200; 200.1, 200.2; 200.1 *, 200.2*) located one after the other, each printing unit (200; 200.1, 200.2; 200.1 *, 200.2*) being adapted to carry out simultaneous recto- verso printing of the sheets (S) and including two printing cylinders (105, 106) cooperating with one another and forming a printing nip, the two printing cylinders (105, 106) each collecting ink patterns from at least two associated plate cylinders (15A, 15B, 16A, 16B) wherein the two printing cylinders (105, 106) are located one above the other such that the sheets (S) travel laterally through each printing unit (200; 200.1, 200.2; 200.1 *, 200.2*) from a first lateral side (201 a; 201 a*) located upstream of the printing nip to a second lateral side (201 b; 201 b*) located downstream of the printing nip, wherein a number of at least two sheet transfer elements (110, 120, 95) is provided downstream of the printing nip of a first one (200.1; 200.1 *) and upstream of the printing nip of a second one (200.2; 200.2*) of the at least two printing units (200.1, 200.2; 200.1 *, 200.2*) to transfer the sheets (S).
B41F 7/12 - Rotary lithographic machines for offset printing using two cylinders one of which serves two functions, e.g. as a transfer and impression cylinder in perfecting machines
A printing press adapted to carry out printing on a sheet-like substrate, in particular for the production of security documents, is provided. The printing press comprises a printing unit designed to print a first side and/or a second side of the substrate. The printing press further comprises an in-line casting device adapted to apply a layer of material acting as optical medium on a portion of the first side of the substrate and to replicate and form a micro-optical structure in the layer of material acting as optical medium. The printing unit comprises a first printing group adapted to print at least one printed pattern on the second side of the substrate in register with the micro-optical structure. The in-line casting device comprises an embossing tool designed as an embossing cylinder, which acts as counter-pressure cylinder and cooperates with a printing cylinder of the first printing group.
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
There is described a printing press (100*; 100**) adapted to carry out printing on a sheet- like or web-like Substrate (S), in particular for the production of security documents such as banknotes, comprising a Substrate feeding device (1) for feeding the Substrate (S) to be treated, at least a printing unit (2*; 2**) designed to print a first side (I) and/or a second side (II) of the Substrate (S) and a delivery unit (84) for receiving the treated substrate(S).The printing press (100*; 100**)) in the conveying path for the Substrate (S) between the feeding device (1) and the delivery unit (84) further comprises an in-line casting device (80; 80***) adapted to apply a layer of material acting as an optical medium on a portion of the second side (I, II) of the Substrate (S) and to replicate and form a micro-optical structure (L) in the layer of material acting as optical medium, wherein the printing unit (2*; 2**) comprises a first printing group (91; 92; 93; 94) comprising a printing cylinder (5; 6; 7, 8) and being adapted to print at least one printed pattern on the first or second side (I, II) of the Substrate (S) in register with the micro-optical structure (L).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 19/00 - Apparatus or machines for carrying out printing operations combined with other operations
B41F 19/02 - Apparatus or machines for carrying out printing operations combined with other operations with embossing
27.
PRINTING PRESS WITH IN-LINE CASTING DEVICE FOR THE REPLICATION AND FORMATION OF A MICRO-OPTICAL STRUCTURE
There is described a printing press (100***; 100****) adapted to carry out printing on a sheet-like or web-like substrate (S), in particular for the production of security documents such as banknotes, comprising a printing unit (2*; 2**; 2***; 2****) designed to print a first side (I) and/or a second side (II) of the substrate (S). The printing press (100***; 100****) further comprises an in-line casting device (80; 80*; 80**; 80***) adapted to apply a layer of material acting as an optical medium on a portion of a first side (I, II) of the substrate (S) and to replicate and form a micro-optical structure (L) in the layer of material acting as optical medium. The printing unit (2*; 2**; 2***; 2****) is furthermore adapted to print at least one printed pattern on the first or second side (I, II) of the substrate (S) in register with the micro-optical structure (L), wherein the printing unit (2*; 2**; 2***; 2****) comprises at least a first printing group (93) being adapted to print at least one printed pattern on the second side (II) of the substrate (S) in register with the micro-optical structure (L) and wherein the in-line casting device (80; 80*; 80**; 80***) comprises at least one embossing cylinder (85), which embossing cylinder (85) also is acting as counter-pressure cylinder and cooperates with a printing cylinder (8) of the at least first printing group (93) and/or whereas the in-line casting device (80; 80*; 80**; 80***) and the at least a first printing group (93) being arranged at the Substrate transport path such way, that in-line casting of the micro-optical structure, on one side of the sheets S, and printing of the associated pattern, on the other side of the sheets S, are performed in a same step, without this involving any sheet transfer operation.
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 19/00 - Apparatus or machines for carrying out printing operations combined with other operations
B41F 19/02 - Apparatus or machines for carrying out printing operations combined with other operations with embossing
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B33Y 80/00 - Products made by additive manufacturing
B41F 31/18 - Inking arrangements or devices for inking selected parts of printing formes
There is described a process of measuring print-to-print register of a multicolour print (A-D) provided in an effective printed area (EPA) of the surface of printed material, which multicolour print (A-D) is formed on the printed material by means of one or more printing presses and includes at least a first pattern (A) and a second pattern (B) distinguishable from the first pattern (A), the effective printed area (EPA) being provided with a matrix arrangement of individual imprints (P) which are each provided with the multicolour print (A-D) and are repeated over the surface of the effective printed area (EPA) along a pattern of rows and columns. Measurement of an actual print-to-print register between the first and second patterns (A, B), as reflected on the printed material, is derived from processing and finding a correspondence between (i) at least one sample image (SIA, SIB) of the printed material covering at least a portion of the first and second patterns (A, B), and (ii) at least one corresponding reference image (RIA, RIB) generated using prepress design data of the first and second patterns (A, B). Furthermore, the process is repeated for multiple ones of the individual imprints (P) so as to derive a set of multiple measurements of the actual print- to-print register between the first and second patterns (A, B) at various imprint locations over the effective printed area (EPA), which set of multiple measurements is mapped into a corresponding print-to-print register map (MB-A, MC-A, MD-A,...) that is representative of print-to-print register deviations at the various imprint locations. Also described is a measuring device for carrying out this process and a process of measuring and correcting print-to-print register of a multicolour print.
There is described a printing press (100) comprising a printing group (2) adapted to apply on a substrate at least one ink or varnish vehicle containing magnetic or magnetisable flakes and at least one magnetic orientation unit (10) located downstream of the printing group (2) along a path of the substrate, which magnetic orientation unit (10) includes at least one magnetic-field-inducing device (12) adapted to orient the magnetic or magnetisable flakes contained in the ink or varnish vehicle applied on the substrate to induce an optically-variable effect in the ink or varnish vehicle. The printing press (100) further comprises a drying/curing unit (15) located along the path of the substrate and cooperating with the magnetic orientation unit (10), which drying/curing unit (15) is adapted to dry or cure the ink or varnish vehicle applied on the substrate following orientation of the magnetic or magnetisable flakes. The drying/curing unit (15) is mounted on a movable supporting structure (16) that is adapted to move the drying/curing unit (15) between a working position (WP), where the drying/curing unit (15) is cooperating with the magnetic orientation unit (10) and which is located proximate to the path of the substrate next to the magnetic orientation unit (10), and a retracted position (RP), where the drying/curing unit (15) is retracted away from the magnetic orientation unit (10) and from the path of the substrate.
B41F 23/04 - Devices for treating the surfaces of sheets, webs or other articles in connection with printing by heat drying, by cooling, by applying powders
B41F 15/12 - Machines with auxiliary equipment, e.g. for drying printed articles
B41F 13/00 - Common details of rotary presses or machines
B41F 19/00 - Apparatus or machines for carrying out printing operations combined with other operations
There is described a recto-verso printing press (100*) adapted to carry out simultaneous recto-verso printing of sheets, the printing press (100*) comprising a main printing group (5, 6, 15, 16, 25, 26) with first and second printing cylinders (5, 6) cooperating with one another to form a first printing nip between the first and second printing cylinders (5, 6) where first and second sides of sheets are simultaneously printed, the first printing cylinder (5) acting as a sheet conveying cylinder of the main printing group (5, 6, 15, 16, 25, 26). The printing press (100*) further comprises an additional printing group (7, 8, 17, 18, 27, 28) with third and fourth printing cylinders (7, 8) cooperating with one another to form a second printing nip between the third and fourth printing cylinders (7, 8) where the first and second sides of the sheets are simultaneously printed, the third printing cylinder (7) acting as a sheet conveying cylinder of the additional printing group (7, 8, 17, 18, 27, 28). The main printing group (5, 6, 15, 16, 25, 26) and the additional printing group (7, 8, 7, 18, 27, 28) are coupled to one another by means of an intermediate sheet conveying system comprising one or more sheet-transfer cylinders (10, 10′, 10″)interposed between the first and third printing cylinders (5, 7).
B41F 7/06 - Rotary lithographic machines for offset printing using printing units incorporating one forme cylinder, one transfer cylinder, and one impression cylinder, e.g. for printing on webs for printing on sheets
B41F 7/08 - Rotary lithographic machines for offset printing using one transfer cylinder co-operating with several forme cylinders for printing on sheets or webs, e.g. sampling of colours on one transfer cylinder
B41F 7/12 - Rotary lithographic machines for offset printing using two cylinders one of which serves two functions, e.g. as a transfer and impression cylinder in perfecting machines
B41F 21/08 - Combinations of endless conveyors and grippers
32.
Installation and process for recycling wiping solution of one or more intaglio printing presses
a) by centrifugation into further precipitate and centrifuged supernatant, which centrifuged supernatant is fed to the processing tank (14). There are also described corresponding processes for recycling wiping solution.
There is described an intaglio printing plate coating apparatus comprising a vacuum chamber having an inner space adapted to receive at least one intaglio printing plate to be coated, a vacuum system coupled to the vacuum chamber adapted to create vacuum in the inner space of the vacuum chamber, and a physical vapour deposition (PVD) system adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface of the intaglio printing plate, which physical vapour deposition system includes at least one coating material target comprising a source of the wear-resistant coating material to be deposited onto the engraved surface of the intaglio printing plate. The vacuum chamber is arranged so that the intaglio printing plate to be coated sits substantially vertically in the inner space of the vacuum chamber with its engraved surface facing the at least one coating material target. The intaglio printing plate coating apparatus further comprises a movable carrier located within the inner space of the vacuum chamber and adapted to support and cyclically move the intaglio printing plate in front of and past the at least one coating material target.
There is described a hot-stamping press (10'; 10''; 10''') comprising a foil application unit (2; 2*) designed to allow transfer or lamination of foil material (FM) by hot-stamping onto a substrate (S) supplied in the form of successive sheets or successive portions of a continuous web, which foil material (FM) is fed to the foil application unit (2; 2*) in the form of a foil carrier (FC) supplied by means of a foil feeding system (3). The hot-stamping press (10'; 10''; 10''') further comprises at least one UV-curing unit (61; 62; 63) located along a path (A) of the substrate (S) downstream of the foil application unit (2; 2*) to subject the foil material (FM) transferred or laminated onto the substrate (S) to a UV- curing operation. The foil material (FM) is provided with an adhesive intended to ensure adhesion of the foil material (FM) onto the substrate (S), which adhesive comprises a combination of hot-melt compounds reacting to the application of heat produced by the foil application unit (2; 2*) and UV-curing compounds reacting to the application of ultraviolet radiation produced by the UV-curing unit (61; 62; 63).
There is described a hot-stamping press (10'; 10''; 10''') comprising a foil application unit (2; 2*) designed to allow transfer or lamination of foil material (FM) by hot-stamping onto a substrate (S) supplied in the form of successive sheets or successive portions of a continuous web, which foil material (FM) is fed to the foil application unit (2; 2*) in the form of a foil carrier (FC) supplied by means of a foil feeding system (3). The hot-stamping press (10'; 10''; 10''') further comprises at least one UV-curing unit (61; 62; 63) located along a path (A) of the substrate (S) downstream of the foil application unit (2; 2*) to subject the foil material (FM) transferred or laminated onto the substrate (S) to a UV- curing operation. The foil material (FM) is provided with an adhesive intended to ensure adhesion of the foil material (FM) onto the substrate (S), which adhesive comprises a combination of hot-melt compounds reacting to the application of heat produced by the foil application unit (2; 2*) and UV-curing compounds reacting to the application of ultraviolet radiation produced by the UV-curing unit (61; 62; 63).
There is described a sheet-fed stamping press (10*) comprising a foil application unit (2*) designed to allow transfer or lamination of foil material onto successive sheets (S), which foil material is fed to the foil application unit (2*) in the form of a foil carrier (FC) supplied by means of a foil feeding system (3). The foil application unit (2*) comprises a stamping cylinder (21) with at least one circumferential stamping section (210) provided on a circumference of the stamping cylinder (21) and comprising successive stamping segments (211*; 211**) distributed one after the other about the circumference of the stamping cylinder (21), the stamping cylinder (21) also acting as sheet-transporting cylinder and comprising multiple sheet holding units (21a) distributed about the circumference of the stamping cylinder (21) and designed to hold successive sheets (S) against the circumference of the stamping cylinder (21). The foil application unit (2*) further comprises a plurality of counter-pressure units (25) distributed about a portion of the circumference of the stamping cylinder (21) and designed to press the successive sheets (S) and the foil carrier (FC) against an outer surface of the stamping segments (211*; 211**), the foil carrier (FC) being supplied by the foil feeding system (3) between the sheets (S) and the stamping segments (211*; 211**). Each counter-pressure unit (25) is designed as a cylinder unit (250, 255) provided with at least one circumferential pressing element (255) positioned to cooperate with the circumferential stamping section (210) of the stamping cylinder (21), and the counter-pressure units (25) are driven into rotation by means of at least one dedicated drive (26).
There is described a sheet-fed stamping press (10*) comprising a foil application unit (2*) designed to allow transfer or lamination of foil material onto successive sheets (S), which foil material is fed to the foil application unit (2*) in the form of a foil carrier (FC) supplied by means of a foil feeding system (3). The foil application unit (2*) comprises a stamping cylinder (21 ) with at least one circumferential stamping section (210) provided on a circumference of the stamping cylinder (21 ) and comprising successive stamping segments (211 *; 211 **) distributed one after the other about the circumference of the stamping cylinder (21 ), the stamping cylinder (21 ) also acting as sheet-transporting cylinder and comprising multiple sheet holding units (21 a) distributed about the circumference of the stamping cylinder (21 ) and designed to hold successive sheets (S) against the circumference of the stamping cylinder (21 ). The foil application unit (2*) further comprises a plurality of counter-pressure units (25) distributed about a portion of the circumference of the stamping cylinder (21 ) and designed to press the successive sheets (S) and the foil carrier (FC) against an outer surface of the stamping segments (211 *; 211 **), the foil carrier (FC) being supplied by the foil feeding system (3) between the sheets (S) and the stamping segments (211 *; 211 **). Each counter-pressure unit (25) is designed as a cylinder unit (250, 255) provided with at least one circumferential pressing element (255) positioned to cooperate with the circumferential stamping section (210) of the stamping cylinder (21 ), and a ratio (D21/D25) of a nominal diameter (D21 ) of each circumferential stamping section (210) of the stamping cylinder (21 ) over a nominal diameter (D25) of each ring element (255) of the counter-pressure units (25) is an integer multiple.
09 - Scientific and electric apparatus and instruments
41 - Education, entertainment, sporting and cultural services
Goods & Services
Mechanically operated machines for producing and packing
banknotes; mechanically operated machines for printing
banknotes, machines for applying security features to paper
securities, particularly to banknotes and security papers;
mechanically and electronically operated machines for making
security documents and paper securities with biometric data;
electronic machines and apparatus for producing and printing
banknotes; mechanically operated machines for applying
protective film on banknotes; banknote cutting and sorting
machines. Electronic apparatus and machines for controlling the print
quality of printed documents, particularly banknotes,
security papers; electronic apparatus and machines for
sorting banknotes; mechanically and electronically operated
machines for measuring and checking biometric data;
electronic machines for checking banknotes. Training of staff for the turn-key installation of
mechanically or electronically operated machines for
producing and/or printing and/or checking and/or numbering
bank notes and security paper.
39.
System for simple coding, authentication and copy detection of printed documents
There is described a new coding approach for printed document authentication, one objective of which is to increase the difficulty of copying. In addition, this new coding approach provides better performance compared to other 2D coding technologies under certain constraints. The new coding technique requires less print space in comparison to other coding techniques. This is achieved by optimizing some of the features which are used in standard 2D-codes for stabilization and which are necessary for e.g. mobile applications. Furthermore, the code can be decomposed in elementary units, or “byte-units” which can be widely spread over a text document. Such “byte-units” can in particular be used for integration in text symbols. If a document protected with such a coding is copied, at least some of these symbols will be extensively degraded by the copying process. Therefore, copy detection is intrinsically achieved thanks to the new coding technique.
There is described a method of creating a transparent window (W*) in a security, especially paper, substrate (1) for security printing applications, the method comprising the steps of (i) providing a security substrate (1), (ii) forming an opening (10*) into and through the security substrate (1), and (iii) filling the opening (10*) with transparent material (2) thereby forming the transparent window (W*). The filling of the opening (10*) with the transparent material (2) is carried out in a state where the opening (10*) is open on both sides of the security substrate (1) and extends through the security substrate (1), the filling of the opening (10*) including the application of a first side (I) of the security substrate (1) against a supporting surface (21A) of a supporting member (20′, 21) in such a way as to block one side of the opening (10*), while the transparent material (2) is applied inside the opening (10*) from the other side (II) of the security substrate (1). Advantageously, the method further comprises the step of forming a field of lenses (L) on one side of the transparent window (W*), in particular by replicating the field of lenses (L) directly into the transparent material (2) filling the opening (10*). Also described is a suitable device designed to fill the opening (10*) with the transparent material (2).
There is described a numbering device (1) for carrying out numbering in sheet-fed or web-fed numbering presses, the numbering device (1) comprising a numbering unit (6) with rotatable numbering wheels (7) carrying alpha-numerical symbols thereon, which numbering wheels (7) are disposed next to each other and rotate about a common rotation axis (17), the numbering device (1) further comprising electro-mechanical actuation means for setting the position of the numbering wheels (7). The electro-mechanical actuation means are entirely located within the numbering device (1) and are mechanically autonomous, the electro-mechanical actuation means comprising a plurality of independent driving means (15, 18-23; 23*) for actuating a corresponding plurality of the numbering wheels.
B41J 1/60 - Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies with types or dies on spherical, truncated-spherical, or like surfaces
B41F 13/00 - Common details of rotary presses or machines
B41F 33/00 - Indicating, counting, warning, control or safety devices
B41K 3/12 - Apparatus for stamping articles having integral means for supporting the articles to be stamped with stamping surface located above article-supporting surface with curved stamping surface for stamping by rolling contact
B41K 3/10 - Apparatus for stamping articles having integral means for supporting the articles to be stamped with stamping surface located above article-supporting surface and movable at right angles to the surface to be stamped having automatic means for changing type- characters, e.g. numbering devices
There is described an intaglio printing press (1; 1*) comprising a plate cylinder (8) carrying one or more intaglio printing plates, the plate cylinder (8) receiving ink from an inking system (9, 20, 23; 20*, 23*) having a plurality of chablon cylinders (23; 23*) transferring ink directly or indirectly onto the plate cylinder (8), the intaglio printing press (1; 1*) comprising an adjustment system acting on the chablon cylinders (23; 23*) in order to compensate elongation of the one or more intaglio printing plates. The adjustment system comprises, for each chablon cylinder (23; 23*), an adjustable drive unit, which adjustable drive unit (25) is interposed between the chablon cylinder (23; 23*) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the chablon cylinder (23; 23*) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the chablon cylinder (23; 23*) is adjusted over each revolution of the chablon cylinder (23; 23*) by means of an adjustment motor (300) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (300) is inoperative and driving into rotation of the chablon cylinder (23; 23*) is performed exclusively mechanically via the adjustable drive unit (25), the chablon cylinder (23; 23*) rotating at a same rotational speed as the driving gear (100).
09 - Scientific and electric apparatus and instruments
41 - Education, entertainment, sporting and cultural services
Goods & Services
(1) Machines mécaniques pour la production et l'emballage de billets de banque; machines mécaniques servant à imprimer les billets de banque, machines servant à appliquer des éléments de sécurité aux papiers-valeurs, en particulier aux billets de banque et papiers fiduciaires; machines mécaniques et électroniques pour fabriquer des documents de sécurité et papiers-valeurs avec des données biométriques; machines et appareils électroniques pour la production et l'impression de billets de banque; machines mécaniques servant à appliquer un film protecteur sur les billets de banques; machines de coupe et de tri de billets de banque.
(2) Machines et appareils électroniques de contrôle de la qualité d'impression de documents imprimés, nommément de billets de banque, de papiers fiduciaires; machines et appareils électroniques pour le tri des billets de banque; machines mécaniques et électroniques pour la mesure et le contrôle de données biométriques, nommément les empreintes digitales, l'ADN, la reconnaissance de l'iris, de la rétine, du visage et de la voix; machines électroniques servant à appliquer un film protecteur sur les billets de banques; machines de coupe et de tri de billets de banque. (1) Formation du personnel pour l'installation clé en main des machines mécaniques ou électroniques destinées à la production et/ou à l'impression et/ou au contrôle et/ou à la numérotation des billets de banques et des papiers fiduciaires.
44.
Control process for intaglio printing and control strip for this purpose
It is especially described a control process for intaglio printing, in particular for printing paper securities, such as banknotes. This control process includes defining on an intaglio printing plate (80) control areas (150, 151-155; 170, 171-179) designed in such a manner as to allow in particular evaluation of effects of the printing pressure applied during printing of a substrate by means of the intaglio printing plate (80) and evaluation of effects of the ink coverage applied during inking of the intaglio printing plate (80), which control areas (150, 151-155; 170, 171-179) are engraved in a portion of the intaglio printing plate (80) in order to produce corresponding printed control zones (160, 161-165) on the substrate. The process further includes carrying out of measurements in the printed control zones allowing evaluation of the printing pressure applied during printing of the substrate as well as of the ink coverage applied during inking of the intaglio printing plate (80).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
b) which are respectively printed with the first ink and with the second ink. Outside the boundaries of the distinctive two-dimensional graphic element, portions (P1, P2) of the rectilinear and/or curvilinear elements are printed with only one of the at least first and second inks. The at least first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the security feature is illuminated with non-visible light.
There is described a recto-verso printing press (100*) adapted to carry out simultaneous recto-verso printing of sheets, the printing press (100*) comprising a main printing group (5, 6, 15, 16, 25, 26) with first and second printing cylinders (5, 6) cooperating with one another to form a first printing nip between the first and second printing cylinders (5, 6) where first and second sides of sheets are simultaneously printed, the first printing cylinder (5) acting as a sheet conveying cylinder of the main printing group (5, 6, 15, 16, 25, 26). The printing press (100*) further comprises an additional printing group (7, 8, 17, 18, 27, 28) with third and fourth printing cylinders (7, 8) cooperating with one another to form a second printing nip between the third and fourth printing cylinders (7, 8) where the first and second sides of the sheets are simultaneously printed, the third printing cylinder (7) acting as a sheet conveying cylinder of the additional printing group (7, 8, 17, 18, 27, 28). The main printing group (5, 6, 15, 16, 25, 26) and the additional printing group (7, 8, 7, 18, 27, 28) are coupled to one another by means of an intermediate sheet conveying system comprising one or more sheet-transfer cylinders (10, 10', 10'') interposed between the first and third printing cylinders (5, 7).
B41F 7/06 - Rotary lithographic machines for offset printing using printing units incorporating one forme cylinder, one transfer cylinder, and one impression cylinder, e.g. for printing on webs for printing on sheets
B41F 7/08 - Rotary lithographic machines for offset printing using one transfer cylinder co-operating with several forme cylinders for printing on sheets or webs, e.g. sampling of colours on one transfer cylinder
B41F 7/12 - Rotary lithographic machines for offset printing using two cylinders one of which serves two functions, e.g. as a transfer and impression cylinder in perfecting machines
47.
PRINTING PRESS COMPRISING A MAGNETIC ORIENTATION UNIT AND A MOVABLE DRYING/CURING UNIT
There is described a printing press (100) comprising a printing group (2) adapted to apply on a substrate at least one ink or varnish vehicle containing magnetic or magnetisable flakes and at least one magnetic orientation unit (10) located downstream of the printing group (2) along a path of the substrate, which magnetic orientation unit (10) includes at least one magnetic-field-inducing device (12) adapted to orient the magnetic or magnetisable flakes contained in the ink or varnish vehicle applied on the substrate to induce an optically-variable effect in the ink or varnish vehicle. The printing press (100) further comprises a drying/curing unit (15) located along the path of the substrate and cooperating with the magnetic orientation unit (10), which drying/curing unit (15) is adapted to dry or cure the ink or varnish vehicle applied on the substrate following orientation of the magnetic or magnetisable flakes. The drying/curing unit (15) is mounted on a movable supporting structure (16) that is adapted to move the drying/curing unit (15) between a working position (WP), where the drying/curing unit (15) is cooperating with the magnetic orientation unit (10) and which is located proximate to the path of the substrate next to the magnetic orientation unit (10), and a retracted position (RP), where the drying/curing unit (15) is retracted away from the magnetic orientation unit (10) and from the path of the substrate.
B41F 9/02 - Rotary intaglio printing presses for multicolour printing
B41F 15/12 - Machines with auxiliary equipment, e.g. for drying printed articles
B41F 19/00 - Apparatus or machines for carrying out printing operations combined with other operations
B41F 23/04 - Devices for treating the surfaces of sheets, webs or other articles in connection with printing by heat drying, by cooling, by applying powders
B41F 13/00 - Common details of rotary presses or machines
48.
Printed security feature, object comprising such a printed security feature, and process of producing the same
There is described a printed security feature (10) provided onto a printable substrate, which printed security feature includes a printed area (11) with at least a first printed section consisting of a multiplicity of geometric elements (GE, 15) printed with a given distribution over the printed area. The geometric elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the printed security feature produces a first graphical representation (A1) when illuminated with visible white light. At least the first ink is an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The printed security feature produces a second graphical representation (B1) when illuminated with non-visible light, which exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the printed security feature is illuminated with non-visible light. The first printed section is subdivided into at least first and second printed portions (P1, P2), adjacent to the distinctive two-dimensional graphic element, and a third printed portion (P3), inside boundaries (200) of the distinctive two-dimensional graphic element. In the first, respectively second printed portion, the geometric elements are printed with the first, respectively second ink. In the third printed portion, the geometric elements are sub-divided into first and second contiguous portions (GE_a, GE_b) which are respectively printed with the first and second inks. The first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the printed security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the printed security feature is illuminated with non-visible light.
There is described an inking apparatus of a printing press, in particular an offset or letterpress printing press, comprising at least one ink duct (11, 12) with an ink supply roller (13, 14), an ink roller train(30) comprising at least one inking roller (31) which receives ink from the at least one ink duct (11, 12), and at least one vibrator roller (15, 16) interposed between the ink supply roller (13, 4) and the inking roller (31), which vibrator roller (15, 16) is swung back and forth between the ink supply roller (13, 14) and the inking roller (31) and intermittently transfers ink from the ink supply roller (13, 14) to the inking roller (31). A circumference of the vibrator roller (15, 16) exhibits an ink-transfer 10 structure (15a, 16a) which reflects a desired inking profile of a printing plate to be inked by the inking apparatus and is designed to modulate a quantity of ink transferred by the vibrator roller (15, 16). The ink-transfer structure (15a, 16a) on the circumference of the vibrator roller (15, 16) is subdivided, in a circumferential direction (y) of the vibrator roller (15, 16), into an integer number 1 (r) of individual ink-transfer portions (15b, 16b) that are repeated with a determined circumferential period (Δy) in the circumferential direction (y), each individual ink-transfer portion (15b, 16b) reflecting the desired inking profile of the printing plate to be inked by the inking apparatus. A contact length (CL) over which the vibrator roller (15, 16) runs in contact with the ink supply roller (13, 20 4) is equivalent to the determined circumferential period (Δy) of the individual ink-transfer portions (15b, 16b) or to an integer multiple of the determined circumferential period (Δy) of the individualink-transfer portions (15b, 16b).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41N 7/06 - Shells for rollers of printing machines for inking rollers
There is described a combined printing press (10) for the production of security documents, in particular banknotes, comprising a screen printing group (3) and a numbering group (4) adapted to process printed substrates in the form of individual sheets or successive portions of a continuous web. The screen printing group(3)is located upstream of the numbering group (4) and comprises at least one screen printing unit (32-33) designed to print a pattern of optically-variable ink, which optically-variable ink contains flakes that can be oriented by means of a magnetic field. The screen printing group further comprises a magnetic unit (36) located downstream of the screen printing unit (32-33), which magnetic unit (36) is designed to magnetically induce an optically-variable effect in the pattern of optically-variable ink applied by the screen printing unit (32-33) prior to drying/curing of the optically-variable ink. The screen printing group (3) further comprises at least one drying/curing unit (37) designed to dry/cure the pattern of optically-variable ink in which the optically-variable effect has been induced by the magnetic unit(36), prior to transfer of the printed substrates to the numbering group (4).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
There is described a combined printing press (10; 10*) for the production of security documents, in particular banknotes, comprising a screen printing group (2; 2*) and an intaglio printing group (3)adapted to process substrates in the form of individual sheets or successive portions of a continuous web. The screen printing group (2; 2*) is located upstream of the intaglio printing group (3) and comprises at least one screen printing unit (20; 20*) designed to print a pattern of optically-variable ink onto one side of the substrates, which optically- variable ink contains flakes that can be oriented by means of a magnetic field. The screen printing group (2; 2*) further comprises a magnetic unit (24; 24*) located downstream of the screen printing unit (20; 20*), which magnetic unit is designed to magnetically induce an optically-variable effect in the pattern of optically-variable ink applied by the screen printing unit (20; 20*). The screen printing group (2; 2*) further comprises at least one drying/curing unit (25, 28; 25*, 28*) designed to dry/cure the pattern of optically-variable ink in which the optically-variable effect has been induced by the magnetic unit (24), prior to transfer of the substrates to the intaglio printing group (3).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
52.
Sheet numbering process and sheet-processing machine for carrying out the same
0) of individual sheets (S) and the second subset (S′; S*) of individual sheets are sorted after numbering in dependence of the numbering scheme (N1; N2; N2′; N*). Also described is a sheet-processing machine for carrying out the aforementioned sheet numbering process.
B41F 33/00 - Indicating, counting, warning, control or safety devices
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B65H 33/16 - Forming counted batches in delivery pile or stream of articles by depositing articles in batches on moving supports
B65H 39/02 - Associating, collating, or gathering articles from several sources
B65H 43/04 - Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable detecting, or responding to, presence of faulty articles
B65H 43/06 - Use of control, checking, or safety devices, e.g. automatic devices comprising an element for sensing a variable detecting, or responding to, completion of pile
G07D 7/181 - Testing mechanical properties or condition, e.g. wear or tear
53.
Authentication of security documents and mobile device to carry out the authentication
A method of authenticating security documents and a mobile device, especially a smartphone, programmed to carry out the method, based on an analysis of features which are produced by intaglio printing, which analysis involves a decomposition of sample images of a candidate document to be authenticated based on Wavelets, each sample image being digitally processed by performing a Wavelet transform of the sample image in order to derive a set of classification features. The method is based on an adaptive approach, which includes the following steps: —prior to carrying out the Wavelet transform, defining a categorization map containing local information about different intaglio line structures that are found on the security documents; —carrying out a Wavelet selection amongst a pool of Wavelet types based on the categorization map; and —performing the Wavelet transform of the sample image on the basis of the selected Wavelet.
G07D 7/00 - Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
54.
Substrate for security papers and method of manufacturing the same
There is described a substrate (S) for security documents, such as banknotes, comprising one or more paper layers (11, 12) and a polymer layer (20) which is made to adhere to a side of at least one of the paper layers (11, 12), which polymer layer (20) is substantially transparent in at least one region of the substrate (S) which is not covered by the paper layer or layers (11, 12) so as to form a substantially transparent window (W) in the substrate (S) which is formed and closed by the polymer layer (20). The polymer layer (20) exhibits in the region of the window (W) a thickness (T) which is greater than a thickness (t) of the polymer layer (20) outside of the region of the window (W). The thickness (T) of the polymer layer (20) in the region of the window (W) is substantially equal to the added thickness of the paper layer or layers (11, 12) and of the polymer layer (20) outside of the region of the window (W) so that the substrate (S) exhibits a substantially uniform and constant thickness (T). The substrate (S) further comprises a micro-optical structure (30), in particular a lens structure, which is disposed in the region of the window (W) on at least one side of the polymer layer (20).
D21H 27/32 - Multi-ply with materials applied between the sheets
D21H 21/36 - Biocidal agents, e.g. fungicidal, bactericidal or insecticidal agents
B32B 27/10 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of paper or cardboard
B42D 25/351 - Translucent or partly translucent parts, e.g. windows
D21H 21/44 - Latent security elements, i.e. detectable or becoming apparent only by use of special verification or tampering devices or methods
B32B 3/26 - Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layerLayered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a layer with cavities or internal voids
D21H 27/36 - Films made from synthetic macromolecular compounds
B42D 25/425 - Marking by deformation, e.g. embossing
b), which suction roller (50) contacts a second side of the printed sheets opposite to the first side which is being scanned by the line camera (11), the suction roller (50) being driven at a selected circumferential speed to drive successive portions of the printed sheets being inspected by the quality control apparatus at a determined and controlled speed past the line camera (11).
There is described a multicolour letterpress printing press, in particular a numbering press, comprising a printing group (50) with at least a first letterpress (e.g. numbering) cylinder (51) and a second letterpress cylinder (52) which are inked by an associated inking system (60, 71, 72, 81, 81 a, 81 b, 82, 82a, 82b). The inking system (60, 71, 72, 81, 81 a, 81 b, 82, 82a, 82b) comprises (i) a first inking device (81) supplying ink to a first chablon cylinder (71), (ii) at least a second inking device (82) supplying ink to a second chablon cylinder (72), and (iii) an ink-collecting cylinder (60) contacting the first and second chablon cylinders (71, 72) and the first and second letterpress cylinders (51, 52). The ink-collecting cylinder (60) collects a first ink pattern (A, D) from the first chablon cylinder (71) and a second ink pattern (B, C) from the second chablon cylinder (72). As a result, a first multicolour pattern of inks (A-D) is formed on the ink-collecting cylinder (60), which first multicolour pattern of inks (A-D) is transferred onto the first letterpress cylinder (51). The ink- collecting cylinder (60) further collects a third ink pattern (A, D ) from the first chablon cylinder (71) and a fourth ink pattern (B, C ) from the second chablon cylinder (72), thereby forming a second multicolour pattern of inks (A "D ) on the ink-collecting cylinder (60), which second multicolour pattern of inks (A "D ) is transferred onto the second letterpress cylinder (52).
B41F 31/18 - Inking arrangements or devices for inking selected parts of printing formes
B41K 3/12 - Apparatus for stamping articles having integral means for supporting the articles to be stamped with stamping surface located above article-supporting surface with curved stamping surface for stamping by rolling contact
B41F 5/18 - Rotary letterpress machines for printing on webs for multicolour printing using one impression cylinder co-operating with several forme cylinders
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
57.
A SYSTEM FOR SIMPLE CODING, AUTHENTICATION AND COPY DETECTION OF PRINTED DOCUMENTS
There is described a new coding approach for printed document authentication, one objective of which is to increase the difficulty of copying. In addition, this new coding approach provides better performance compared to other 2D coding technologies under certain constraints. The new coding technique requires less print space in comparison to other coding techniques. This is achieved by optimising some of the features which are used in standard 2D-codes for stabilisation and which are necessary for e.g. mobile applications. Furthermore, the code can be decomposed in elementary units, or "byte-units" which can be widely spread over a text document. Such "byte-units" can in particular be used for integration in text symbols. If a document protected with such a coding is copied, at least some of these symbols will be extensively degraded by the copying process. Therefore, copy detection is intrinsically achieved thanks to the new coding technique.
G07D 7/00 - Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
There is described a method of creating a transparent window (W*) in a security, especially paper, substrate (1) for security printing applications, the method comprising the steps of (i) providing a security substrate (1), (ii) forming an opening (10*) into and through the security substrate (1), and (iii) filling the opening (10*) with transparent material (2) thereby forming the transparent window (W*). The filling of the opening (10*) with the transparent material (2) is carried out in a state where the opening (10*) is open on both sides of the security substrate (1) and extends through the security substrate (1), the filling of the opening (10*) including the application of a first side (I) of the security substrate (1) against a supporting surface (21A) of a supporting member (20', 21) in such a way as to block one side of the opening (10*), while the transparent material (2) is applied inside the opening (10*) from the other side (II) of the security substrate (1). Advantageously, the method further comprises the step of forming a field of lenses (L) on one side of the transparent window (W*), in particular by replicating the field of lenses (L) directly into the transparent material (2) filling the opening (10*). Also described is a suitable device designed to fill the opening (10*) with the transparent material (2).
There is described an ink wiping system (100; 100′; 100″) of an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102; 102*) supported on and partly located in the wiping tank (101) for wiping excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100; 100′; 100″) comprises a wiping roller retracting device (150) which forms an integral part of the ink wiping system (100; 100′; 100″) and is adapted to be coupled to the wiping roller assembly (102; 102*) to move the wiping roller assembly (102; 102*) between a working position (W) where the wiping roller assembly (102; 102*) is supported on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a parking position (P) where the wiping roller assembly (102; 102*) is retracted out of the wiping tank (101) and away from the intaglio printing cylinder (80). In the working position (W) of the wiping roller assembly (102; 102*), the wiping roller retracting device (150) is coupled to the wiping roller assembly (102; 102*). The ink wiping system (100; 100′; 100″) further includes, at the parking position (P), a storage section (110) adapted to receive the wiping roller assembly (102; 102*) which is retracted by the wiping roller retracting device (150).
There is described an intaglio printing press (1; 1*) comprising a plate cylinder (8) carrying one or more intaglio printing plates, the plate cylinder (8) receiving ink from an inking system (9, 20, 23; 20*, 23*) having a plurality of chablon cylinders (23; 23*) transferring ink directly or indirectly onto the plate cylinder (8), the intaglio printing press (1; 1*) comprising an adjustment system acting on the chablon cylinders (23; 23*) in order to compensate elongation of the one or more intaglio printing plates. The adjustment system comprises, for each chablon cylinder (23; 23*), an adjustable drive unit, which adjustable drive unit (25) is interposed between the chablon cylinder (23; 23*) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the chablon cylinder (23; 23*) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the chablon cylinder (23; 23*) is adjusted over each revolution of the chablon cylinder (23; 23*) by means of an adjustment motor (300) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (300) is inoperative and driving into rotation of the chablon cylinder (23; 23*) is performed exclusively mechanically via the adjustable drive unit (25), the chablon cylinder (23; 23*) rotating at a same rotational speed as the driving gear (100).
B41F 9/01 - Rotary intaglio printing presses for indirect printing
B41F 9/10 - Wiping mechanisms with doctors, scrapers, or like devices
61.
Method of checking producibility of a composite security design of a security document on a line of production equipment and digital computer environment for implementing the same
There is described a method of checking producibility of a composite security design of a security document, in particular of a composite banknote design, on a line of production equipment, the composite security design being the product of a combination of multiple sets of design features that are to be provided on a substrate as a result of a plurality of successive production operations carried out by means of the line of production equipment. The method comprises the steps of (a) providing digital design data representative of the composite security design of the security document, (b) modelizing, in a computer environment, the line of production equipment by means of which the composite security design is intended to be produced, (c) performing a computer simulation of production results of the plurality of successive production operations on the basis of the digital design data and the modelized line of production equipment, and (d) evaluating the computer simulated production results and determining, on the basis of these computer simulated production results, whether the composite security design can be produced on the line of production equipment.
a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52).
There is described a method of creating a transparent polymer window (W) with a field of lenses (L) in a security paper substrate (1), the method comprising the steps of (i) providing a security paper substrate (1), (ii) forming an opening (10) into the security paper substrate (1), (iii) laminating a transparent film (5; 5*) onto a first side (I) of the security paper substrate (1) in such a way as to close the opening (10) at one end, and (iv) filling the opening (10) with transparent polymer material (2). In one embodiment, the transparent film (5) comprises a field of lenses (L) and is laminated onto the first side (I) of the security paper substrate (1) in such a way as to form lenses (L) on the first side (I) of the security paper substrate (1) in register with the opening (10). In another embodiment, the field of lenses (L) is replicated into the transparent polymer material (2) applied in the opening (10) in such a way as to form lenses (L) on a second side (II) of the security paper substrate (1), opposite to the first side (I), in register with the opening (10). Also described is a device designed to fill the opening (10) formed into the security paper substrate (1) with the transparent polymer material (2) and a processing machine comprising the same.
There is described an intaglio printing press (1; 1*) comprising an intaglio cylinder (8) and an ink wiping system (10) with a rotating wiping roller assembly (11) contacting a circumference of the intaglio cylinder (8) for wiping excess ink from the surface of the intaglio cylinder (8), a rotational speed of the wiping cylinder being adjustable with respect to a rotational speed of the intaglio cylinder (8). The intaglio printing press (1; 1*) comprises an adjustable drive unit (25), which adjustable drive unit (25) is interposed between the wiping roller assembly (11) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) coupled to the intaglio cylinder (8) and acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the wiping roller assembly (11) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the wiping roller assembly (11) is adjusted by means of an adjustment motor (700) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (700) is inoperative and driving into rotation of the wiping roller assembly (11) is performed exclusively mechanically via the adjustable drive unit (25), the wiping roller assembly (11) rotating at a defined rotational speed with respect to the rotational speed of the intaglio cylinder (8).
a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
G01J 3/10 - Arrangements of light sources specially adapted for spectrometry or colorimetry
G01J 3/46 - Measurement of colourColour measuring devices, e.g. colorimeters
G01J 3/50 - Measurement of colourColour measuring devices, e.g. colorimeters using electric radiation detectors
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
66.
PRINTED SECURITY FEATURE, OBJECT COMPRISING SUCH A PRINTED SECURITY FEATURE, AND PROCESS OF PRODUCING THE SAME
There is described a printed security feature (10) provided onto a printable substrate, which printed security feature includes a printed area (11) with at least a first printed section consisting of a multiplicity of geometric elements (GE, 15) printed with a given distribution over the printed area. The geometric elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the printed security feature produces a first graphical representation (A1) when illuminated with visible white light. At least the first ink is an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The printed security feature produces a second graphical representation (B1) when illuminated with non-visible light, which exhibits a distinctive two- dimensional graphic element (B) which is revealed only when the printed security feature is illuminated with non-visible light. The first printed section is subdivided into at least first and second printed portions (P1, P2), adjacent to the distinctive two-dimensional graphic element, and a third printed portion (P3), inside boundaries (200) of the distinctive two-dimensional graphic element. In the first, respectively second printed portion, the geometric elements are printed with the first, respectively second ink. In the third printed portion, the geometric elements are subdivided into first and second contiguous portions (GE_a, GE_b) which are respectively printed with the first and second inks. The first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the printed security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the printed security feature is illuminated with non-visible light.
There is described a printed security feature (1) provided onto a printable substrate, which security feature includes a printed area (100) consisting of a multiplicity of adjacent rectilinear and/or curvilinear elements (110, 120) printed with a given spatial frequency. The rectilinear and/or curvilinear elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the security feature produces a first graphical representation when illuminated with visible white light, at least the first ink being an ink which responds to non- visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The security feature produces a second graphical representation when illuminated with non-visible light, which second graphical representation exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the security feature is illuminated with non-visible light. Inside boundaries (160) of the distinctive two-dimensional graphic element, a part (P3) of the rectilinear and/or curvilinear elements is printed with a combination of the first and second inks, the rectilinear and/or curvilinear elements being subdivided, within that part, into first and second juxtaposed sections (110a, 110b, 120a, 120b) which are respectively printed with the first ink and with the second ink. Outside the boundaries of the distinctive two-dimensional graphic element, portions (P1, P2) of the rectilinear and/or curvilinear elements are printed with only one of the at least first and second inks. The at least first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the security feature is illuminated with non-visible light.
There is described a printed security feature (1) provided onto a printable substrate, which security feature includes a printed area (100) consisting of a multiplicity of adjacent rectilinear and/or curvilinear elements (110, 120) printed with a given spatial frequency. The rectilinear and/or curvilinear elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the security feature produces a first graphical representation when illuminated with visible white light, at least the first ink being an ink which responds to non- visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The security feature produces a second graphical representation when illuminated with non-visible light, which second graphical representation exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the security feature is illuminated with non-visible light. Inside boundaries (160) of the distinctive two-dimensional graphic element, a part (P3) of the rectilinear and/or curvilinear elements is printed with a combination of the first and second inks, the rectilinear and/or curvilinear elements being subdivided, within that part, into first and second juxtaposed sections (110a, 110b, 120a, 120b) which are respectively printed with the first ink and with the second ink. Outside the boundaries of the distinctive two-dimensional graphic element, portions (P1, P2) of the rectilinear and/or curvilinear elements are printed with only one of the at least first and second inks. The at least first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the security feature is illuminated with non-visible light.
There is described a printed security feature (10) provided onto a printable substrate, which printed security feature includes a printed area (11) with at least a first printed section consisting of a multiplicity of geometric elements (GE, 15) printed with a given distribution over the printed area. The geometric elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the printed security feature produces a first graphical representation (A1) when illuminated with visible white light. At least the first ink is an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The printed security feature produces a second graphical representation (B1) when illuminated with non-visible light, which exhibits a distinctive two- dimensional graphic element (B) which is revealed only when the printed security feature is illuminated with non-visible light. The first printed section is subdivided into at least first and second printed portions (P1, P2), adjacent to the distinctive two-dimensional graphic element, and a third printed portion (P3), inside boundaries (200) of the distinctive two-dimensional graphic element. In the first, respectively second printed portion, the geometric elements are printed with the first, respectively second ink. In the third printed portion, the geometric elements are subdivided into first and second contiguous portions (GE_a, GE_b) which are respectively printed with the first and second inks. The first and second inks are printed in register one with respect to the other so that the boundaries of the distinctive two-dimensional graphic element are not visible when the printed security feature is illuminated with visible white light and the distinctive two-dimensional graphic element only becomes visible when the printed security feature is illuminated with non-visible light.
There is described a sheet-fed rotary printing press (100; 200; 300) for the production of banknotes and like securities comprising at least one printing form cylinder (115, 125; 215; 315, 325) having one or more segments. A nominal diameter (D) of the at least one printing form cylinder (115, 125; 215; 315, 325) substantially corresponds to an integer multiple of a reference diameter of a one-segment cylinder (103a; 103c;...) as used for printing onto super-format sheets exhibiting a standardized format with a width of the order of 820 mm and a length of the order of 700 mm. An axial length (AL) of the at least one printing form cylinder (115, 125; 215; 315, 325) is comparatively greater than a nominal axial length of a corresponding printing form cylinder as used for printing onto super-format sheets, by an amount such that the at least one printing form cylinder (115, 125; 215; 315, 325) is suitable for printing onto large-format sheets having a comparatively greater width (W) than the width of super- format sheets. Preferably, a circumferential length (SL) of each segment of the at least one printing form cylinder (115, 125; 215; 315, 325) is comparatively greater than a nominal circumferential length of each segment of a corresponding printing form cylinder as used for printing onto super-format sheets, by an amount such that the at least one printing form cylinder (115, 125; 215; 315, 325) is suitable for printing onto large-format sheets having a comparatively greater length (L) than the length of super-format sheets.
There is described a sheet numbering process involving feeding of individual sheets (S) in succession, which individual sheets (S) each carry a plurality of imprints (P) that are arranged in a matrix of rows and columns, and providing unique serial numbers to multiple ones of the plurality of imprints (P) carried by the individual sheets (S). The sheet numbering process comprises numbering of at least some of the individual sheets (S), wherein numbering of the individual sheets (S) is selectively commutable between a first numbering scheme (N1) and at least a second numbering scheme (N2; N2'; N*), different from the first numbering scheme (N1), without interruption of the numbering process. The first numbering scheme (N1) involves providing all imprints (P) of a first subset (S0) of individual sheets (S) with a unique serial number (SN1) of the first numbering scheme (N1). The second numbering scheme (N2; N2'; N*) involves providing all or part of the imprints (P) of a second subset (S'; S*) of individual sheets (S) with a unique serial number (SN2; SN2'; SN*) of the second numbering scheme (N2; N2'; N*). The first subset (S0) of individual sheets (S) and the second subset (S'; S*) of individual sheets are sorted after numbering in dependence of the numbering scheme (N1; N2; N2'; N*). Also described is a sheet-processing machine for carrying out the aforementioned sheet numbering process.
B41F 33/00 - Indicating, counting, warning, control or safety devices
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
72.
SUBSTRATE FOR SECURITY PAPERS AND METHOD OF MANUFACTURING THE SAME
There is described a substrate (S) for security documents, such as banknotes, comprising one or more paper layers (11, 12) and a polymer layer (20) which is made to adhere to a side of at least one of the paper layers (11, 12), which polymer layer (20) is substantially transparent in at least one region of the substrate (S) which is not covered by the paper layer or layers (11, 12) so as to form a substantially transparent window (W) in the substrate (S) which is formed and closed by the polymer layer (20). The polymer layer (20) exhibits in the region of the window (W) a thickness (T) which is greater than a thickness (t) of the polymer layer (20) outside of the region of the window (W). The thickness (T) of the polymer layer (20) in the region of the window (W) is substantially equal to the added thickness of the paper layer or layers (11, 12) and of the polymer layer (20) outside of the region of the window (W) so that the substrate (S) exhibits a substantially uniform and constant thickness (T). The substrate (S) further comprises a micro-optical structure (30), in particular a lens structure, which is disposed in the region of the window (W) on at least one side of the polymer layer (20).
B32B 27/10 - Layered products essentially comprising synthetic resin as the main or only constituent of a layer next to another layer of a specific substance of paper or cardboard
B32B 29/00 - Layered products essentially comprising paper or cardboard
B32B 3/26 - Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layerLayered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shapeLayered products comprising a layer having particular features of form characterised by a layer with cavities or internal voids
B42D 15/00 - Printed matter of special format or style not otherwise provided for
D21H 21/40 - Agents facilitating proof of genuineness or preventing fraudulent alteration, e.g. for security paper
D21H 27/36 - Films made from synthetic macromolecular compounds
73.
AUTHENTICATION OF SECURITY DOCUMENTS AND MOBILE DEVICE TO CARRY OUT THE AUTHENTICATION
A method of authenticating security documents and a mobile device, especially a smartphone, programmed to carry out the method, based on an analysis of features which are produced by intaglio printing, which analysis involves a decomposition of sample images of a candidate document to be authenticated based on Wavelets, each sample image being digitally processed by performing a Wavelet transform of the sample image in order to derive a set of classification features. The method is based on an adaptive approach, which includes the following steps : - prior to carrying out the Wavelet transform, defining a categorization map containing local information about different intaglio line structures that are found on the security documents; - carrying out a Wavelet selection amongst a pool of Wavelet types based on the categorization map; and - performing the Wavelet transform of the sample image on the basis of the selected Wavelet.
G07D 7/00 - Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
A method of authenticating security documents and a mobile device, especially a smartphone, programmed to carry out the method, based on an analysis of features which are produced by intaglio printing, which analysis involves a decomposition of sample images of a candidate document to be authenticated based on Wavelets, each sample image being digitally processed by performing a Wavelet transform of the sample image in order to derive a set of classification features. The method is based on an adaptive approach, which includes the following steps : - prior to carrying out the Wavelet transform, defining a categorization map containing local information about different intaglio line structures that are found on the security documents; - carrying out a Wavelet selection amongst a pool of Wavelet types based on the categorization map; and - performing the Wavelet transform of the sample image on the basis of the selected Wavelet.
There is described an inspection system (50) for in-line inspection of sheet or web material on an intaglio printing press, wherein the inspection system comprises an optical quality control apparatus for carrying out inspection of a printed area on a printed side of the sheet or web material, the optical quality control apparatus including a camera system (55) with one or more camera units each comprising at least one line-scan camera (56) for scanning and acquiring an image of the printed area while the sheet or web material is being transported in the intaglio printing press past the camera system (55). A location of the at least one line-scan camera (56) in the intaglio printing press along a delivery path of the sheet or web material is such that cyclical vibrations that spread periodically throughout the intaglio printing press during operation of the intaglio printing press do not occur while the camera system (55) is scanning the printed area of the sheet or web material and acquiring a complete image of the printed area.
The invention in particular describes a control method for intaglio printing, particularly for printing paper securities, in particular bank notes. This control method includes defining, on an intaglio printing plate (80), control strips (150, 151-55; 170, 171-179) designed so as in particular to make it possible to evaluate the effects of the printing pressure applied during printing of a substrate using the intaglio printing plate (80) and to evaluate the effects of the ink load applied during inking of the intaglio printing plate (8), the control strips (150, 151-55; 170, 171-179) being etched in a portion of the intaglio printing plate (80) so as to produce corresponding printed control zones (160, 161-165) on the substrate. The method furthermore includes performing measurements in the printed control zones making it possible to assess the printing pressure applied during printing of the substrate as well as the ink load applied during inking of the intaglio printing plate (80).
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 33/00 - Indicating, counting, warning, control or safety devices
B41F 9/02 - Rotary intaglio printing presses for multicolour printing
There is described a numbering device (1) for carrying out numbering in sheet-fed or web-fed numbering presses, the numbering device (1) comprising a numbering unit (6) with rotatable numbering wheels (7) carrying alpha-numerical symbols thereon, which numbering wheels (7) are disposed next to each other and rotate about a common rotation axis (17), the numbering device (1) further comprising electro-mechanical actuation means for setting the position of the numbering wheels (7). The electro-mechanical actuation means are entirely located within the numbering device (1) and are mechanically autonomous, the electro-mechanical actuation means comprising a plurality of independent driving means (15, 18-23; 23*) for actuating a corresponding plurality of the numbering wheels.
B41L 45/00 - Kinds or types of addressing machines or of like series-printing machines
B41K 3/12 - Apparatus for stamping articles having integral means for supporting the articles to be stamped with stamping surface located above article-supporting surface with curved stamping surface for stamping by rolling contact
B41J 1/60 - Typewriters or selective printing mechanisms characterised by the mounting, arrangement or disposition of the types or dies with types or dies on spherical, truncated-spherical, or like surfaces
B41F 13/00 - Common details of rotary presses or machines
B41F 33/00 - Indicating, counting, warning, control or safety devices
B41K 3/10 - Apparatus for stamping articles having integral means for supporting the articles to be stamped with stamping surface located above article-supporting surface and movable at right angles to the surface to be stamped having automatic means for changing type- characters, e.g. numbering devices
78.
INTAGLIO PRINTING PRESS AND METHOD OF MONITORING OPERATION OF THE SAME
There is described an intaglio printing press comprising a plate cylinder (8) carrying one or more intaglio printing plates (8c) and an impression cylinder (7) cooperating with the plate cylinder (8), a printing nip being formed between the plate cylinder (8) and the impression cylinder (7). The plate cylinder (8) and the impression cylinder (7) each comprise one or more cylinder pits (8a, 7a) and a corresponding number of cylinder segments (8b, 7b), the plate cylinder (8) and the impression cylinder (7) being in rolling contact with one another during printing operations along their respective cylinder segments (8a, 7b) when no cylinder pits (8a, 7a) are present at the printing nip. The intaglio printing press further comprises a monitoring system (150) designed to monitor a rolling condition of the impression cylinder (7) with respect to the plate cylinder (8) and to provide an indication as to whether or not the rolling condition corresponds to a desired rolling condition, the desired rolling condition being a rolling condition corresponding to true rolling of the impression cylinder (7) with respect to the plate cylinder (8) where no slippage occurs between a circumferential surface of the impression cylinder (7) and a circumferential surface of the plate cylinder (8). Also described is a method of monitoring operation of an intaglio printing press.
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
79.
METHOD FOR TRANSFERRING A DECORATIVE SECTION OF AN EMBOSSING FOIL
The invention relates to a method for transferring a decorative section (16) of an embossing foil (1) to a substrate (23) by means of an embossing roller (24), an embossing stamp (24'), or an applied adhesive layer (14). The embossing foil (1) comprises a carrier foil (11) and a transfer layer (13) arranged on the carrier foil (11). The method comprises providing the embossing foil (1), stamping at least one linear notch (15) arranged at a distance from the edge of the decorative section (16) into the transfer layer (13), embossing the decorative section (16) onto the substrate (23), and detaching the remaining embossing foil from the substrate (25) embossed with the decorative section (16).
There is described a cylinder body (10) for orienting magnetic flakes contained in an ink or varnish vehicle applied on a sheet-like or web-like substrate, which cylinder body (10) has a plurality of magnetic-field-generating devices (50, 60) disposed on an outer circumference of the cylinder body (10). The cylinder body (10) comprises a plurality of distinct annular supporting rings (40) distributed axially along a common shaft member (20), each annular supporting ring (40) carrying a set of magnetic-field-generating devices (50, 60) which are distributed circumferentially on an outer circumference of the annular supporting rings (40).
There is described an intaglio printing press (1; 1*) comprising an intaglio cylinder (8) and an ink wiping system (10) with a rotating wiping roller assembly (11) contacting a circumference of the intaglio cylinder (8) for wiping excess ink from the surface of the intaglio cylinder (8), a rotational speed of the wiping cylinder being adjustable with respect to a rotational speed of the intaglio cylinder (8). The intaglio printing press (1; 1*) comprises an adjustable drive unit (25), which adjustable drive unit (25) is interposed between the wiping roller assembly (11) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) coupled to the intaglio cylinder (8) and acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the wiping roller assembly (11) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the wiping roller assembly (11) is adjusted by means of an adjustment motor (700) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (700) is inoperative and driving into rotation of the wiping roller assembly (11) is performed exclusively mechanically via the adjustable drive unit (25), the wiping roller assembly (11) rotating at a defined rotational speed with respect to the rotational speed of the intaglio cylinder (8).
There is described an intaglio printing press (1; 1 *) comprising a plate cylinder (8) carrying one or more intaglio printing plates, the plate cylinder (8) receiving ink from an inking system (9, 20, 23; 20*, 23*) having a plurality of chablon cylinders (23; 23*) transferring ink directly or indirectly onto the plate cylinder (8), the intaglio printing press (1; 1 *) comprising an adjustment system acting on the chablon cylinders (23; 23*) in order to compensate elongation of the one or more intaglio printing plates. The adjustment system comprises, for each chablon cylinder (23; 23*), an adjustable drive unit, which adjustable drive unit (25) is interposed between the chablon cylinder (23; 23*) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the chablon cylinder (23; 23*) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the chablon cylinder (23; 23*) is adjusted over each revolution of the chablon cylinder (23; 23*) by means of an adjustment motor (300) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (300) is inoperative and driving into rotation of the chablon cylinder (23; 23*) is performed exclusively mechanically via the adjustable drive unit (25), the chablon cylinder (23; 23*) rotating at a same rotational speed as the driving gear (100).
There is described a printing press (1; 1*; 1**) comprising an ink- receiving cylinder (9; 8) receiving ink from an inking system (90-93, 90*, 93*; 95-99, 95*, 99*; 100-104, 100*, 104*) having a plurality of ink-applying cylinders or rollers (93, 93*; 99, 99*; 104, 104*) arranged one above the other around part of a circumference of the ink-receiving cylinder (9; 8), the ink-applying cylinders or rollers (93, 93*; 99, 99*; 104, 104*) being inked by a corresponding plurality of inking devices (90, 90*; 95, 95*; 100, 100*), the printing press (1; 1*; 1**) further comprising an inking carriage (52; 55; 57) supporting the plurality of inking devices (90, 90*; 95, 95*; 100, 100*), which inking carriage (52; 55; 57) can be moved with respect to the ink-receiving cylinder (9; 8) between a working position and a retracted position. The at least one selected inking device (90*; 95*; 100*) amongst the plurality of inking devices (90, 90*; 95, 95*; 100, 100*) of the inking system (90-93, 90*, 93*; 95-99, 95*, 99*; 100-104, 100*, 104*) is supported onto the inking carriage (52; 55; 57) via a movable frame (60; 65; 70), which movable frame (60; 65; 70) is supported by the inking carriage (52; 55; 57) to allow movement of the selected inking device (90*; 95*; 100*) with respect to the inking carriage (52; 55; 57) and with respect to a remaining part (90; 95; 100) of the plurality of inking devices (90, 90*; 95, 95*; 100, 100*).
There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the engraved surface (10a) of the intaglio printing plate (10). The vacuum chamber (3) is arranged so that the intaglio printing plate (10) to be coated sits substantially vertically in the inner space (30) of the vacuum chamber (3) with its engraved surface (10a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52).
C23C 14/16 - Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
C23C 14/35 - Sputtering by application of a magnetic field, e.g. magnetron sputtering
85.
METHOD OF CHECKING PRODUCIBILITY OF A COMPOSITE SECURITY DESIGN OF A SECURITY DOCUMENT ON A LINE OF PRODUCTION EQUIPMENT AND DIGITAL COMPUTER ENVIRONMENT FOR IMPLEMENTING THE SAME
There is described a method of checking producibility of a composite security design of a security document, in particular of a composite banknote design, on a line of production equipment, the composite security design being the product of a combination of multiple sets of design features that are to be provided on a substrate as a result of a plurality of successive production operations carried out by means of the line of production equipment. The method comprises the steps of (a) providing digital design data representative of the composite security design of the security document, (b) modelizing, in a computer environment, the line of production equipment by means of which the composite security design is intended to be produced, (c) performing a computer simulation of production results of the plurality of successive production operations on the basis of the digital design data and the modelized line of production equipment, and (d) evaluating the computer simulated production results and determining, on the basis of these computer simulated production results, whether the composite security design can be produced on the line of production equipment.
There is described an ink wiping system (100; 100'; 100") of an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102; 102*) supported on and partly located in the wiping tank (101 ) for wiping excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100; 100'; 100") comprises a wiping roller retracting device (150) which forms an integral part of the ink wiping system (100; 100'; 100") and is adapted to be coupled to the wiping roller assembly (102; 102*) to move the wiping roller assembly (102; 102*) between a working position (W) where the wiping roller assembly (102; 102*) is supported on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a parking position (P) where the wiping roller assembly (102; 102*) is retracted out of the wiping tank (101) and away from the intaglio printing cylinder (80). In the working position (W) of the wiping roller assembly (102; 102*), the wiping roller retracting device (150) is coupled to the wiping roller assembly (102; 102*). The ink wiping system (100; 100'; 100") further includes, at the parking position (P), a storage section (110) adapted to receive the wiping roller assembly (102; 102*) which is retracted by the wiping roller retracting device (150).
37 - Construction and mining; installation and repair services
42 - Scientific, technological and industrial services, research and design
Goods & Services
(1) Machines mécaniques pour la production et l'emballage de papiers valeurs, nommément de billets de banque; machines mécaniques servant à imprimer les papiers valeurs, nommément les billets de banque; machines servant à appliquer des éléments de sécurité aux papiers-valeurs, nommément aux billets de banque et papiers fiduciaires, nommément les éléments de sécurité comportant des effets-fenêtres, des effet optiques variables, à image latente et munis de rubans, de bandes, d'etiquettes; machines mécaniques de vernissage pour papiers-valeurs, nommément pour billets de banque et papiers fiduciaires; instruments rotatifs de découpe, nommément cylindres de découpe, cylindres d'estampage, cylindres d'application d'éléments de sécurité, dispositifs de surimpression, dispositifs de dé-métalisation sélective, en tant qu'accessoires de machines pour la production de papiers-valeurs, nommément de billets de banques. (1) Services de réparation des machines mécaniques et électroniques destinées à la production, à l'impression, au contrôle et à la numérotation des billets de banques et des papiers fiduciaires. Services de dessin assisté par ordinateur de papiers et documents fiduciaires.
88.
Printing press for numbering and varnishing of security documents, including banknotes
There is described a sheet-fed or web-fed printing press for numbering and varnishing of security documents, including banknotes, comprising: —a numbering group (02) comprising at least one numbering unit (21, 22) for numbering printed material in the form of individual sheets or successive portions of a continuous web carrying multiple security imprints; and—a varnishing group (03; 03*) located downstream of the numbering group (02) for applying varnish onto recto and verso sides of the printed material, the varnishing group (03; 03*) comprising at least a first varnishing unit (31) disposed above a path of the printed material to apply varnish on the recto side of the printed material and at least a second varnishing unit (32) disposed below the path of the printed material to apply varnish on the verso side of the printed material.
B41F 11/02 - Rotary presses or machines having forme cylinders carrying a plurality of printing surfaces, or for performing letterpress, lithographic, or intaglio processes selectively or in combination for securities
B41F 21/08 - Combinations of endless conveyors and grippers
B41F 21/10 - Combinations of transfer drums and grippers
B41F 23/04 - Devices for treating the surfaces of sheets, webs or other articles in connection with printing by heat drying, by cooling, by applying powders
B41F 23/08 - Print-finishing devices, e.g. for glossing prints
B41F 31/30 - Arrangements for tripping, lifting, adjusting, or removing inking rollersSupports, bearings, or forks therefor
B41F 33/00 - Indicating, counting, warning, control or safety devices
B65H 29/04 - Delivering or advancing articles from machinesAdvancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles the grippers being carried by endless chains or bands
There is described an intaglio printing press comprising (i) a stationary machine frame (01) supporting an intaglio printing cylinder (07) and an impression cylinder (06) contacting the intaglio printing cylinder (07), (ii) an inking system (12, 13, 16) for inking the intaglio printing cylinder (07), which inking system (12, 13, 16) comprises an ink-collecting cylinder (12) de-signed to contact the intaglio printing cylinder (07) and at least one inking device (13, 16) for supplying ink to said ink-collecting cylinder (12), and (iii) at least a first mobile carriage (11) supporting the ink-collecting cylinder (12), which first mobile carriage (11) is adapted to be moved with respect to the stationary machine frame (01) between a working position where the ink-collecting cylinder (12) contacts the intaglio printing cylinder (07) and a retracted position where the ink-collecting cylinder (12) is retracted away from the intaglio printing cylinder (07). The intaglio printing press further comprises a correcting and adjusting system (80) for correcting and adjusting a rotational position of the ink-collecting cylinder (12) with respect to a rotational position of the intaglio printing cylinder (07) following maintenance operations to ensure proper circumferential register between the ink-collecting cylinder (12) and the intaglio printing cylinder (07) in the working position of the first mobile carriage (11).
There is described a method for checking the authenticity of security documents, in particular banknotes, wherein authentic security documents comprise security features (41-49; 30; 10; 51, 52) printed, applied or otherwise provided on the security documents, which security features comprise characteristic visual features intrinsic to the processes used for producing the security documents. The method comprises the step of digitally processing a sample image of at least one region of interest (R.o.I.) of the surface of a candidate document to be authenticated, which region of interest encompasses at least part of the security features, the digital processing including performing a decomposition of the sample image by means of wavelet transform (WT) of the sample image. Such decomposition of the sample image is based on a wavelet packet transform (WPT) of the sample image, preferably a so-called two-dimensional shift invariant WPT (2D-SIWPT).
There is described an intaglio printing press comprising (i) a stationary machine frame (01) supporting an intaglio printing cylinder (07) and an impression cylinder (06) contacting the intaglio printing cylinder (07), (ii) an inking system (12, 13, 16) for inking the intaglio printing cylinder (07), which inking system (12, 13, 16) comprises an ink-collecting cylinder (12) designed to contact the intaglio printing cylinder (07) and at least one inking device (13, 16) for supplying ink to said ink-collecting cylinder (12), and (iii) at least a first mobile carriage (11) supporting the ink-collecting cylinder (12), which first mobile carriage (11) is adapted to be moved with respect to the stationary machine frame (01) between a working position where the ink-collecting cylinder (12) contacts the intaglio printing cylinder (07) and a retracted position where the ink-collecting cylinder (12) is retracted away from the intaglio printing cylinder (07). The axis of rotation of the ink-collecting cylinder (12) lies below a horizontal plane (P0) intersecting the axis of rotation of the intaglio printing cylinder (07) and a plane (P2) intersecting the axis of rotation of the ink-collecting cylinder (12) and the axis of rotation of the intaglio printing cylinder (07) forms, in the working position of the first mobile carriage (11), an acute angle (β) with respect to the horizontal plane (P0).
There is described an ink wiping system (100) for an intaglio printing press comprising a rotatable wiping roller assembly (102) designed to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80). The rotatable wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the printing cylinder (80), and a pressing device (130) disposed inside the cylindrical body (110) and designed to exert pressure on an inner surface (110b) of the cylindrical body (110) and to allow adjustment of a wiping pressure between the cylindrical body and the intaglio printing cylinder (80). The pressing device (130) preferably comprises a plurality of pressing units (132) that are distributed axially along the inside of the hollow cylindrical body (110) to allow adjustment of the wiping pressure between the cylindrical body (110) and the intaglio printing cylinder at a plurality of axial positions along the length of the hollow cylindrical body (110).
There is described an ink wiping system (100) for an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102) positioned on and partly located in the wiping tank (101) to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100) comprises a supporting mechanism (200) coupled to the wiping roller assembly (102) and designed to move the wiping roller assembly (102) between a working position where the wiping roller assembly (102) is positioned on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a maintenance position where the wiping roller assembly (102) is moved out of the wiping tank (101) and away from the intaglio printing cylinder (80). Preferably, the wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the intaglio printing cylinder (80).
There is described an intaglio printing plate (1; 1 *) for the production of banknotes and like printed securities, which intaglio printing plate comprises an engraved polymer layer (10) and wherein a surface of the engraved polymer layer is covered by one or more coatings (100; 200, 300) including an outer coating (100; 300) made of a wear-resistant material. The outer coating (100; 300) is advantageously formed by physical vapour deposition (PVD) of the wear-resistant material. Also described is a method of manufacturing the intaglio printing plate (1; 1 *).
There is described a device (1) for offline inspection and color measurement of printed sheets for the production of banknotes and like printed securities, comprising (i) a console (10) having a supporting surface (10a) for supporting a sample printed sheet (S), (ii) a multipurpose measuring apparatus (20), which multipurpose measuring apparatus (20) comprises multiple sensors (22, 23) including at least one camera (22) for taking images of selected portions of the sample printed sheet (S) and a color measurement sensor (23) for performing spectrophotometric, colorimetric, and/or densitometric measurements at selected locations on the sample printed sheet (S), (iii) a display (30) for displaying the images taken by the camera (22) and the measurements performed by the color measurement sensor (23), and (iv) a control and processing unit (40) coupled to the multipurpose measuring apparatus (20) and the display (30). The device (1) comprises a moveable sensor beam (200) housing the multipurpose measuring apparatus (20), which moveable sensor beam (200) is displaceable along an x-axis over the supporting surface (10a) of the console (10) and over the entire surface of the sample printed sheet (S) located on the supporting surface (10a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
09 - Scientific and electric apparatus and instruments
37 - Construction and mining; installation and repair services
41 - Education, entertainment, sporting and cultural services
Goods & Services
(1) Machines mécaniques pour la production et l'emballage de billets de banque; machines mécaniques servant à imprimer les billets de banque, machines servant à appliquer des éléments de sécurité aux papiers-valeurs, en particulier aux billets de banque et papiers fiduciaires; machines mécaniques et électroniques pour fabriquer des documents de sécurité et papiers-valeurs avec des données biométriques; machines et appareils électroniques pour la production et l'impression de billets de banque; parties de tous les produits précités et pièces de rechange des produits précités. Machines et appareils électroniques de contrôle de la qualité d'impression de documents imprimés, notamment de billets de banque, de papiers fiduciaires; machines et appareils électroniques pour le tri des billets de banque; machines mécaniques et électroniques pour la mesure et le contrôle de données biométriques; parties de tous les produits précités et pièces de rechange des produits précités. (1) Services de réparation des machines mécaniques et électroniques destinées à la production, à l'impression, au contrôle et à la numérotation des billets de banques et des papiers fiduciaires. Formation du personnel pour l'installation clé en main des machines mécaniques et électroniques destinées à la production, à l'impression, au contrôle et à la numérotation des billets de banques et des papiers fiduciaires.
97.
DEVICE FOR IRRADIATING SUBSTRATE MATERIAL IN THE FORM OF A SHEET OR WEB AND USES THEREOF
A device for irradiating substrate material (S) in the form of a sheet or web in a sheet-fed or web-fed processing system, especially in a sheet-fed or web-fed processing or printing press. The device comprises at least one flexible light-emitting sheet (10) for producing radiation of a desired wavelength or wavelength band, which light-emitting sheet (10) is disposed along a path of the substrate material (S) to subject the substrate material (S) to said radiation. The flexible light-emitting sheet (10) is preferably an organic light-emitting device (OLED) sheet.
B41F 23/04 - Devices for treating the surfaces of sheets, webs or other articles in connection with printing by heat drying, by cooling, by applying powders
B41F 33/00 - Indicating, counting, warning, control or safety devices
98.
COLOR CONTROL PATTERN FOR THE OPTICAL MEASUREMENT OF COLORS PRINTED ON A SHEET OR WEB SUBSTRATE BY MEANS OF A MULTICOLOR PRINTING PRESS AND USES THEREOF
There is described a color control pattern (CP) for the optical measurement of colors printed on a sheet or web substrate (S) by means of a multicolor printing press, especially by means of a multicolor security printing press, which substrate (S) exhibits an effective printed region (EF) having a multicolor printed image comprising a plurality of juxtaposed colored areas (A- H) printed with a corresponding plurality of printing inks of different colors, wherein the color control pattern (CP) is located in a margin portion (Im) of the substrate (S) next to the effective printed region (EF). The color control pattern (CP) comprises one or more color control strips (a-d) extending transversely to a direction of transport (T) of the substrate (S), each color control strip (a-d) comprising a plurality of distinct color control fields (CF, CFA to CFH) consisting of printed fields of each relevant printing ink that is printed in the effective printed region (EF). The color control fields (CF, CFA to CFH) are coordinated to actual application of the relevant printing inks in the effective printed region (EF) and are positioned transversely to the direction of transport (T) of the substrate (S) at locations corresponding to actual positions where the relevant printing inks are applied in the effective printed region (EF).
There is described an inspection system (50) for in-line inspection of sheet or web material on an intaglio printing press, wherein the inspection system comprises an optical quality control apparatus for carrying out inspection of a printed area on a printed side of the sheet or web material, the optical quality control apparatus including a camera system (55) with one or more camera units each comprising at least one line-scan camera (56) for scanning and acquiring an image of the printed area while the sheet or web material is being transported in the intaglio printing press past the camera system (55). A location of the at least one line-scan camera (56) in the intaglio printing press along a delivery path of the sheet or web material is such that cyclical vibrations that spread periodically throughout the intaglio printing press during operation of the intaglio printing press do not occur while the camera system (55) is scanning the printed area of the sheet or web material and acquiring a complete image of the printed area.
There is described a method for touchless counting of substantially planar substrates, especially banknotes, which are stacked in the form of stacks of substrates, said method comprising the following steps: taking at least one sample image of a portion of a side of a stack of substrates, which sample image contains contrast information representing substrate edges that extend along substantially a first direction in the sample image; processing the contrast information representing the substrate edges within the sample image (10), which processing includes subjecting at least one area of interest (20) within the sample image (10) to anisotropic diffusion to produce a processed image containing a substantially coherent set of continuous lines representing the substrate edges; and counting the number of substrate edges in said processed image.