42 - Scientific, technological and industrial services, research and design
Goods & Services
Application service provider featuring application programming interface (API) software featuring information provided by proprietary satellites in the fields of maritime, aviation, weather, and Earth; Providing websites featuring technology that enables users to track, monitor, locate, collect, transfer, analyze, and access data provided by proprietary satellites regarding maritime vessels, cargo vessels, flights, weather, and Earth for commercial and business purposes
2.
Optimization system of heterogeneous low earth orbit multi-use spacecraft
A constellation planning system receives a request, from a client, to plan an optimal set of tasks for one or more satellites in a constellation of satellites and at least one ground station in a constellation of ground stations. The request includes a planning problem object. The system generates a status of the planning task describing a progress of the planning task, and returns the status to the client. If the status of a task is successful, then the client may retrieve the resulting schedule and publish it to the constellation.
B64G 1/24 - Guiding or controlling apparatus, e.g. for attitude control
B64G 1/10 - Artificial satellitesSystems of such satellitesInterplanetary vehicles
G01S 19/02 - Details of the space or ground control segments
G01S 19/06 - Cooperating elementsInteraction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
G01S 19/20 - Integrity monitoring, fault detection or fault isolation of space segment
G01S 19/26 - Acquisition or tracking of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking
Certain implementations of the disclosed technology may include systems and methods for reducing noise in dual-frequency GNSS signal observation. The method can include: receiving, at a GNSS receiver, a first signal and a second signal. At least the second signal includes noise. The first signal is characterized by a first carrier frequency, and the second signal is characterized by a second carrier frequency. The method includes: down converting, sampling, cross-correlating, accumulating, determining ambiguous instantaneous phases, determining non-ambiguous instantaneous phases, producing normalized non-ambiguous instantaneous first phase samples, constructing a normalized first counter rotation phasor, generating a counter-rotated second observable, applying a low pass filter to remove noise; and outputting the filtered second observable.
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol.
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
Systems and methods are disclosed herein for adaptively coordinating among satellite communication channels. A method, according to an example implementation of the disclosed technology, can include: receiving, at a radio frequency receiver disposed on a target satellite, a plurality of signals associated with a corresponding plurality of candidate satellite communication channels; detecting, among the plurality of signals, a command structure; selecting, for communications with a first ground station, a first channel of the candidate satellite communication channels, based at least in part, on information in the detected command structure; establishing a communication link with the first ground station using the first channel; receiving, via the first channel, and from the first ground station, one or more downlink instructions; selecting a downlink communication channel based on the received one or more downlink instructions; and transmitting information to the first ground station via the selected downlink communication channel.
Certain implementations of the disclosed technology may include systems and methods for reducing noise in dual-frequency GNSS signal observation. The method can include: receiving, at a GNSS receiver, a first signal and a second signal. At least the second signal includes noise. The first signal is characterized by a first carrier frequency, and the second signal is characterized by a second carrier frequency. The method includes: down converting, sampling, cross-correlating, accumulating, determining ambiguous instantaneous phases, determining non-ambiguous instantaneous phases, producing normalized non-ambiguous instantaneous first phase samples, constructing a normalized first counter rotation phasor, generating a counter-rotated second observable, applying a low pass filter to remove noise; and outputting the filtered second observable.
Methods and systems detect physical locations of vessels. A first satellite includes a first image sensor. A second satellite includes a second image sensor. The processor receives a first image of a target area from the first image sensor, and a second image of the target area from the second image sensor. Both images are taken within a predetermined time frame. The processor performs image recognition to identify a vessel that appears in both the first image and the second image. The processor receives the first satellite's location and orientation when the first image is taken and the second satellite's location and orientation when the second image is taken. Each satellite's location and orientation are determined by the satellite's geographic determination module. The processor determines the vessel's location by performing triangulation based on the first satellite's location and orientation and the second satellite's location and orientation. The processor outputs data representative of the vessel's determined location. The vessel's speed and bearing are also determined by the processor.
G01S 19/45 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 11/12 - Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
G06T 7/70 - Determining position or orientation of objects or cameras
10.
Systems and methods for satellite solar panel deployment
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
Systems and methods are disclosed herein for adaptively coordinating among satellite communication channels. A method, according to an example implementation of the disclosed technology, can include: receiving, at a radio frequency receiver disposed on a target satellite, a plurality of signals associated with a corresponding plurality of candidate satellite communication channels; detecting, among the plurality of signals, a command structure; selecting, for communications with a first ground station, a first channel of the candidate satellite communication channels, based at least in part, on information in the detected command structure; establishing a communication link with the first ground station using the first channel; receiving, via the first channel, and from the first ground station, one or more downlink instructions; selecting a downlink communication channel based on the received one or more downlink instructions; and transmitting information to the first ground station via the selected downlink communication channel.
The disclosed technology relates to systems and methods for determining three-dimensional atmospheric and ionospheric density using refraction of electromagnetic waves. A method is provided for receiving, at a processing system, and from a plurality of Global Navigation Satellite Systems (GNSS) stations, navigation data corresponding to computed positions of the plurality of GNSS stations. The method can further include determining, based at least in part on received navigation data and received GNSS transmitter information, ionosphere and atmosphere refractivity corresponding to intersections of two or more GNSS signals. The method can include calculating, based on the determined 3D density states, data fields of a model representing the three-3D density states. The method can include transmitting position adjustment data to calibrate a navigation position of at least one of the plurality of the GNSS stations based at least in part on the calculated data fields of the model.
G01S 19/07 - Cooperating elementsInteraction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
G01S 19/08 - Cooperating elementsInteraction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
G01S 19/25 - Acquisition or tracking of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
15.
Systems and methods for satellite solar panel stowage and deployment
The disclosed technology includes systems, methods, and mechanism configurations related to satellite solar panels, including stowing arrangements, deployment sequences, special purpose hinges, hold down and release mechanisms, and associated components for controlled deployment of the satellite solar panels.
A constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. By coordinating the collection and processing of the data using state of the art receivers on a constellation of low earth orbit satellites and networked processing, highly accurate calculation of atmospheric conditions and related future weather events are possible.
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according to at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
A method is provided that can include designating as a control node, a first communication node of a plurality of communication nodes associated with a satellite communications system. The method can include, designating as a listening node, a second communication node of the plurality of communication nodes. The listening node is responsive to instructions provided by the control node. The method includes receiving, at a tuning module, one or more input tuning factors, wherein the one or more input tuning factors can include at least a resource burden factor. Responsive to receiving the one or more input tuning factors, the method includes adjusting by the tuning module, one or more tunable output parameters. The method includes sending, from the control node to the listening node, instructions comprising one or more of the tunable output parameters, and executing the instructions at the listening node.
Certain implementations of the disclosed technology may include systems and methods for data alignment without requiring an external synchronizing trigger. A method is provided that can include receiving a signal that represents a plurality of frames, each of the plurality of the frames include an optional data portion and a predetermined portion. The method includes sampling and buffering at least a portion of the received signal to produce a buffered digital sequence. The method includes processing, by a sequence alignment module, the buffered digital sequence using a known sequence, where the known sequence corresponds to the predetermined portion. The method includes determining, using the sequence alignment module, respective positions of the buffered digital sequence corresponding to the known sequence, comparing the known sequence with the buffered digital sequence at the respective determined positions, and outputting one or more parameters based at least in part on the comparing.
Methods and systems detect physical locations of vessels. A first satellite includes a first image sensor. A second satellite includes a second image sensor. The processor receives a first image of a target area from the first image sensor, and a second image of the target area from the second image sensor. Both images are taken within a predetermined time frame. The processor performs image recognition to identify a vessel that appears in both the first image and the second image. The processor receives the first satellite's location and orientation when the first image is taken and the second satellite's location and orientation when the second image is taken. Each satellite's location and orientation are determined by the satellite's geographic determination module. The processor determines the vessel's location by performing triangulation based on the first satellite's location and orientation and the second satellite's location and orientation. The processor outputs data representative of the vessel's determined location. The vessel's speed and bearing are also determined by the processor.
G01S 19/45 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
G01S 5/02 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using radio waves
G01S 5/16 - Position-fixing by co-ordinating two or more direction or position-line determinationsPosition-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
G01S 11/12 - Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
G06T 7/70 - Determining position or orientation of objects or cameras
22.
Satellite operating system, architecture, testing and radio communication system
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol.
A method is provided that can include designating as a control node, a first communication node of a plurality of communication nodes associated with a satellite communications system. The method can include, designating as a listening node, a second communication node of the plurality of communication nodes. The listening node is responsive to instructions provided by the control node. The method includes receiving, at a tuning module, one or more input tuning factors, wherein the one or more input tuning factors can include at least a resource burden factor. Responsive to receiving the one or more input tuning factors, the method includes adjusting by the tuning module, one or more tunable output parameters. The method includes sending, from the control node to the listening node, instructions comprising one or more of the tunable output parameters, and executing the instructions at the listening node.
The disclosed technology relates to systems and methods for managing one or more ground stations that track satellites. A non-transitory computer-readable storage medium stores information of a ground station at a first position at a first time. A processor receives from a sensor information of the ground station at a second position at a second time. The processor detects an anomaly of a positional characteristic of the ground station based on a difference between the first position and the second position. The processor outputs an instruction to calibrate the ground station based on the detected anomaly.
A power distribution system and a method thereof regulate power distribution in a small form factor satellite flight system. The power distribution system may include a power source and a plurality of power channels. The power channels may distribute power from the power source to a plurality of systems in the small form factor satellite flight system. A processor may monitor power availability of the power source. The processor may also collect housekeeping information of the plurality of systems in the small form factor satellite flight system. The processor may regulate the power channels based on the power availability and the housekeeping information.
B64G 1/44 - Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
G05B 15/02 - Systems controlled by a computer electric
B60R 16/033 - Electric or fluid circuits specially adapted for vehicles and not otherwise provided forArrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric for supply of electrical power to vehicle subsystems characterised by the use of electrical cells or batteries
B64G 1/10 - Artificial satellitesSystems of such satellitesInterplanetary vehicles
26.
Processor system for control of modular autonomous system
A cubesat communications system includes an on-board computer implemented on a hardware platform. The on-board computer may include a system on module having a processor and a memory storing “boot” information. The on-board computer may also include a plurality of hardware interfaces implemented on the hardware platform to facilitate communication between the processor and a plurality of peripherals external to the on-board computer. The on-board computer may have a backplane having a plurality of connectors connecting the processor to the peripherals.
A back-plane connector connects component boards for a cubesat with a processing unit and a board connector electrically connected to the back-plane connector. The board connector mates with complimentary connectors on the component boards. The arrangement facilitates assembly, testing and operational reliability. An image capture system may be included and has an image capture device with a multiplexer for interactive collection and storage of image and video data.
A cubesat design includes selected subsystems for managing communications to other satellites and ground stations. In one embodiment, the subsystem includes a deployable antenna having compact size and low weight that reliably releases and detects an extended antenna after launch.
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol.
A constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. By coordinating the collection and processing of the data using state of the art receivers on a constellation of low earth orbit satellites and networked processing, highly accurate calculation of atmospheric conditions and related future weather events are possible.
42 - Scientific, technological and industrial services, research and design
Goods & Services
Providing an internet website portal featuring information provided by proprietary satellites in the field of tracking, locating and monitoring maritime vessels for commercial purposes; electronic data collection for business purposes using proprietary satellites in the field of maritime vessel movement Providing an internet website portal featuring information provided by proprietary satellites in the field of weather patterns; Software as a service (SAAS) services featuring data collection software using proprietary satellites for collecting, transferring, evaluating and analyzing weather data
32.
SYSTEM AND METHOD FOR WIDESPREAD LOW COST ORBITAL SATELLITE ACCESS
A large constellation of low-cost satellites with a satellite support and administration system that allows widespread user access to advanced satellite technology at extremely low costs. Any portion of the constellation can be tasked and configured for specific data capture. In one embodiment, a constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. Alternately, the constellation can be configured as a vehicle location tracking system that receives multiple vehicle tracking signals and based thereon, track within a system grid each vehicle under surveillance. The system can use AIS for ocean going vessels, ADS-B for aircraft, and AEI for trains. Use of the system permits extended tracking of key cargos and the protection of vehicles from piracy and the like.
A large constellation of low-cost satellites with a satellite support and administration system that allows widespread user access to advanced satellite technology at extremely low costs. Any portion of the constellation can be tasked and configured for specific data capture. In one embodiment, a constellation of individual satellites are employed to concurrently collect occultation data from multiple GPSS originating signals that pass through atmospheric sections of interest. Alternately, the constellation can be configured as a vehicle location tracking system that receives multiple vehicle tracking signals and based thereon, track within a system grid each vehicle under surveillance. The system can use AIS for ocean going vessels, ADS-B for aircraft, and AEI for trains. Use of the system permits extended tracking of key cargos and the protection of vehicles from piracy and the like.
B64G 1/10 - Artificial satellitesSystems of such satellitesInterplanetary vehicles
G01S 1/00 - Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmittersReceivers co-operating therewith
G01S 19/03 - Cooperating elementsInteraction or communication between different cooperating elements or between cooperating elements and receivers
G01W 1/08 - Adaptations of balloons, missiles, or aircraft for meteorological purposesRadiosondes
34.
System and method for widespread low cost orbital satellite access
A satellite support and administration system includes a web based portal to allow widespread user access to advanced satellite technology at extremely low costs. The system supports the sequential launch of increasingly sophisticated satellites having limited life spans. Each satellite is equipped with a powerful array of sensors for space based measurement of scientifically and commercially important phenomena. A ground based platform supports and encourages the development of software and custom applications to operate experiments utilizing the processors and sensor array on the satellite.